Back to Top

Paper Title

Potential and challenges for large-scale application of biodiesel in automotive sector

Authors

Atul Dhar
Atul Dhar
Jai Gopal Gupta
Jai Gopal Gupta

Article Type

Research Article

Research Impact Tools

Issue

Volume : 61 | Page No : 113-149

Published On

July, 2017

Downloads

Abstract

Biodiesel is receiving serious attention globally as a potential alternative fuel for replacing mineral diesel, partially or fully. In this review paper, most prominent methods of biodiesel production commercially, life-cycle analysis and economic issues related to biodiesel, engine performance, combustion and emission characteristics including particulate, engine compatibility issues and effect of biodiesel usage on engine component wear and lubricating oil are comprehensively discussed. Majority of biodiesel produced globally is via base-catalyzed transesterification process since this is a low temperature and pressure process, having high conversion rates without intermediate steps, and it uses inexpensive materials of construction for the plant. Catalyst types (alkaline, acidic or enzymatic), catalyst concentration, molar ratio of alcohol/oil, reaction temperature, moisture content of reactants, and free fatty acid (FFA) content of oil are the main factors affecting biodiesel (ester) yield from the transesterification process. Substantial reduction in particulate matter (PM), total hydrocarbons (THC) and carbon monoxide (CO) emissions in comparison to mineral diesel, and increased brake specific fuel consumption (BSFC) and oxides of nitrogen (NOX) emissions are reported by most researchers using unmodified compression ignition (CI) engines. This review covers several aspects, which are not covered by previous review articles, such as effect of biodiesel on unregulated emissions, effect of biodiesel on carbon deposits, wear of key engine components, and lubricating oil in long-term endurance studies. It emerges from literature review that even minor blends of biodiesel help control emissions and ease pressure on scarce petroleum resources without sacrificing engine power output, engine performance and fuel economy. This review underscores that future studies should focus on optimization of fuel injection equipment and hardware modifications to develop dedicated biodiesel engines, improve low temperature performance of biodiesel fuelled engines, develop new biodiesel compatible lubricating oil formulations and special materials for engine components before implementing large-scale substitution of mineral diesel by biodiesel globally.

View more >>

Uploded Document Preview