Back to Top

Paper Title

Optimizing Data Pipeline Performance in Modern GPU Architectures

Keywords

  • Data pipeline optimization
  • GPU architectures
  • memory management
  • parallel execution
  • data transfer bottlenecks
  • task scheduling

Article Type

Research Article

Research Impact Tools

Issue

Volume : 11 | Issue : 4 | Page No : 302–318

Published On

December, 2020

Downloads

Abstract

Optimizing data pipeline performance in modern GPU architectures is critical for achieving high computational throughput and efficient resource utilization in data-intensive applications. With the rise of deep learning, scientific simulations, and real-time analytics, GPUs have become integral in accelerating data processing tasks. However, ensuring optimal performance involves addressing several challenges, such as memory bandwidth limitations, data transfer bottlenecks between CPU and GPU, and efficient parallel execution of workloads. This research explores techniques for improving data pipeline performance by focusing on memory management, load balancing, and task scheduling. One key strategy is optimizing data movement through techniques like memory coalescing, which minimizes access latency, and overlapping data transfers with computation. Furthermore, leveraging the architectural advances in modern GPUs, such as unified memory and NVLink, can significantly reduce data transfer overhead. Task parallelism and efficient workload distribution across multiple GPU cores also play a crucial role in enhancing pipeline throughput. Additionally, the study highlights the importance of tuning GPU kernels and optimizing data preprocessing steps to ensure minimal latency and maximum throughput. By adopting advanced profiling tools and performance monitoring techniques, bottlenecks can be identified, and pipeline optimization strategies can be fine-tuned. The findings presented provide a comprehensive approach for designing and optimizing data pipelines, leading to significant performance improvements in GPU-based systems, ultimately driving the next generation of high-performance computing applications.

View more >>

Uploded Document Preview