Skip to main content
Loading...
Scholar9 logo True scholar network
  • Login/Sign up
  • Scholar9
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
  • Login/Sign up
  • Back to Top

    Transparent Peer Review By Scholar9

    Deep Learning for Polymer Classification: Automating Categorization of Peptides, Plastics, and Oligosaccharides

    Abstract

    Polymers represent a diverse and vital class of materials across numerous industries, each with unique structural characteristics and functional properties. Traditional methods of polymer classification rely heavily on labor-intensive techniques prone to subjectivity and human error. The emergence of deep learning has significantly transformed material science by enabling automated analysis and classification of complex polymers. In this study, we focus on leveraging deep learning models to classify three distinct classes of polymers: peptides, plastics, and oligosaccharides. Peptides, plastics, and oligosaccharides represent significant subsets of the polymer family, each with distinct structural features and applications. Our research explores the effectiveness of various deep learning architectures, including deep learning to classify peptides, plastics, and oligosaccharides, achieving perfect accuracy with neural networks, K-Nearest Neighbors, and Random Forest classifiers. Principal Component Analysis enabled visualization of sample distribution, demonstrating deep learning's potential to automate and enhance polymer classification, reducing reliance on traditional, labor-intensive methods.

    Publisher

    IJ Publication

    IJ Publication

    Reviewer

    Qaisar

    Qaisar Abbas

    More Detail

    Category Icon

    Paper Category

    Computer Engineering

    Journal Icon

    Journal Name

    JAAFR - JOURNAL OF ADVANCE AND FUTURE RESEARCH External Link

    Info Icon

    p-ISSN

    Info Icon

    e-ISSN

    2984-889X

    Subscribe us to get updated

    logo logo

    Scholar9 is aiming to empower the research community around the world with the help of technology & innovation. Scholar9 provides the required platform to Scholar for visibility & credibility.

    QUICKLINKS

    • What is Scholar9?
    • About Us
    • Mission Vision
    • Contact Us
    • Privacy Policy
    • Terms of Use
    • Blogs
    • FAQ

    CONTACT US

    • +91 82003 85143
    • hello@scholar9.com
    • www.scholar9.com

    © 2026 Sequence Research & Development Pvt Ltd. All Rights Reserved.

    whatsapp