Back to Top

Paper Title

New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors

Article Type

Research Article

Research Impact Tools

Issue

Volume : 35 | Issue : 10 | Page No : 1211-1225

Published On

July, 2000

Downloads

Abstract

Over the last decade there has been a significant improvement in understanding how to design, operate and scale-up solid-state fermentation bioreactors. The key to these advances has been the application of mathematical modeling techniques to describe the biological and transport phenomena within the system. This review focuses on the advances in understanding that have come from this modeling work, and the insights it has given us into bioreactor design, operation and scale-up. It also highlights two promising bioreactor designs that have emerged over the last decade or so. For processes in which the substrate bed must remain static throughout the fermentation, the most promising design is the Zymotis design of ORSTOM at Montpellier, France, which involves closely spaced internal heat transfer plates within a packed-bed bioreactor. For those processes in which mixing can be tolerated, the stirred bioreactor developed at INRA, in Dijon, France, has been successfully demonstrated at scales of 1–25 t of substrate. Theoretical work suggests that mathematical models will be useful tools in the scale-up process, however, there are no reports that they have been used in the development of any current large-scale process. Rather, the models have been validated against data obtained from laboratory-scale bioreactors. There is an urgent need to test the accuracy and robustness of the models by applying them within real process development.

View more >>