Back to Top

Paper Title

EEG BASED COGNITIVE WORKLOAD CLASSIFICATION DURING NASA MATB-II MULTITASKING

Authors

Sushil Chandra
Sushil Chandra
Greeshma Sharma
Greeshma Sharma
Alok Mittal
Alok Mittal
Dr. Devendra
Dr. Devendra

Article Type

Research Article

Research Impact Tools

Issue

Volume : 3 | Issue : 1 | Page No : 35–41

Published On

June, 2015

Downloads

Abstract

The objective of this experiment was to determine the best possible input EEG feature for classification of the workload while designing load balancing logic for an automated operator. The input features compared in this study consisted of spectral features of Electroencephalography, objective scoring and subjective scoring. Method utilizes to identify best EEG feature as an input in Neural Network Classifiers for workload classification, to identify channels which could provide classification with the highest accuracy and for identification of EEG feature which could give discrimination among workload level without adding any classifiers. The result had shown Engagement Index is the best feature for neural network classification.

View more >>

Uploded Document Preview