Skip to main content
Loading...
Scholar9 logo True scholar network
  • Login/Sign up
  • Scholar9
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
  • Login/Sign up
  • Back to Top

    Transparent Peer Review By Scholar9

    AI-Powered Automation of Cloud Database Management using Deep Reinforcement Learning and Digital Twins

    Abstract

    With an emphasis on financial applications with extremely high performance requirements, this article explores the revolutionary combination of deep reinforcement learning and digital twin technologies for automating cloud database administration. As data volumes and query workloads increase, cloud database systems become more sophisticated, creating management challenges that conventional methods are unable to handle. A potent framework for automated management is produced by combining digital twins, which offer safe virtual replicas for training, with DRL, which enables autonomous learning through contextual interaction. Important functions, including workload management, disaster recovery procedures, resource allocation, query execution planning, compliance maintenance, and cost efficiency optimization, are all enhanced by this relationship. While administrators can do in-depth "what-if" analyses, digital twins offer safe environments for agent training. The integrated system employs phased deployment approaches, customized multi-agent architectures, and sophisticated training mechanisms, including offline reinforcement learning and curriculum learning, to guarantee reliability and safety. Technology convergence benefits financial institutions greatly by resulting in much better performance metrics, more robust systems, and reduced operating expenses while maintaining strict regulatory compliance. While federated learning techniques enable collaborative growth without compromising data privacy, explainable AI systems provide the transparency and auditability needed in financial settings.

    Publisher

    IJ Publication

    IJ Publication

    Reviewer

    V

    V MURALIDHARAN

    More Detail

    Category Icon

    Paper Category

    Artificial Intelligence

    Journal Icon

    Journal Name

    TIJER - Technix International Journal for Engineering Research External Link

    Info Icon

    p-ISSN

    Info Icon

    e-ISSN

    2349-9249

    Subscribe us to get updated

    logo logo

    Scholar9 is aiming to empower the research community around the world with the help of technology & innovation. Scholar9 provides the required platform to Scholar for visibility & credibility.

    QUICKLINKS

    • What is Scholar9?
    • About Us
    • Mission Vision
    • Contact Us
    • Privacy Policy
    • Terms of Use
    • Blogs
    • FAQ

    CONTACT US

    • +91 82003 85143
    • hello@scholar9.com
    • www.scholar9.com

    © 2026 Sequence Research & Development Pvt Ltd. All Rights Reserved.

    whatsapp