Skip to main content
Loading...
Scholar9 logo True scholar network
  • Login/Sign up
  • Scholar9
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
  • Login/Sign up
  • Back to Top

    Transparent Peer Review By Scholar9

    Advances in Tomato Disease Detection: A Comprehensive Survey of Machine Learning and Deep Learning Approaches for Leaves and Fruits

    Abstract

    Tomatoes contributed about 232 billion Indian rupees to the Indian economy in the financial year 2020; it is next to potatoes in vegetable production in South Asian countries. Tomatoes are the most familiar vegetable crop, extensively cultivated on cultivated land in India. The tropical weather of India is relevant for development, but specific weather conditions and several other features affect the standard progress of tomato plants. Besides these weather conditions and natural disasters, plant disease is a big crisis in crop production and plays a vital role in financial loss. The typical disease detection approaches for tomato crops cannot produce a predictable solution, and the recognition period for diseases is slower. A primary recognition of disease provides optimum solutions compared to the existing detection methods. Recently, distinct technologies such as AI, IoT, pattern recognition, computer vision (CV), and image processing have quickly developed and been executed for agriculture, specifically in the automation of disease and pest detection procedures. CV-based technology deep learning (DL) approaches have been performed for previous disease detection. This study proposes a wide-ranging investigation of the disease detection and classification approaches inferred for Tomato Leaf Detection. This work also reviews the advantages and disadvantages of the methods presented. Additionally, the advancements, challenges, and opportunities are discussed in this field, providing insights into the recent methods. This survey is an appreciated resource for practitioners, researchers, and stakeholders involved in tomato cultivation and agricultural technology.

    Publisher

    IJ Publication

    IJ Publication

    Reviewer

    Shubhita

    Shubhita Tripathi

    More Detail

    Category Icon

    Paper Category

    Computer Engineering

    Journal Icon

    Journal Name

    JETIR - Journal of Emerging Technologies and Innovative Research External Link

    Info Icon

    p-ISSN

    Info Icon

    e-ISSN

    2349-5162

    Subscribe us to get updated

    logo logo

    Scholar9 is aiming to empower the research community around the world with the help of technology & innovation. Scholar9 provides the required platform to Scholar for visibility & credibility.

    QUICKLINKS

    • What is Scholar9?
    • About Us
    • Mission Vision
    • Contact Us
    • Privacy Policy
    • Terms of Use
    • Blogs
    • FAQ

    CONTACT US

    • +91 82003 85143
    • hello@scholar9.com
    • www.scholar9.com

    © 2026 Sequence Research & Development Pvt Ltd. All Rights Reserved.

    whatsapp