Skip to main content
Loading...
Scholar9 logo True scholar network
  • Login/Sign up
  • Scholar9
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
    Publications ▼
    Article List Deposit Article
    Mentorship ▼
    Overview Sessions
    Q&A Institutions Scholars Journals
  • Login/Sign up
  • Back to Top

    Transparent Peer Review By Scholar9

    A Comparative Study of Classification Algorithms for Enhanced Lung Cancer Prediction Using Deep Learning and SOM-Based Microscopic Image Analysis

    Abstract

    Lung cancer is one of the top causes of cancer-related fatalities worldwide, necessitating the development of efficient early detection techniques. This study explores a hybrid approach combining deep learning and a Self-Organizing Map (SOM) for the classification of three lung cancer subtypes: adenocarcinoma, squamous cell carcinoma, and neuroendocrine tumors, using microscopic images. A pre-trained MobileNet model is employed for feature extraction, while the SOM is used for dimensionality reduction and visualization of high-dimensional data. The extracted features are then classified using various machine learning algorithms, including Random Forest, LightGBM and Decision Tree. A comparative analysis of these classifiers is conducted to assess their performance in predicting cancer types. Additionally, thresholding is applied to highlight cancerous regions in the images, enhancing the visual detection of malignant cells. Results indicate that the hybrid model provides competitive classification accuracy, with the Random Forest and Decision Tree classifiers showing particular promise. This research demonstrates the potential of combining deep learning with traditional machine learning techniques for lung cancer detection, offering a pathway toward more accurate and efficient diagnostic tools.

    Publisher

    IJ Publication

    IJ Publication

    Reviewer

    V

    V MURALIDHARAN

    More Detail

    Category Icon

    Paper Category

    Computer Engineering

    Journal Icon

    Journal Name

    JETIR - Journal of Emerging Technologies and Innovative Research External Link

    Info Icon

    p-ISSN

    Info Icon

    e-ISSN

    2349-5162

    Subscribe us to get updated

    logo logo

    Scholar9 is aiming to empower the research community around the world with the help of technology & innovation. Scholar9 provides the required platform to Scholar for visibility & credibility.

    QUICKLINKS

    • What is Scholar9?
    • About Us
    • Mission Vision
    • Contact Us
    • Privacy Policy
    • Terms of Use
    • Blogs
    • FAQ

    CONTACT US

    • +91 82003 85143
    • hello@scholar9.com
    • www.scholar9.com

    © 2026 Sequence Research & Development Pvt Ltd. All Rights Reserved.

    whatsapp