Abstract
This study deals with the classical and Bayesian estimation of the parameters of a k-components load-sharing parallel system model in which each component's lifetime follows Lindley distribution. Initially, the failure rate of each of the k components in the system is h(t,θ1) until the first component failure. However, upon the first failure within the system, the failure rates of the remaining (k−1) surviving components change to h(t,θ2) and remain the same until next failure. After second failure, the failure rates of (k−2) surviving components change to h(t,θ3) and finally when the (k−1)th component fails, the failure rate of the last surviving component becomes h(t,θk). In classical set up, the maximum likelihood estimates of the load share parameters, system reliability and hazard rate functions along with their standard errors are computed. 100×(1−γ)% confidence intervals and two bootstrap confidence intervals for the …
View more >>