Back to Top

Paper Title

DCAE-SR: Design of a Denoising Convolutional Autoencoder for reconstructing Electrocardiograms signals at Super Resolution.

Article Type

Research Article

Journal

medRxiv

Research Impact Tools

Issue

Published On

April, 2024

Downloads

Abstract

Electrocardiogram (ECG) signals play a pivotal role in cardiovascular diagnostics, providing essential information on the electrical activity of the heart. However, the inherent noise and limited resolution in ECG recordings can hinder accurate interpretation and diagnosis. In this paper, we propose a novel model for ECG super resolution (SR) that uses a DNAE to enhance temporal and frequency information inside ECG signals. Our approach addresses the limitations of traditional ECG signal processing techniques. Our model takes in input 5-second length ECG windows sampled at 50 Hz (very low resolution) and it is able to reconstruct a denoised super-resolution signal with an x10 upsampling rate (sampled at 500 Hz). We trained the proposed DCAE-SR on public available myocardial infraction ECG signals. Our method demonstrates superior performance in reconstructing high-resolution ECG signals from very low-resolution signals with a sampling rate of 50 Hz. We compared our results with the current deep-learning literature approaches for ECG super-resolution and some non-deep learning reproducible methods that can perform both super-resolution and de- noising. We obtained current state-of-the-art performances in super-resolution of very low resolution ECG signals frequently corrupted by ECG artifacts. We were able to obtain a signal-to-noise ratio of 12.20 dB (outperforms previous 4.68 dB), mean squared error of 0.0044 (outperforms previous 0.0154) and root mean squared error of 4.86% (outperforms previous 12.40%). In conclusion, our DCAE-SR model offers a robust (to artefact presence), versatile and explainable solution to

View more >>