Back to Top

Paper Title

Categorical Foundations of Explainable AI: A Unifying Theory

Article Type

Research Article

Journal

ArXiv.org

Research Impact Tools

Published On

September, 2023

Downloads

Abstract

Explainable AI (XAI) aims to address the human need for safe and reliable AI systems. However, numerous surveys emphasize the absence of a sound mathematical formalization of key XAI notions -- remarkably including the term "explanation" which still lacks a precise definition. To bridge this gap, this paper presents the first mathematically rigorous definitions of key XAI notions and processes, using the well-funded formalism of Category theory. We show that our categorical framework allows to: (i) model existing learning schemes and architectures, (ii) formally define the term "explanation", (iii) establish a theoretical basis for XAI taxonomies, and (iv) analyze commonly overlooked aspects of explaining methods. As a consequence, our categorical framework promotes the ethical and secure deployment of AI technologies as it represents a significant step towards a sound theoretical foundation of explainable AI.

View more >>

Uploded Document Preview