Back to Top

Paper Title

APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES FOR PREDICTIVE QUALITY CONTROL IN LEATHER MANUFACTURING PROCESSES

Keywords

  • leather quality control
  • artificial intelligence
  • defect detection
  • predictive maintenance
  • machine vision
  • neural networks

Article Type

Research Article

Issue

Volume : 1 | Issue : 2 | Page No : 6-11

Published On

September, 2020

Downloads

Abstract

Leather manufacturing is a quality-sensitive process where early detection of defects and predictive quality control are crucial for minimizing waste, ensuring product consistency, and maximizing economic return. Traditional quality control methods in tanneries rely heavily on manual inspection, which is prone to subjectivity and inefficiency. Recent advances in Artificial Intelligence (AI), particularly in computer vision, fuzzy logic, and machine learning, offer new opportunities to automate and optimize defect detection, surface analysis, and predictive control. This paper presents a review of AI-based systems applied to leather processing before 2020 and proposes a conceptual framework for integrating predictive quality control using neural networks and real-time imaging

View more >>

Uploded Document Preview