Abstract
The significant features identified in a representative subset of the dataset during the learning process of an artificial intelligence model are referred to as a 'global' explanation. 3D global explanations are crucial in neuroimaging, where a complex representational space demands more than basic 2D interpretations. However, current studies in the literature often lack the accuracy, comprehensibility, and 3D global explanations needed in neuroimaging and beyond. To address this gap, we developed an explainable artificial intelligence (XAI) 3D-Framework capable of providing accurate, low-complexity global explanations. We evaluated the framework using various 3D deep learning models trained on a well-annotated cohort of 596 structural MRIs. The binary classification task focused on detecting the presence or absence of the paracingulate sulcus, a highly variable brain structure associated with psychosis. Our framework integrates statistical features (Shape) and XAI methods (GradCam and SHAP) with dimensionality reduction, ensuring that explanations reflect both model learning and cohort-specific variability. By combining Shape, GradCam, and SHAP, our framework reduces inter-method variability, enhancing the faithfulness and reliability of global explanations. These robust explanations facilitated the identification of critical sub-regions, including the posterior temporal and internal parietal regions, as well as the cingulate region and thalamus, suggesting potential genetic or developmental influences. Our XAI 3D-Framework leverages global explanations to uncover the broader developmental context of specific cortical features. This approach advances the fields of deep learning and neuroscience by offering insights into normative brain development and atypical trajectories linked to mental illness, paving the way for more reliable and interpretable AI applications in neuroimaging.
View more >>