Paper Title

An accelerated benders decomposition algorithm for the solution of the multi-trip time-dependent vehicle routing problem with time windows

Authors

Yuzhuo Qiu
Yuzhuo Qiu

Article Type

Research Article

Research Impact Tools

publications
3
supporting
0
mentioning
0
contrasting
0
Smart Citations
3
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Issue

Volume : 317 | Issue : 2 | Page No : 500-514

Published On

September, 2024

Downloads

Abstract

The logistics companies executing the last mile delivery of goods in urban areas deal every day with the problem of routing their vehicles, while taking into account multiple trips per vehicle, time-dependent travel time, customers’ time windows and loading time at the depot simultaneously. This paper addresses this problem, known as Multi-Trip Time-Dependent Vehicle Routing Problem with Time Windows, aiming at its exact solution, minimizing the total travelled distance of a company's fleet. Based on a literature model, a new reformulation with reduced size is suggested. This reformulation is decomposed by applying the Benders method in an effective way, resulting in a subproblem with no duality gap. By exploiting the special features of the problem and the particular structure of the decomposition made, several novel valid inequalities are introduced, in order to both tighten the non-decomposed formulations and warm start the relaxed master problem to achieve less infeasible solutions and higher lower bounds. For the solution of the problem, an innovative algorithm is proposed, including suboptimal master solutions and a multi-cut generation procedure, which is based on the careful observation of the values of the Benders dual subproblem variables. The impact of the valid inequalities as well as two variants of the suggested algorithm are tested on benchmark data and they are compared with the non-decomposed models and a heuristic introduced in the literature. The computational results indicate improved efficiency and stronger bounds for the proposed algorithm.

View more >>