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Abstract—Objective: Social scientists who collect large
amounts of medical data value the privacy of their survey
participants. As they follow participants through longitudinal
studies, they develop unique profiles of these individuals. A
growing challenge for these researchers is to maintain the
privacy of their study participants, while sharing their data to
facilitate research. Differential privacy is a new mechanism which
promises improved privacy guarantees for statistical databases.
We evaluate the utility of a differentially private dataset. Our
results align with the theory of differential privacy and show
when the number of records in the database is sufficiently larger
than the number of cells covered by a database query, the number
of statistical tests with results close to those performed on original
data increases.

I. INTRODUCTION

As part of human subjects’ protections, researchers are
required to analyze and minimize all potential risks to re-
search participants connected with the study procedures. These
include physical, psychological, social, legal, loss of confi-
dentiality or other potential risks. The researcher needs to
consider all of the potential risks including whether “any
disclosure of the subjects’ responses could reasonably place the
subjects at risk of criminal or civil liability or be damaging to
the subjects’ financial standing, employability, insurability, or
reputation.” [1] Therefore, for research that results in datasets
containing sensitive personal information, loss of confidential-
ity/privacy is often the primary risk that must be managed.

In sexuality research for example, information about a
person’s marital infidelity or whether they have had a sexually
transmitted infection could easily affect their reputation or be
used in legal cases such as divorce proceedings. Therefore,
protection of the identities of research participants is critical
to the ongoing process of scientific investigations that deal
with sensitive information. As researchers may desire to share
datasets with other scientists, or be legally required to provide
access to their data, finding ways to assure that identities are
protected in shared or archival datasets that may be subject to
disclosure is of significant importance.

Disclosure of research data may be compelled by subpoena
or by institutional interpretations of “open-records laws [2].”
Although some research data involving sensitive information
may be protected by Certificates of Confidentiality, most is

not. Certificates of Confidentiality, authorized by the U.S. De-
partment of Health and Human Services, are meant to protect
sensitive data from subpoena, but the degree of protection may
be limited [2]. Therefore, researchers may desire to de-identify
data as soon as possible and guard against possible statistical
re-identification in the interests of protecting human subjects
and the research enterprise. Exploring ways in which data
may be perturbed while the scientific usefulness of the data is
preserved may lead to new techniques for researcher to share
datasets with other researchers and archive datasets for future
analyses in ways that minimize potential risks to subjects.

The dataset that we study contains medical, sexual, de-
mographic, and psychological information, all of which are,
or can be, directly relevant to health of subsamples and
individuals. For example, a given disease status may interact
with sexual activity and economic variables, and collecting
these data carries critical security and privacy concerns–similar
to specific biologically derived data. So the data here overlaps
with biomedical data in its power to predict health and illness
and its sensitivity to persons.

A study’s participants can be vulnerable to privacy vio-
lations if, for example, an adversary already has some infor-
mation about the person he or she is targeting [3]. The study
participant’s privacy may be at risk even if the dataset contains
no explicitly identifying information. It is therefore important
to protect these data beyond any standard removal of clearly
identifying information. However, the goal of protecting pri-
vacy must be balanced with the need to conserve the data’s
research utility. Data protection techniques should optimize
privacy protection but not at the cost of data utility.

In this work we evaluate Differential Privacy (hereafter
referred to as DP) as a technique to protect social science
datasets while preserving their research utility. DP is a data
perturbation framework that provides strong and formal pri-
vacy guarantees [4]. The essential goal is to prevent a possible
adversary from discovering whether or not some specific
individual’s data is present in a differentially private dataset,
given some risk threshold. While there are many theoretical
results (‘in vitro’) for DP and utility outside of actual data
cases [5], [4], [6], [7], very little has been done to evaluate its
effect on data utility in a real-world research setting (‘in vivo’).
Since it offers such promising privacy guarantees, we examine



DP as a possible mechanism for protecting large social science
datasets.

To evaluate whether or not the DP algorithms preserve
utility, we measure the mean absolute deviation between results
obtained from the original and differentially private data. These
analyses fall into two different categories: (1) multivariate
logistic regression, (2) feature importance. The uses cases for
the multivariate logistic regressions are derived from analysis
presented in [8]. To assess utility, we compare the distances
between the odds ratios for regressions performed on the
original and DP data. Distances that approach zero would
tend to indicate a utility-preserving result. We also compare
the p-values derived from analysis on the original and DP
data to determine whether decisions to accept or reject the
null hypothesis change for DP data. For the latter analysis, we
compare the relative importances of features (i.e., dimensions,
variables) in the DP histograms to those in the original data.
Our results confirm that dimensionality is a major challenge for
DP algorithms, especially when the number of records in the
database is sufficiently less than the number of cells covered
by the query. One very interesting finding is that all algorithms
produced noisy histograms that had strong results for Feature
Importance.

The remainder of this paper is organized as follows. In the
following section, we discuss background and related work.
Next, we describe the differential privacy algorithm and the
methodology that we use to evaluate it. Afterwards, we present
the results of our evaluation. Finally, we conclude and discuss
the limitations of our empirical analysis.

II. BACKGROUND

Differential privacy (DP) has recently emerged as one of
the strongest privacy guarantees for statistical data release. A
statistical aggregation or computation is differentially private,
or satisfies differential privacy, if the outcome is formally
indistinguishable when run with and without any particular
record in the dataset. The level of indistinguishability is quan-
tified as a privacy parameter. A common differential privacy
mechanism is to add calibrated noise to a statistical aggregation
or computation result determined by the privacy parameter and
the sensitivity of the computation to the inclusion or exclusion
of any individual record. While traditional de-identification
methods [9] or perturbation methods that add noise to individ-
ual values of data records [10] are subject to re-identification
or data reconstruction attacks depending on the background
knowledge of an adversary, a differential privacy mechanism
adds noise to statistical aggregation or computation outputs and
provides a strong and provable privacy guarantee with little
assumptions on the background knowledge of an adversary.

A. Differential Privacy- Definition

Differential privacy guarantees that if an adversary knows
complete information of all the tuples in D except one, the
output of a differentially private randomized algorithm should
not give the adversary too much additional information about
the remaining tuples. We say datasets D and D′ differing in
only one tuple if we can obtain D′ by removing or adding only
one tuple from D. A formal definition of differential privacy
is given as follows:

Definition II.1 (ε-differential privacy [5]). Let A be a random-
ized algorithm over two datasets D and D′ differing in only
one tuple, and let O be any arbitrary set of possible outputs
of A. Algorithm A satisfies ε-differential privacy if and only
if the following holds:

Pr[A(D) ∈ O] ≤ eεPr[A(D′) ∈ O]

Intuitively, differential privacy ensures that the released
output distribution of A remains nearly the same whether or
not an individual tuple is in the dataset.

The most common mechanism to achieve differential pri-
vacy is the Laplace mechanism [5] that adds a small amount
of independent noise to the output of a numeric function f
to fulfill ε-differential privacy of releasing f , where the noise
is drawn from Laplace distribution with a probability density
function Pr[η = x] = 1

2be
− |x|

b . A Laplace noise has a variance
2b2 with a magnitude of b. The magnitude b of the noise
depends on the concept of sensitivity which is defined as
follows.

Definition II.2 (Sensitivity [5]). Let f denote a numeric
function and the sensitivity of f is defined as the maximal L1-
norm distance between the outputs of f over the two datasets
D and D′ which differs in only one tuple. Formally,

∆f = maxD,D′ ||f(D)− f(D′)||1.

With the concept of sensitivity, the noise follows a zero-
mean Laplace distribution with the magnitude b =

∆f

ε . To
fulfill ε-differential privacy for a numeric function f over D,
it is sufficient to publish f(D) +X , where X is drawn from
Lap(

∆f

ε ).

For a sequence of differentially private mechanisms, the
composability [11] theorems guarantee the overall privacy.

Theorem II.1 (Sequential Composition [11]). For a sequence
of n mechanisms M1, . . . ,Mn and each Mi provides εi-
differential privacy, the sequence of Mi provides (

∑n
i=1 εi)-

differential privacy.

Theorem II.2 (Parallel Composition [11]). If Di are disjoint
subsets of the original database and Mi provides α-differential
privacy for each Di, then the sequence of Mi provides α-
differential privacy.

B. Related Work

Dankar et al. [12] provide a thorough treatment of the state
of the art in differential privacy. They also outline some of the
limitations of the model and the various mechanisms that have
been proposed to implement it. In addition, this work discusses
several recent applications of differential privacy [13], [14],
[15], [16], [17], [18], [19]. In this paper, we evalute the output
of several DP processes, including cell-based [13], range
query [19], and space partitioning [13]. The space partitioning
approach differs from the basic cell-based and range query
approaches in that it attempts to preserve the characteristics
within the original data by adding noise uniformly to cells that
belongs to a partitioned group. Xiao et al. [13], [20] uses a
kd-tree (k-dimensional tree) to partition the data. A kd-tree is a
space partitioning data structure for organizing data points in a
k-dimensional space. First, the DP algorithm partitions the data



D based on the domain and adds noise to each cell to create
a synthetic dataset D′. D′ is then partitioned using a kd-tree
algorithm. The resulting keys from the kd-tree partitioning are
then used to subdivide the original dataset. Finally, Laplace
noise is added to each partition’s count. Each cell within a
partition is assigned the value of its partition’s noisy count/β,
where β is the number of cells within the partition. The
perturbed dataset is used in the kd-tree phase of the algorithm
so as not to waste the privacy budget on accessing the original
dataset multiple times during the partitioning phase.

Xiao et al. [13] evaluate the utility of their DP mechanism
by comparing query counts of the original data to that of
the differentially private data. We build upon this work by
performing predictive analysis on a large social science dataset
and the corresponding differentially private data. We derive
our use cases from the actual analyses that were previously
performed by the researchers who collected and evaluated the
original data [8].

Researchers have proposed a variety of approaches for
managing biomedical data and protecting patient information.
El Emam et al. [21] consider extensions to k-anonymity in
the context of two attack scenarios: one in which the attacker
wants to re-identify a specific individual that he/she knows
in the anonymized dataset (called the prosecutor scenario),
and one in which the attacker simply wants to demonstrate
that an arbitrary individual from some population could be re-
identified in the dataset (called the journalist scenario). The
best k-anonymity extension selects an appropriate k using
hypothesis testing and a truncated-at-zero Poisson distribution.
While this method out-performs standard k-anonymity in terms
of information loss (computed using the discernability metric)
on their sample datasets, the authors acknowledge that increas-
ing the number of quasi-identifiers may lead to unacceptable
amounts of information loss, even for small values of k.
Additionally, there was no discussion about how different
values of the discernability metric may impact the results of
common statistical analyses performed by consumers of an
anonymized dataset (i.e., how much information loss will a
logistic regression tolerate?).

Brown et al. [22] present a ”distributed” query system
designed to allow data holds to maintain physical control
of their data. This system is contrasted with a centralized
database, where users submit queries outside of their local
firewalls (and also receive results from a remote server). Data
privacy is maintained by physically co-locating the query
system software with the data. The system does not attempt
to anonymize data for access by a third party.

Murphy et al. [23] present the i2b2 system (integrating
biology and the bedside), which provides graded access to
patient data depending on the privacy level of the user. At
the lowest level, only aggregate counts with Gaussian noise
added is available. The problem of multiple queries allowing
for convergence on the true count is discussed, but only solved
for single user accounts (a user with multiple accounts could
still discover the true count). For all other privacy levels, some
form of anonymized patient data is available to the user, with
the highest level having access to the original data. The de-
identification methods for this data are not discussed (they
are only listed as HIPAA compliant), and neither is the link
between dataset dimensionality and re-identification.

Kushida et al. [24] perform a literature survey on de-
identification and anonymization techniques. They focus on
three main scenarios: free-text fields, images, and biolog-
ical samples. For free-text fields, statistical learning-based
systems provide the best performance (at or above manual
de-identification). Anonymization techniques for images and
biological samples are briefly discussed as well. Unfortunately,
there is no mention of data privacy methods for datasets with
coded fields (e.g., surveys) or dimensionality – i.e., how much
easier is re-identification with high-dimensional data?

Bredfeldt et al [25] develop a set of templates and a com-
mon zip-file directory structure for multi-site research collab-
oration with sensitive data. Additionally, some best practices
are identified, such as not transferring the zip-file over e-mail
or any unencrypted protocol. While the templates and structure
provide support for collaboration, details for protecting the
data itself (via encryption or some privacy mechanism) is not
discussed.

III. METHODOLOGY

Our DP application outputs a differentially private contin-
gency table, which is a histogram of counts for all possible
attributes settings. We use either a simple cell-based or k-d tree
partitioning method. The cell-based method adds Laplacian
noise to each histogram cell (or bin) independently using the
perturbation (privacy) ε parameter. The k-d tree method adds
noise in two stages. First, it applies cell-based noise using an
ε parameter. Next, it partitions the dataset based on both an
entropy threshold (ET) and information gain (IG) parameter,
and applies Laplacian noise to each partition independently.

The parameter ε determines the level of privacy, with a
lower value providing more privacy. For the k-d tree algorithm,
the ET parameter determines the entropy, or uniformity, within
each partition. The lower the value of ET, the less uniform
partitions will be. In our experiments, we vary ε over the
range [0.1, 2.0] and ET over the range [0.4, 1.0]. These ranges
represent very low and very high privacy, and cover the true
entropies of the datasets. For all our experiments, we fix the
IG parameter at 0.0001.

For comparison with the cell-based and k-d tree algorithms,
we also generated DP histograms from our datasets using
wavelet transforms [19]. We generated basic and adhoc DP
histograms with the same ε parameter range. The adhoc his-
tograms were created with the Privelet∗ algorithm from [19],
and all variables were considered as having a small domain.
The basic histograms were created with the same type of
algorithm as our cell-based histograms (i.e., adding Laplacian
noise directly to the contingency table). Because the wavelet
code and cell-based algorithm compute the λ parameter for
Laplacian noise differently, however, we have included both
cell-based and basic histograms for comparison.

We generate 25 DP histograms for each set of parameter
settings, and compare the mean results from these 25 sample
histograms to the original. We make two assumptions about
the use of DP in this context. The first is that the differentially
private histogram is generated once for all variables in a given
set and released. That is, we assume non-interactivity (i.e. all
queries are know apriori). The second is that once a party has
the differentially private histogram, they are free to do with



Fig. 1: Experiment Flow Chart

it what they please. This includes reconstructing data records
from the histogram bins. Figure 1 illustrates a flow chart of
the experiment setup.

A. The Data

Our datasets contains 5,887 participants who have an-
swered a subset of 332 questions from a sexual health sur-
vey. The participants are a convenience sample of individu-
als within the USA. The survey contains multiple modules
and most modules are standardized sexual health scales –
a questionnaire with which you hope to measure a psy-
chological construct using multiple questions (i.e., items or
indicators) [26]. The steps for developing a scale include the
development/writing of questions/items that are relevant to
the construct. After a large number of subjects answer all
the questions, factor analysis is used to select items that are
relevant to the construct and eliminate ones that are not. One
of the steps in factor analysis is to remove items that are very
skewed (e.g., if 90% of participants answer that they ‘can be
shy at times’).

B. Use Cases

The use cases we examine are derived from The Kinsey
Institute’s work in [8], which looks at predictors of unprotected
sex and unplanned pregnancy. The specific use cases use
logistic regression to evaluate the likelihood of a participant
reporting an unplanned pregnancy and the likelihood of a par-
ticipant reporting having had unsafe sex in the last 12 months
(both binary outcomes). When generating our differentially
private histograms, we use the following predictor variables:

• age - Age of the participant (31 levels). Range is from
18-80 years old.

• employ - Employment status (4 levels): full-time, part-
time, unemployed, temp/seasonal.

• gender - Gender (2 levels): male, female

• income - Income level (4 levels): poor, lower, middle,
upper

• relation - Relationship status (3 levels): none, exclu-
sive, non-exclusive

• sis5 - Use of safe sex products causes arousal loss
(4 levels): strongly agree, agree, disagree, strongly
disagree

• sis8 - Risk of pregnancy inhibits arousal (4 levels):
strongly agree, agree, disagree, strongly disagree

Our response, or predicted variables are:

• kisbq18 - Had unprotected vaginal sex in the last 12
months (binary)

• kisbq20 - Ever had an unplanned pregnancy (binary)

In addition to the full set of 9 variables (7 predictors, 2
response), we generate DP histograms and measure utility with
two reduced datasets (derived from the full dataset). These
reduced datasets each include two predictors and one response
variable, which allows us to evaluate the DP algorithms on
lower-dimensional data. The variables included in each dataset
are:

• Full Set: 7 predictor variables (age, gender, relation,
employ, income, sis5, sis8) and 2 response variables
(kisbq18, and kisbq20).

• Reduced Set 1 (RS1): 2 predictor variables (income,
sis5) and 1 response variable (kisbq18).

• Reduced Set 2 (RS2): 2 predictor variables (relation,
sis8) and 1 response variable (kisbq20).

C. Utility Measures

The size of the database directly impacts the accuracy of
a DP query. When n � y , where n is the number of records
within the database and y is the number of cells covered by the
query, then the query results will be inaccurate [4], [12]. For
the Full Set, RS1 and RS2, there are 190,464, 32, and 24 cells
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Fig. 2: Logistic Results: Odds Ratio Distance

covered by query respectively 1. To evaluate the effect that the
size of the database has on the accuracy of our results, we
compare the results across the three datasets.

To evaluate whether or not the DP algorithms preserve
utility, we measure the mean absolute deviation between
results obtained from the original and differentially pri-
vate data. These analyses fall into two different categories:
(1) multivariate logistic regression, (2) feature importance.
We generated 25 differentially private histograms for ev-
ery dataset (full, RS1, RS2), DP algorithm (cell-based, k-d
tree), ε value [0.1, 0.4, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0], and ET value
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, Ei] (where Ei is the entropy of
the original histogram).

Logistic Regression For every DP histogram, we ran
several different multivariate logistic regressions corresponding
to the use cases presented in [8]. Data was separated by gender
and by response variables. For the full dataset, there were 2
response variable (kisbq18 and kisbq20), making a total of 4
regressions. There are 12 predictor levels for each regression,

1The number of cells that are covered by a query was calculated by taking
the product of the number of different responses for each variable. See Section
III-B for a description of the variables.

which gives 48 runs per parameter setting(s) (ε, ET). The
reduced datasets each contained a single response variable,
so only 2 regressions (male and female) were run per reduced
set. There are 6 predictor levels for each regression, which
gives a total of 24 runs. For every set of parameter values and
regression, we measured the mean absolute deviation between
the 25 DP odds ratios of each predictor level (e.g., full-time for
employ) to the original regression results. We use Bonferroni
correction to address the issue of multiple testing within our
experiments.

Feature Importance. We compare the relative importances
of features (i.e., dimensions, variables) in the DP histograms
to those in the original data. Using the extremely randomized
trees (ERT) classifier from the sklearn library [27], we compute
a rank order of each feature in the dataset from most to least
important for prediction. Similar to the logistic and classifier
utility methods, the data are first split by gender and use case
(unsafe sex, unplanned pregnancy). Next, an ERT classifier
generates and trains randomized decision trees on the data.
Features are ranked by their relative predictive power within
the forest of decision trees, and this ranking is compared to the
original results. If the original and DP rankings match exactly,
we consider utility to have been preserved in the DP histogram



(a) Kd-tree (b) Cell

(c) Basic (d) Adhoc

Fig. 3: Logistic Results: Type I Errors

(i.e., a good run).

IV. RESULTS

Before evaluating the results, we first compare the size of
our database n to the number of cells that are covered for
each use case. Recall that n = 5887 in the original dataset,
while the cell coverage for the Full Set use case is 190,464
cells. Therefore, as we decrease the amount of noise that is
added, we do not expect the odds ratio distances for the logistic
regressions to change significantly. We expect similar results
for Feature Importance for the Full Set use case, irrespective
of the algorithm. Recall that larger values for ε result in less
noise.

When considering the reduced set use cases, RS1 and RS2,
the number of records n is significantly larger than the cell
coverage. Therefore, as we alter the ε parameter to decrease
noise, we expect a decrease in the distance between the original
and DP odds ratios. In addition we expect a higher percentage
of Feature Importance experiments to match the results from
the original dataset.

A. Logistic

Figures 2-4 illustrate the logistic results for the Kd-tree
partitioning, cell-based, basic wavelet and adhoc wavelet al-
gorithms respectively. These results include average distance
measures and Type I and Type II errors.2 For the Full, RS1 and
RS2 datasets, there are 1300, 350 and 300 experimental runs
respectively for each parameter settings. These numbers denote
the maximum number of possible errors for per parameter
setting(s) for each dataset.

As shown in Figure 2, as expected for all algorithms,
the odds ratio distance for the Full dataset has little or no
change as the noise level decreases. For RS1 and RS2, the
average distance decreases and levels off at ε >= .8, with the
Cell-based algorithm providing the best results with average
distances less than .1.

Figure 3 shows that the Type I error rate gradually reduces
for all datasets for the cell, basic and adhoc algorithms, with
the error rate approaching zero for the reduced sets when
ε >= .4, and approximately 4% for the Full dataset for

2Type I error is an incorrect rejection of the null hypothesis (i.e. false
positive). Type II error is a failure to reject an untrue null hypothesis (i.e.
false negative).



(a) Kd-tree (b) Cell

(c) Basic (d) Adhoc

Fig. 4: Logistic Results: Type II Errors

(a) All Algorithms (b) Kd-tree

Fig. 5: Feature Importance results for MART final for all algorithms.

ε > 1.1. The kd-tree algorithm generates DP data that gives
mixed results. For example the rate of Type I errors decreases
for only one dataset. These mixed results may be attributed
to its noisy partitioning feature. Recall that kd-tree has a two-
phase process for generating DP histograms. The first phase

generates a synthetic dataset, and indices are taken from the
noisy dataset and used to partition the data in the second phase.
While using the synthetic dataset helps to conserve the privacy
budget, it increases the inaccuracy of the partitioning and acts
as another source of noise.



(a) Mart rs1 (b) Mart rs2

(c) Kd-tree MART rs1

Fig. 6: Feature Importance results for MART rs1 and MART rs2 for all algorithms.

Figure 4 show similar Type II error rates for algorithms.
For example, for the Full dataset, the error rate is never less
than 30%, and for the non-kd-tree algorithms, the rate increases
as the noise decreases. Recall that since the number of records
in the original database is far less than the number of cells,
we don’t expect good performance from either algorithm. Also
note that at lower values of ε more records are added to the
noisy dataset. These synthethic records generate more false
positives as shown in Figure 3 and fewer false negatives.

B. Feature Importance

We compare the relative importances of features (i.e.,
dimensions, variables) in the DP histograms to those in the
original data. Using the extremely randomized trees (ERT)
classifier from the sklearn library [27], we compute a rank
order of each feature in the dataset from most to least important
for prediction. Similar to the logistic and classifier utility
methods, the data are first split by gender and use case (unsafe
sex, unplanned pregnancy). Next, an ERT classifier generates
and trains 250 randomized decision trees on the data. Features
are ranked by their relative predictive power within the forest
of decision trees, and this ranking is compared to the original
results. If the original and DP rankings match exactly, we
consider utility to have been preserved in the DP histogram
(i.e., a good run).

For the full dataset, MART final, we observed similar per-
formance for all algorithms with k-d tree performing slightly
better for values of epsilon ≥ 1.1 (see Figure 5). Note that the

results for the k-d tree partitioning algorithm are aggregated
across all values for the entropy threshold parameter, and that
the proportion of good runs reaches 33% for some epsilon
and entropy threshold combinations (see Figure 5).

As shown in Figure 6, the performance for the reduced sets
is greatly improved with as much as 94% of the feature orders
being preserved for MART rs1 and 100% by all algorithms for
MART rs2. The performance of the k-d tree algorithm follows
a similar trend for MART rs1 in that the best performance
occurs when the entropy threshold is 1 (see Figure 6). The k-d
tree algorithm outperforms the other algorithms for MART rs2
dataset for high noise values, epsilon ≤ .8 (see Figure 6).

V. CONCLUSION AND FUTURE WORK

This work presented an empirical evaluation of a differ-
entially private behavioral science dataset. The goal of the
analysis was to better understand whether DP data could
be shared and within what context. Therefore, we sought to
identify the data characteristics and the analytical results that
are preserved even when DP noise is applied to a dataset. In
addition, we wanted to identify any limitations of the evalu-
ated algorithms and possible improvements. One challenge to
assessing the utility of DP data is specifying what constitutes
equivalent results. While our results show that in some cases,
distance measures and error rates approach zero, this does
not sufficiently articulate equivalence. When discussing these
results with our team of behavioral scientists, we find that
this measure of utility may not translate. Thus, more work is



needed to bridge the gap between a quantitative measure of
accuracy and the way in which the behavioral scientist uses
and evaluates the quality of their results.

Our results confirm that dimensionality is a major challenge
for DP algorithms, especially when the number of records
in the database is sufficiently less than the number of cells
covered by the query. The k-d tree partitioning algorithm
attempts to preserve such properties by using an entropy
threshold to control the partitioning algorithm. One feature of
k-d tree algorithm is that partitioning keys are derived from
a perturbed dataset. While this feature allows us to conserve
our privacy budget, it may be an additional source of noise
and variance for the cells within a partition. This may explain
why the DP histograms that were produced by the k-d tree
algorithm for our reduced data sets had larger distance values
and error rates than the other algorithms.

One very interesting finding is that all algorithms produced
noisy histograms that had strong results for Feature Impor-
tance. While most of our social science collaborators tend to
favor regression-based analysis, these results indicate that there
is a privacy-preserving incentive for using other data mining
and machine learning techniques for data analysis, especially
when coupled with DP data. Such techniques may be used by
reseachers during the process of collecting preliminary data
and trying to identify features for their model.
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