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Abstract :  The increasing reliance on machine learning models has prompted growing concerns regarding the privacy of sensitive 

information used in the training process. As a result, using differential privacy techniques has become a viable paradigm for attaining 

strong privacy preservation without sacrificing the models' usefulness. This study investigates and summarises important 

approaches in the field of machine learning differential privacy. Adding controlled noise at various points in the machine learning 

pipeline is the first class of approaches. To avoid unintentionally revealing private information, Laplace and Gaussian noise are 

deliberately added to training data, predictions, and model parameters. By employing strategies like randomised response 

mechanisms, data perturbation can enhance privacy for each individual without compromising the model's quality. Collaborative 

model training is made easier by privacy-preserving aggregation techniques like Secure Multi-Party Computation (SMPC), which 

protects raw data. By adding noise to gradients during training, Differential Privacy Stochastic Gradient Descent (DP-SGD) 

provides privacy guarantees during the optimization stage. When differential privacy is combined with federated learning, it allows 

for decentralized model training across devices while maintaining the security and localization of sensitive data. By allowing 

computations on encrypted data or safely aggregating model updates, advanced cryptographic approaches like homomorphic 

encryption and secure aggregation protocols give another degree of privacy. When taken as a whole, these methods add to a thorough 

framework for machine learning differential privacy that strikes a balance between the need to protect individual privacy and the 

drive to create accurate models. 

 

IndexTerms – Differential Privacy, Noise, SGD, Federated Learning, Machine Learning. 

 

1. Introduction “ 

 
The concept of differential privacy, which aims to describe privacy from a different perspective [1]. Differential privacy is a type of privacy that 

allows you to provide relevant information about a dataset without releasing any personal information about it [2]. It is a mathematical framework 

for ensuring the privacy of individuals in datasets. Since it permits data analysis without disclosing private information about each individual 

included in the dataset, it can offer a robust guarantee of privacy. It gains insights from large datasets while still maintaining privacy. 

Differential privacy works by using an algorithm to add a controlled amount of randomness. It changes responses at a pre-

determined frequency helps to protect the privacy of the participants. More noise increases privacy but reduces data accuracy, 

represented by the epsilon parameter (ε)[3]. The more noise added to original responses the more privacy is protected, but the less 

accurate the data becomes, it uses ε(epsilon)which is the privacy parameter of differential privacy; low ε, high accuracy, low accuracy.  

It can be divided into two categories: local and global. Each has a unique strategy for protecting privacy while using machine 

learning and data analysis. In global differential privacy often referred to as centralised differential privacy, an analysis or 

computation, usually carried out on a centralised server, adds noise to the final result. The idea is to conceal information about any 

specific data point while maintaining the integrity of the model or overall statistics. In local differential privacy, before each individual 

data point is delivered to a data aggregator or analysis server, noise is introduced. Sensitive data is safeguarded even before it leaves 

the user's device [4] since each user adds noise locally to their own data. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Differential Privacy [18] 
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2. Differential Privacy Techniques 

 

Differential privacy is a framework that offers robust privacy protection by making sure that adding or removing a specific data 

point doesn't materially affect the result of a calculation or analysis. For those whose data is included in a dataset, it offers a robust 

guarantee of privacy. Enabling the extraction of meaningful information from the data while reducing the possibility of disclosing 

private information about any particular person is the goal [5]. Differential privacy strategies are useful in machine learning because 

they maintain a balance between the need to protect sensitive personal data and the development of accurate models [6]. The following 

are some crucial machine learning strategies for enhanced privacy preservation: 

 

2.1 Noise injection 

 

Noise injection, namely Laplace and Gaussian noise, is a necessary method to protect personal privacy in the context of differential 
privacy while maintaining the utility of machine learning models. 

 

1. Laplace noise is a widely used technique that adds noise to the model's output or to the model's parameters during 

training. The sensitivity of the function being computed and a privacy parameter called "epsilon" (ε) are required for the 

calibration of this noise. A lower value of ε indicates a greater degree of privacy protection. The distinctive fat tails of 

the Laplace distribution add unpredictability that effectively masks the contribution of individual data points [7]. 

2. Gaussian noise is also used as a substitute for Laplace noise, providing comparable advantages in terms of maintaining 

anonymity [8]. During the machine learning process, Gaussian noise can be added to the model parameters or 

predictions. Similar to Laplace noise, the privacy parameter ε and the sensitivity of the function must be taken into 

account when calibrating Gaussian noise. The Gaussian distribution, which is distinguished by its bell-shaped curve, 

evenly distributes noise and is especially useful when a more widely dispersed noise profile is required. 

 

An external observer would find it difficult to determine the impact of any one data entry on the overall model output in either 

scenario due to the meticulous noise calibration that protects the privacy of individual data points. In the constantly changing field of 

privacy-preserving data analytics, these noise injection approaches are crucial to striking a careful balance between the requirements 
of privacy protection and the usefulness of machine learning models. 

 

2.2 Perturbation of data  

 

Perturbation of data in the context of privacy preservation involves two key techniques: data perturbation and randomized 

response. 

 

1. Data perturbation: Addition of noise directly to the input data before training a model. One way to accomplish this is by 

applying changes to individual data points or adding random variants to the training set. The idea is to introduce deliberate 

randomness into the dataset in order to mask particular information that might be used to identify individual records. The 

privacy of individual contributors is improved by perturbing the training data, which makes it harder for outside parties to 

identify sensitive information while still enabling useful model training. The degree of disturbance is frequently 
meticulously adjusted to achieve a balance between data utility and privacy protection. 

2. Randomised Response: In the context of classification issues, randomised response protects the genuine labels of training 

data while maintaining anonymity. This method uses a randomised response mechanism to disturb the labels. A 

randomization approach is used, adding noise and ambiguity to the labelling process in place of disclosing the true label. 

This makes sure that even when the model is being trained, the true label of each individual data point is kept safe. When 

handling sensitive data in classification tasks [9], randomised response is especially helpful as it adds a layer of anonymity 

without sacrificing the machine learning model's overall efficacy and accuracy. 

 

The major goal of both data perturbation and randomised response is to intentionally add noise and unpredictability while protecting 

individual privacy during training and preserving the integrity and usefulness of the data for efficient machine learning model 

building. These methods add to the larger body of work on privacy-preserving approaches for data-driven applications. 

 

 

2.3 Privacy-Preserving Aggregation: Secure Multi-Party Computation (SMPC) 

 

In the field of privacy-preserving aggregation, Secure Multi-Party Computation (SMPC) is a potent technique that allows several 

parties to work together to jointly compute a function over their inputs while protecting the confidentiality of those inputs [10]. By 

using SMPC, it makes sure that no one finds out more about the contributions of the other parties than what is necessary to understand 

the final combined outcome [11]. This is especially important when it comes to machine learning, when it's necessary to aggregate 

parameters or model updates from several sources without disclosing the raw data [12]. 

Parties participate in cryptographic protocols inside the SMPC framework, which enable them to jointly compute a desired 

function while keeping their individual inputs secret. Every partner maintains their own private data, and computations are done in a 

way that protects privacy [13]. The computing of a function over each party's private inputs, with no party having access to the full 
set of inputs, is the final product [14]. 

This method is useful for gathering model updates in a way that protects privacy. For instance, SMPC can be used to aggregate 

local model updates without disclosing the raw data from each device in federated learning scenarios where models are taught across 
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decentralised devices. By doing this, confidentiality is preserved and all parties' contributions are reflected in the aggregated model 

without jeopardising personal information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Secure Multi-Party Computation (SMPC) [20] 

 

2.4 Differentially Private Stochastic Gradient Descent (DP-SGD): 

 

A privacy-preserving optimisation technique called Differentially Private Stochastic Gradient Descent (DP-SGD) incorporates 

differential privacy ideas into the machine learning model training process. It does this by adding precisely calibrated noise to the 

gradients that stochastic gradient descent (SGD) was used to generate during the training phase. The main objective is to provide 

differential privacy in the changes to the model parameters, which implies that the impact of each individual training data point on 

the training output is restricted. 

For each iteration of the SGD optimisation procedure, noise is added to the gradients in DP-SGD. Based on the gradients' 

sensitivity and a privacy parameter, commonly represented by epsilon (ε), the quantity of noise added is calculated. Although there 

may be a trade-off with the model's usefulness, a smaller ε offers more privacy. 

This strategy is very helpful in industries like healthcare or finance, where privacy is of utmost importance and sharing sensitive 

training data can be risky [14]. A compromise between maintaining privacy and improving model accuracy can be achieved by using 

DP-SGD to enable collaborative model training on distributed datasets without disclosing contributor identities [15]. 

 

 

 

 

 

 

 

Figure 2.4 Differentially Private Stochastic Gradient Descent [18] 

 

2.5 Federated Learning 

 

 Federated Learning is a decentralised machine learning technique that eliminates the need to centralise raw data and allows model 

training across numerous edge devices or servers [16]. Federated Learning with Differential Privacy, or FL-DP, is an expansion of 

federated learning that further protects user privacy during the model aggregation process by incorporating the ideas of differential 
privacy. 

The federated learning paradigm distributes the training process across local devices rather than transferring raw data to a central 

server for model training. Based on its local data, each device computes a model update; only the model updates are transmitted to 

the central server. The global model is updated by the central server aggregating these modifications. To make improvements to the 

overall model, this process is performed iteratively without disclosing specific data [16]. 

In FL-DP, differential privacy is added by adding noise to the model updates during the aggregation stage. This noise guarantees 

some degree of privacy protection by obscuring the contributions of individual devices. Like other differential privacy approaches, 

the quantity of noise supplied is regulated by the privacy parameter epsilon (ε). Higher privacy assurances are achieved with a smaller 
ε, but the utility of the aggregated model may suffer [2]. 

 

2.6 Objective Perturbation: 

 

Objective perturbation is a technique used in machine learning to enhance privacy by introducing noise directly into the 

optimization objective function during the training process [17]. Achieving differential privacy—that is, limiting the influence of a 
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given data point's existence or absence on the final model parameters—is the main objective. This method is especially useful in 

situations where it is necessary to prevent sensitive information from being revealed by the optimisation target itself [21]. 

An optimisation algorithm aims to minimise or maximise an objective function that measures the discrepancy between the true 

values in the training data and the model predictions when a machine learning model is being trained [22]. The process of adding 

precisely calibrated noise to this objective function is known as objective perturbation. Privacy parameters that regulate the degree 
of privacy protection, like epsilon (ε), are used to calculate the quantity of noise generated. 

Objective perturbation adds to the larger context of differential privacy in machine learning by causing perturbations to the 

objective function. This method is particularly helpful in scenarios where more conventional differential privacy techniques, like 
adding noise to gradients or model parameters, might not be appropriate or sufficient. 

 

2.7 Advanced Cryptographic Techniques: 

 

Homomorphic Encryption: This advanced cryptographic method allows calculations to be done on encrypted material without 

having to first decrypt it. Homomorphic encryption permits model training on encrypted data in the context of privacy-preserving 

machine learning, guaranteeing that sensitive data is kept private at all times. When sharing raw data is impractical and data privacy 

is a top priority, this method comes in handy. There are various variations of homomorphic encryption, including fully and partially 
homomorphic encryption, which offer varying degrees of computational power while preserving data security [23]. 

Secure Aggregation methods: To safely aggregate model updates from several parties without disclosing the individual updates, 

secure aggregation methods employ cryptographic techniques. In cases of collaborative learning, like federated learning, where 

decentralised devices or servers contribute model updates, safe aggregation makes assurance that the aggregated model is updated 

without disclosing the individual contributions from each participant [24]. This aids in maintaining secrecy and privacy, particularly 

when handling sensitive datasets that are dispersed among several organizations [25]. To accomplish secure aggregation, a variety of 

cryptographic primitives can be used, such as secret sharing and secure multi-party computation [26]. 

 

3.  Comparison of Privacy-Preserving Techniques in Machine Learning 

Table 3.1 Comparison of different techniques [27-34] 

 

Techniques Challenges Merits Demerits 

Laplace Noise  Determining optimal noise 

scale (epsilon) 

 Balancing privacy and 

model accuracy 

 Ensuring appropriate 

sensitivity calculation 

 Simplicity of 

implementation 

 Provides strong privacy 

guarantees 

 May not scale well 

with high-

dimensional data 

 Sensitivity to noise 

Gaussian Noise  Choosing the right noise 

distribution 

 Balancing privacy and 

model accuracy 

 Impact on the convergence 

of optimization 

 Smooth perturbation of 

model parameters 

 Effective in continuous 

and differentiable models 

 May not achieve 

strong privacy 

guarantees 

 Effective in 

continuous and 

differentiable 

models 

Data Perturbation  Determining optimal noise 

level 

 Balancing privacy and 

model accuracy 

 Impact on model training 

convergence 

 Directly perturbs input 

data, preserving privacy 

 Compatible with various 

machine learning models 

 May distort data 
distribution and 
patterns 

 Sensitivity to noise 

Randomized 

Response 
 Choosing appropriate 

response probabilities 

 Handling imbalances in 

label distribution 

 Balancing privacy and 

classification accuracy 

 Protects individual labels 

in classification 

 May introduce bias 

in label perturbation 

Secure Multi-Party 

Computation (SMPC) 
 Communication overhead 

in multi-party setup 

 Ensuring integrity of 

computations 

 Handling malicious 

participants 

 Enables secure 

aggregation of model 

updates 

 Suitable for distributed 

environments 

 Complexity in setup 

and coordination 

 Increased 

computational and 

communication 

costs 

Federated Learning  Communication overhead 

in decentralized setup 

 Ensuring model 

convergence across 

devices 

 Privacy preservation in 

collaborative learning 

 Utilizes local data 

without sharing raw data 

 Challenges in 

handling non-IID 

data distribution 

 Increased 

communication and 

computation costs 
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 Privacy amplification 

across iterations 

DP-SGD  Tuning noise 

hyperparameters 

 Convergence challenges in 

optimization 

 Balancing privacy and 

model accuracy 

 Privacy during model 

training 

 Compatible with various 

machine learning models 

 Trade-off between 

privacy and model 

accuracy 

 Sensitivity to noise 

Objective 

Perturbation 
 Choosing appropriate 

noise in objective 

 Balancing privacy and 

model accuracy 

 Impact on optimization 

convergence 

 Directly incorporates 

privacy in optimization 

 Compatible with various 

optimization algorithms 

 May hinder model 

convergence 

 Sensitivity to noise 

Homomorphic 

Encryption 
 Performance overhead in 

computation 

 Ensuring secure key 

management 

 Balancing privacy and 

model accuracy 

 Enables computations on 

encrypted data 

 Strong privacy 

guarantees 

 Computational 

complexity and 

speed limitations 

 Limited support for 

certain types of 

operations 

Secure Aggregation 

Protocols 
 Ensuring secure 

communication channels 

 Handling malicious 

participants 

 Balancing privacy and 

model accuracy 

 Protects individual model 

updates 

 Protects individual model 

updates 

 Increased 

computational and 

communication 

costs 

 Complexity in setup 

and coordination 

 

 

4.  CONCLUSION 

 

In conclusion, differential privacy techniques in machine learning offer a robust framework for preserving privacy while maintaining 

model accuracy. Advanced cryptographic techniques include homomorphic encryption, federated learning, DP-SGD, data 

perturbation, noise injection, and privacy-preserving aggregation are some of the methods that lead to improved privacy protection. 

The particular use case, the type of data, and the required level of privacy all influence the technique selection. The publications that 

are cited offer further details on these methods, but in order to learn about the most recent developments in privacy-preserving 
machine learning, one must keep up with the area as it is always changing. 
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