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A B S T R A C T

Histopathology image-based survival prediction aims to provide a precise assessment of cancer prognosis
and can inform personalized treatment decision-making in order to improve patient outcomes. However,
existing methods cannot automatically model the complex correlations between numerous morphologically
diverse patches in each whole slide image (WSI), thereby preventing them from achieving a more profound
understanding and inference of the patient status. To address this, here we propose a novel deep learning
framework, termed dual-stream multi-dependency graph neural network (DM-GNN), to enable precise cancer
patient survival analysis. Specifically, DM-GNN is structured with the feature updating and global analysis
branches to better model each WSI as two graphs based on morphological affinity and global co-activating
dependencies. As these two dependencies depict each WSI from distinct but complementary perspectives,
the two designed branches of DM-GNN can jointly achieve the multi-view modeling of complex correlations
between the patches. Moreover, DM-GNN is also capable of boosting the utilization of dependency information
during graph construction by introducing the affinity-guided attention recalibration module as the readout
function. This novel module offers increased robustness against feature perturbation, thereby ensuring more
reliable and stable predictions. Extensive benchmarking experiments on five TCGA datasets demonstrate that
DM-GNN outperforms other state-of-the-art methods and offers interpretable prediction insights based on the
morphological depiction of high-attention patches. Overall, DM-GNN represents a powerful and auxiliary tool
for personalized cancer prognosis from histopathology images and has great potential to assist clinicians in
making personalized treatment decisions and improving patient outcomes.
1. Introduction

Cancer is a primary cause of mortality worldwide, with approxi-
mately 19.3 million new cancer cases and nearly 10.0 million cancer-
related deaths reported in 2020 (Sung et al., 2021). Alarmingly, the
global burden of cancer is expected to increase by 47% to 28.4 million
cases by 2040 (Sung et al., 2021). Given the diverse range of can-
cer types and their impact on various organs and systems, precision
medicine, particularly survival analysis that accounts for individual
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patient status and cancer progression, has the potential to signifi-
cantly reduce cancer prevalence and address the challenges of tu-
mor heterogeneity, thereby holding significant clinical and commercial
value.

Generally, histopathology-based survival analysis relies on visually
inspecting and quantifying histopathological alterations/features in cell
morphology, invasiveness, or inflammation/infiltration in histopathol-
ogy slides (Gurcan et al., 2009). However, this process becomes highly
labor-intensive and time-consuming for pathologists due to the large
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gigapixel size of whole slide images (WSIs). Moreover, the final analysis
suffers from pathologists’ subjective experience and knowledge, render-
ing the prediction uncertain. In the past few years, the combination of
advanced whole slide imaging techniques and deep learning technol-
ogy has attracted significant research interest in histopathology WSI-
based survival analysis, offering promising solutions to overcome these
challenges. Compared with conventional methods, the computational
pathology methods stand out in terms of efficiency, objectiveness,
repeatability, and the possibility of remote diagnostics (Abels et al.,
2019; Louis et al., 2016), which might provide new perspectives for
alleviating the severe shortage and regional imbalance of qualified
pathologists all over the world.

Histopathology images have a unique advantage over other medical
modalities, e.g., radiology and ultrasonic imaging, in presenting a
more detailed and high-resolution depiction of tumor cells and mi-
croenvironments (Kumar et al., 2014). Such intricate details enable a
comprehensive characterization of cancer in evolution and progression.
However, despite the advantages of WSIs in cancer analysis, their
high gigapixel resolution poses considerable computational challenges
that are not currently feasible with existing hardware for end-to-end
processing. Additionally, due to the tumor heterogeneity for which
cancerous tissues constitute only a small fraction of WSIs, annotating
tumor cells or patches becomes exceedingly challenging. To address the
aforementioned challenges, a promising solution is to utilize weakly
supervised multiple-instance learning (MIL) (Maron and Lozano-Pérez,
1997). In this approach, each WSI is divided into numerous small
patches (instances) and a pre-trained model or encoding strategy con-
verts the patches into feature vectors. Subsequently, further analysis
and prediction can be conducted on the computable feature space.

In recent years, a variety of MIL algorithms (Ilse et al., 2018; Li
et al., 2021; Shao et al., 2021; Wang et al., 2023a; Yu et al., 2023; Gao
et al., 2023; Wang et al., 2024) have been proposed for cancer diagnosis
and subtype classification, some of which even achieved performance
on par with human experts. The majority of these algorithms are
developed to detect class-specific features from WSIs, e.g., tumor cells
for cancer diagnosis and specific tumor morphological patterns for
subtype classification. Nevertheless, the living status of cancer patients
is determined by various factors, e.g., tumor stage (Dunnwald et al.,
2007; Elston and Ellis, 1991), tumor size (Zhang et al., 2015; Narod,
2012), tumor-infiltrating lymphocytes (TIL) (Gooden et al., 2011; De-
schoolmeester et al., 2010) and necrosis (Richardson et al., 2022).
Accordingly, the detection-centric MIL methods are not competent for
complicated survival analysis. Recently, there has been a proliferation
of algorithms for survival analysis, encompassing convolutional neu-
ral network-based methods (Zhu et al., 2017), attention-based meth-
ods (Carmichael et al., 2022), graph-based methods (Li et al., 2018;
Chen et al., 2021; Wang et al., 2021, 2022), and transformer-based
methods (Huang et al., 2021; Wang et al., 2023b). These emerging
methods aim to enhance the performance toward survival analysis by
leveraging advanced technologies and network architectures. Specif-
ically, attention-based methods can generate the attention weights
for each patch and proceed with feature aggregation. Existing graph-
based methods often struggle to establish complex correlations between
patches, relying primarily on spatial contextual information or mor-
phological correlation. In terms of Transformer-based methods, the
patch correlations are determined by the learnable transformation and
cross-product operations. This training process can be substantially
influenced by the patch morphology similarities and the quantity of the
available training data. As a consequence, despite the advancements in
the above methods, we still face challenges in modeling the complex
correlations between numerous morphologically diverse patches in
WSIs, thereby failing to achieve a profound understanding of patient
status.

To address the above issues, here, we propose a novel approach,
termed dual-stream multi-dependency graph neural network
2

(DM-GNN) for cancer patient survival analysis from histopathology
images with only slide-level labels as weak supervision. DM-GNN is
capable of automatically correlating numerous patches with diverse
morphological patterns within each WSI, thereby enabling a more com-
prehensive analysis of cancer patients. Specifically, DM-GNN comprises
the feature updating branch (FUB) and global analysis branch (GAB) to
model each WSI as two graphs based on global morphological affinity
and co-activating dependencies, respectively. The feature distance-
based affinity matrix (AFM) and the attention generation module
(AGM) estimate the co-activating matrix (CAM) function as the edges
of the graphs, quantifying the dependencies into a computable form.
Graph convolutional neural (Kipf and Welling, 2017) is employed to
achieve the message-passing between nodes. As the two dependen-
cies focus on distinct correlations between patches, we can achieve
multi-view modeling of the complex correlations between patches.
Furthermore, we enhance the utilization of dependency information
in graph construction by introducing the affinity-guided attention
recalibration (AARM) module as the readout function. This module
increases robustness against feature perturbation and thus can enable
more reliable and stable predictions.

To validate the performance of DM-GNN, benchmarking experi-
ments are conducted on five different TCGA tumor datasets, including
Bladder Urothelial Carcinoma, Breast Invasive Carcinoma, Glioblas-
toma & Lower Grade Glioma, Lung Adenocarcinoma, and Uterine Cor-
pus Endometrial Carcinoma datasets. Experimental results demonstrate
that the proposed DM-GNN can accurately model the risk function of
the population and outperform other state-of-the-art methods. More-
over, we provide the morphological depiction of high-attention patches
to interpret the prediction insights of our trained model.

2. Related work

Existing computational methods for histopathology image-based
survival analysis can be generally divided into two broad categories:
regions of interest (ROI)-based methods and WSI-based methods. These
two major categories of methods are described in detail in the following
subsections.

2.1. ROI-based methods

ROI-based methods rely on the manually selected patches of the ROI
for survival prediction. In the early stage, these methods typically uti-
lize hand-crafted features (Barker et al., 2016; Cheng et al., 2018; Wang
et al., 2014; Yao et al., 2016; Yu et al., 2016; Yuan et al., 2012) to repre-
sent the images, by especially focusing on the cellular morphology and
patch-level characteristics. In this regard, Wang et al. (2014) proposed
an integrated framework with cell detection, segmentation, and clas-
sification for cancer diagnosis and survival analysis. Yao et al. (2016)
employed a deep cell subtype classification to annotate the cells and
introduced a set of quantitative features to describe cellular information
for survival analysis. Considering that the progression of tumors is not
only related to the growth of tumor cells but also the interaction be-
tween the tumor and its microenvironment, Cheng et al. (2018) further
proposed a novel bioimage informatics pipeline for automatic charac-
terization of the topological organization of different cell patterns in
the tumor microenvironment. Yu et al. (2016) extracted 9879 quanti-
tative image features and used regularized machine-learning methods
to select the top features and to distinguish shorter-term survivors
from longer-term survivors with stage I adenocarcinoma. The exten-
sive validation verified the potential of computational pathology in
medicine. In recent years, advances in deep learning and big data tech-
niques have enabled the development of deep learning-based survival
analysis methods (Zhu et al., 2016; Mobadersany et al., 2018). For
instance, Zhu et al. (2016) for the first time developed an early-stage
deep convolutional neural network (DeepConvSurv) with pathological
images for survival analysis. With the novel optimization strategy for

the regression model, DeepConvSurv achieved better performance than
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Fig. 1. Overview of the proposed dual-stream multi-dependency graph neural network (DM-GNN). The framework comprises pre-processing operations to convert WSIs into bags of
features and feed-forward computation to predict hazard rates. Regarding the network, it is constructed by the feature updating branch and global analysis branch for representation
generation and affinity-guided attention recalibration module for graph-level feature aggregation. Eventually, one linear layer will predict the risk of each patient.
machine learning-based methods. Later, Mobadersany et al. (2018)
proposed survival convolutional neural networks (SCNNs) for survival
analysis. Particularly, SCNNs are able to integrate both histopathology
images and genomic biomarkers for final prediction.

Although ROI-based methods have achieved remarkable perfor-
mance, they still necessitate the involvement of pathologists for patch
selection. The pathologists’ subjective assessment of the histopathology
images can inevitably impact the patch labeling and hence extend to
the final prediction. Moreover, patch selection is a labor-intensive task
and requires a significant amount of time and effort.

2.2. WSI-based methods

WSI-based methods stand out in comparison to ROI-based methods
in processing the original WSIs without any pre-processing. Consider-
ing the large giga-pixel sizes of WSIs and the computational power
of current hardware, the majority of existing methods process WSIs
through weakly-supervised multiple instance learning (MIL). Specifi-
cally, weakly supervised methods first crop the tissue regions of WSIs
into patches and utilize a pre-trained model to convert patches into
feature vectors. Then, MIL algorithms model the feature vectors for
the final prediction. Most methods focus on the second part of de-
velopment. Methods based on attention mechanisms, convolutional
neural networks, transformers, and graph neural networks have been
proposed. Zhu et al. (2017) proposed the WSISA method, which con-
ducted survival prediction using whole slide images in an end-to-end
manner. WISIA first extracted hundreds of patches from each WSI
by adaptive sampling and then grouped them into different clusters.
Then, an aggregation model was trained to perform patient-level pre-
dictions. Chen et al. (2021) proposed the Patch-GCN, which exten-
sively explored the contextual features (tumor microenvironment) with
GCN to generate discriminative representations. Wang et al. (2021)
proposed a deep learning framework that leverages hierarchical graph-
based representations (both patch-based and cell-based pathomic fea-
tures) to enable more precise prediction of progression-free survival in
prostate cancer patients. Huang et al. (2021) integrated the transformer
network for long-range dependency establishing and critical feature
learning. Moreover, they verified the effectiveness of self-supervised
learning for cancer survival analysis. Di et al. (2022) introduced a
multi-hypergraph-based learning framework (HGSurvNet) to explore
3

an informative survival-specific global representation from those WSIs
with highly complicated data correlation. Chen et al. (2022) intro-
duced a new vision transformer architecture termed Hierarchical Image
Pyramid Transformer (HIPT) for WSI representation learning. The self-
supervised learning significantly updated the extracted features and the
hierarchical structure ensures a multi-scale modeling of the WSIs.

Although numerous methods have been proposed for the WSI-based
cancer prognosis, most of these methods cannot explicitly model the
complex correlations/dependencies between numerous morphology-
diverse patches, thereby preventing them from achieving a more pro-
found understanding and inference of the patients’ survival status.

3. Methodology

In this section, we introduce a dual-stream multi-dependency graph
neural network (DM-GNN), which is a new weakly supervised learning
approach for cancer survival analysis from histopathology images. An
overview of the framework of DM-GNN and a detailed description of
the key branches and modules are provided below.

3.1. Overview of the framework

As shown in Fig. 1, the framework of DM-GNN comprises of the pre-
processing operations and feed-forward computation. Following these
steps, each WSI can be transformed from the original high-dimensional
image space to a lower-dimensional feature space and subsequently,
follow-up survival analysis can be computationally efficient.

Pre-processing Operations: Initially, we employ an automated seg-
mentation algorithm to differentiate the foreground (tissue region) and
background of each WSI, and then crop the tissue region into numerous
fixed-size patches. Subsequently, we conduct deep transfer feature
engineering by utilizing an ImageNet pre-trained model to embed each
image patch into a feature vector. In terms of the pre-trained model,
aligned with Patch-GCN (Chen et al., 2021), it is constructed by the
initial Convolution Block and first three Residual Blocks of the ResNet50
model (He et al., 2016). Consequently, each patch is represented as
a 1024-dimensional feature vector, and the bag of all instances can be
denoted as 𝐹 = {𝑓1, 𝑓2,… , 𝑓𝑁} ∈ R𝑁×1024. After the feature embedding,
the model training and testing can be performed in the low-dimensional
feature space, thus substantially reducing the computational burdens.
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Feed-forward Computation: In this step, the extracted bag of features
𝐹 is fed into the proposed DM-GNN to perform survival prediction.
As illustrated in Fig. 1(b), the system comprises the feature updating
branch (FUB) and global analysis branch (GAB), both of which depict
the transformed WSI as two graphs based on the theoretically distinct
dependencies. Consequently, the features extracted by the two branches
pay attention to the WSIs from different perspectives, thus enabling
the multi-view modeling of the complex correlations. Afterward, the
parameter-free transitivity-based aggregation module fully utilizes the
dependency information during graph construction to generate the
final graph representations that are more robust against perturbation.
Eventually, a classification layer at the end of the model is employed
to predict the hazard rate of each patient.

3.2. Graph convolutional network

Graph convolutional network (GCN) (Kipf and Welling, 2017) has
an excellent capability of modeling topological graphs through a so-
phisticated message-passing mechanism. This mechanism essentially
relies on the principle of updating a node’s representation by sys-
tematically integrating the information extracted from its immediate
neighboring nodes, which is akin to creating a dynamic conversation
between nodes. The node-updating strategy forms an essential part of
the way GCN manipulates and interprets graph data, enabling the GCN
to better recognize and leverage the intricate relationships embedded
within the graph structure.

In this study, GCN is utilized to model the interdependencies across
different patches in each WSI. Its calculation process can be represented
as 𝐺𝐶𝑁(𝑋,𝐴), where 𝑋 and 𝐴 denote the nodes’ features and undi-
rected dependency matrix, respectively. Specifically, the function of the
graph computation can be formulated as follows:

𝐺𝐶𝑁(𝑋,𝐴) = 𝛿(�̃�− 1
2 �̃��̃�− 1

2 𝑋𝑊 ), (1)

where �̃�𝑖𝑖 =
∑

𝑗 𝐴𝑖𝑗 and 𝑊 is the trainable weight matrix for feature
ransformation.

.3. Feature updating branch

Recent methods (Di et al., 2022; Chen et al., 2022) have specif-
cally involved the spatial contextual/proximity information during
he modeling. However, this strategy focuses more on the microen-
ironment itself rather than the patch-level feature distribution. The
eature updating branch (FUB) is used to establish the correlations
etween the morphologically similar patches from the global perspec-
ive. In this way, the updated patch-level features can show better
obustness against feature perturbation caused by deep transfer feature
ngineering in the pre-processing step and intra-tumor heterogeneity.
pecifically, we achieve this through the introduced affinity matrix
AFM) which acts as edges for graph construction and GCN for patch-
evel message passing. The edge generation process is described in
etail below.

During the affinity-based edge generation process, we initially cal-
ulate the pairwise cosine distances of the patches and then generate a
istance matrix, denoted as 𝑑𝑖𝑠𝑡. As the ImageNet pre-trained model
as utilized to transform the patches into the feature vectors, the

imilarities between feature vectors tend to be high, which may not
eflect the distinct morphological characteristics of the histopathologi-
al patches. Therefore, instead of directly adopting the generated 𝑑𝑖𝑠𝑡
s the edges for the graph, we implement the min–max normalization
o normalize the matrix value to a range between 0 and 1, ensuring the
elative differences in morphological characteristics among the patches.
his normalization function can be formulated as:

𝑖𝑠𝑡′ =
𝑑𝑖𝑠𝑡𝑖,𝑗 − 𝑑𝑖𝑠𝑡𝑚𝑖𝑛
𝑑𝑖𝑠𝑡𝑚𝑎𝑥 − 𝑑𝑖𝑠𝑡𝑚𝑖𝑛

. (2)

Next, we use the pre-defined threshold to binarize the 𝑑𝑖𝑠𝑡′ matrix and
generate the final AFM. With this operation, we can regulate the flux
4

and magnitude of the message passing among nodes, thereby improving
the controllability of graph construction.

Prior to graph computation, a deep projection layer (DPL), which
comprises two linear layers with the 𝑅𝑒𝐿𝑈 activation function and the
layer normalization (𝐿𝑁) (Ba et al., 2016) in the middle, is used to re-
duce the feature dimension and recalibrate the feature for histopathol-
ogy. Following this, the AFM-based graph will be fed to three consec-
utive GCN layers for feature updating. Each GCN layer is followed by
a 𝑅𝑒𝐿𝑈 and a 𝐿𝑁 for feature non-linearization and normalization.

3.4. Global analysis branch

The global analysis branch (GAB) focuses on capturing the cor-
relations between informative patches that contribute to the survival
analysis from the global perspective. Different from previous methods
that directly learn the patch-patch correlation (Shao et al., 2021; Lu
et al., 2021), the proposed GAB aims to explore the patch-level at-
tention weights first and then uses the generated weights to establish
the potential communication. The two-stage modeling strategy could
map more detailed correlations between the numerous tissue patches,
thereby improving the prediction performance. For this purpose, the
generated co-activating matrix (CAM), which comprises the momentum
attention matrix (MAM) and contextual matrix (CTM), aims to explore
the short-range (adjacent patches) and long-range (co-activation from
the global view) dependencies to model the WSIs. Identical to the FUB,
GCN is employed for message passing between patches.

As illustrated in Fig. 1, the CAM, built from the momentum attention
matrix (MAM) and the contextual matrix (CTM), functions as the de-
pendency for constructing the graph. Specifically, MAM is generated by
the proposed AGM that is based on the gated attention mechanism (Ilse
et al., 2018). Firstly, the bag of features 𝐹 is fed into two parallel linear
layers for feature transformation, each of which is followed by the
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑡𝑎𝑛ℎ activation functions, respectively. Afterward, the two
transformed features are multiplied. The product results are then fed
into another linear layer to produce 1-dimensional attention weights
(represented as AWs ∈ R𝑁×1) for instances. This computational process
can be formulated as follows:

𝐴𝑊 𝑠 = (𝑠𝑖𝑔𝑚(𝑊1𝐹 + 𝑏1) ⋅ 𝑡𝑎𝑛ℎ(𝑊2𝐹 + 𝑏2))𝑊3 + 𝑏3, (3)

here 𝑊 and 𝑏 represent the learnable transformation matrix and bias,
espectively, while 𝑠𝑖𝑔𝑚 indicates the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function. The AWs have
wo functions: (1) generate the attention matrix for graph construction;
2) serve as the input to AARM (Section 3.5) for node feature aggre-
ation. Regarding the graph construction, each element in the AWs
epresents the activation level of the corresponding instance and as
uch, the product value between any two elements indirectly indicates
he co-activating status of them. Hence, we initially employ a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
unction to range the AWs to the scale of [0,1] and then proceed with
hese scaled ones using a self-cross-product operation to generate the
ttention matrix (ATM). Due to the limitations of attention modules in
enerating reliable attention weights in the initial training phase, the
enerated attention matrix may overlook critical correlations and affect
he model optimization. To address this, we introduce a diminishing
omentum to assist the model optimization. Overall, the function can

e formulated as follows:

𝐴𝑀 = 𝛼 + (1 − 𝛼) ⋅ 𝑠𝑖𝑔𝑚(𝐴𝑊 𝑠) × 𝑠𝑖𝑔𝑚(𝐴𝑊 𝑠)𝑇 , (4)

here 𝛼 is a pre-defined hyper-parameter and will decrease to 0 as
he training proceeds. Recent studies have indicated that the spatial
ontextual information that reflects the tumor microenvironment also
lays an important role in cancer development and evolution (Yuan,
016). Therefore, to better explore such information, we generate the 2-
op contextual matrix (CTM) based on patch-level spatial correlations.
he summation of CTM and MAM will then be used as the CAM.

Regarding graph computation, it parallels the FUB, employing a
PL initially for feature transformation, followed by another three GCN

ayers for feature updating. Each GCN layer is subsequently followed by
𝑅𝑒𝐿𝑈 activation function and a layer normalization (𝐿𝑁) (Ba et al.,

2016).
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Fig. 2. Kaplan–Meier survival curves of our proposed DM-GNN and ground truth across five cancer types. High-risk and low-risk patients are represented by red and blue lines,
respectively. The x-axis shows the time in months and the y-axis presents the probability of survival. The log-rank test is used to evaluate the statistical significance in survival
distributions between low-risk and high-risk patients (P-Value < 0.05).
3.5. Affinity-guided attention recalibration module

To achieve the final hazard risk prediction of each patient, we still
need a readout function to aggregate the node-level features as the
graph-level representation. Previous methods typically utilized simple
aggregation techniques, e.g., mean or maximum pooling, or relied on
generated attention weights for representation aggregation. However,
these approaches have shown limitations, either introducing excessive
noise into the final representation or exhibiting instability during the
training process. In this subsection, we propose a new affinity-guided
attention recalibration module (AARM) to stabilize and recalibrate the
attention weights of each patch by referring to the morphologically
similar ones.

As illustrated in Fig. 1, AARM is featured by four different inputs,
including AWs generated by AGM, AFM, as well as features generated
by FUB and GAB, respectively. Specifically, the module starts with
conducting a cross-product between AWs and AFM. In this way, the
weight of each node/patch will be the collection of all the morpholog-
ically similar ones, thereby exhibiting better robustness against feature
perturbation. Afterward, we scale the collected weights by dividing
them by

√

𝑑𝑘, where 𝑑𝑘 is the total number of instances in this bag.
Eventually, we operate the softmax operation on the weighted summa-
tion of the AWs and scaled collected weights for generating the final
aggregation weights (AGWs). We generate the final representation of
patients by proceeding with the cross-product operation between the
AGWs and concatenated features from the two branches. This process
can be formulated as follows:

𝐹 ′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽 𝐴𝐹𝑀 × 𝐴𝑊 𝑠
√

𝑑𝑘
+ (1 − 𝛽)𝐴𝑊 𝑠) × [𝐹1, 𝐹2], (5)

where 𝛽 is the pre-defined hyperparameter, 𝐹1 = 𝐹𝑈𝐵(𝐹 ) and 𝐹2 =
𝐺𝐴𝐵(𝐹 ) denote the features from the two branches, and [, ] represents
the concatenation operation.

3.6. Loss function

In this study, we apply the cross-entropy-based Cox proportional
loss (Zadeh and Schmid, 2020) to optimize the model. Generally, the
datasets for survival prediction have both censored and uncensored
patients. For the model training and testing, we first convert the
continuous overall survival time into four non-overlapping bins: [𝑡0, 𝑡1),
[𝑡1, 𝑡2), [𝑡2, 𝑡3), and [𝑡3, 𝑡4), where 𝑡0 = 0, 𝑡4 = ∞, and 𝑡1, 𝑡2, 𝑡3 correspond
to the quartiles of longest survival time of uncensored patients. This
binning process serves to discretize the survival time and allows for
easier prediction analysis. For a patient 𝑗 with 𝑡𝑗 , we obtain his/her
discretized class label 𝑦𝑗 by referring to the above bins. The final loss
function can be formulated as follows:
𝐿𝑐𝑜𝑥 = − 𝑐𝑗 ⋅ 𝑙𝑜𝑔(𝑓𝑠𝑢𝑟𝑣(𝑦𝑗 , 𝐹𝑗 ))

− (1 − 𝑐𝑗 ) ⋅ 𝑙𝑜𝑔(𝑓𝑠𝑢𝑟𝑣(𝑦𝑗 − 1, 𝐹𝑗 )) (6)
5

− (1 − 𝑐𝑗 ) ⋅ 𝑙𝑜𝑔(𝑓ℎ𝑎𝑧𝑎𝑟𝑑 (𝑦𝑗 , 𝐹𝑗 )),
Table 1
Data details of the BLCA, BRCA, GBMLGG, LUAD and UCEC datasets with CS, US,
and AP representing censored samples, uncensored samples and average patches,
respectively.

Number of BLCA BRCA GBMLGG LUAD UCEC

Samples 436 1022 1041 515 538
CS 236 889 700 314 460
US 200 133 341 201 78
AP 15,014 9760 7495 10,973 16,142

where 𝐹 and 𝑐𝑗 indicates the bag the features and censorship of the 𝑗𝑡ℎ
patient, respectively while 𝑓ℎ𝑎𝑟𝑧𝑎𝑟𝑑 represents the computation process
of hazard rates. In terms of 𝑓𝑠𝑢𝑟𝑣, it can be formulated as (see Fig. 2):

𝑓𝑠𝑢𝑟𝑣(𝑦𝑗 , 𝐹𝑗 ) =
𝑦𝑗
∏

𝑖=0
(1 − 𝑓ℎ𝑎𝑧𝑎𝑟𝑑 (𝑖, 𝐹𝑗 )). (7)

4. Experimental results and discussion

4.1. Dataset description

In this study, we conducted extensive experiments on 3553 WSIs
of five different tumor types obtained from The Cancer Genome At-
las (TCGA) including Bladder Urothelial Carcinoma (BLCA), Breast
Invasive Carcinoma (BRCA), Glioblastoma & Lower Grade Glioma
(GBMLGG), Lung Adenocarcinoma (LUAD), and Uterine Corpus En-
dometrial Carcinoma (UCEC) datasets. A detailed summary of the five
datasets in terms of censored samples (CS), uncensored samples (UC),
and total numbers of samples is provided in Table 1. Moreover, we also
showcase the average number of patches of the five datasets.

4.2. Implementation details

All the WSIs were processed at the magnification level of 20 times
(20x). In the pre-processing step, we initially discarded the background
patches with a low saturation value (< 15). Subsequently, the tissue
region was cropped into a series of 256 × 256 non-overlapping patches.
Then, an ImageNet pre-trained modified ResNet50 model was used
to embed original patches into a collection of feature vectors. The
hyperparameter 𝛼 is initially set as 0.3 and will decrease by 0.1 every
5 epochs. In the feed-forward computation, we applied the Adam
optimizer to train each model for 20 epochs in an end-to-end fashion.
In each iteration, the batch size was set as 1 and the gradients were
accumulated over 32 steps for backpropagation. With respect to the
super large size WSIs, we randomly sampled their 30,000 patches for
modeling in light of the computation burden. All experiments were
performed on a single NVIDIA GeForce RTX 3090 Graphics Card.
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Table 2
Performance comparison with state-of-the-art methods on TCGA datasets in terms of c-index.

Methods BLCA BRCA GBMLGG LUAD UCEC Overall

MIL (Deep Set) (Zaheer et al., 2017) 0.500 ± 0.002 0.499 ± 0.001 0.573 ± 0.084 0.511 ± 0.019 0.504 ± 0.013 0.517
Attention MIL (Ilse et al., 2018) 0.528 ± 0.047 0.559 ± 0.048 0.772 ± 0.034 0.573 ± 0.073 0.589 ± 0.086 0.604
DeepGraphConv (Li et al., 2018) 0.580 ± 0.043 0.550 ± 0.099 0.785 ± 0.008 0.592 ± 0.045 0.631 ± 0.065 0.628
CLAM-MB (Lu et al., 2021) 0.512 ± 0.029 0.580 ± 0.087 0.736 ± 0.052 0.567 ± 0.038 0.571 ± 0.051 0.593
CLAM-SB (Lu et al., 2021) 0.528 ± 0.027 0.546 ± 0.070 0.745 ± 0.036 0.574 ± 0.050 0.586 ± 0.080 0.596
Patch-GCN (Chen et al., 2021) 0.562 ± 0.042 0.600 ± 0.035 0.806 ± 0.016 0.598 ± 0.053 0.646 ± 0.047 0.642
Patch-GCN+VarPool (Carmichael et al., 2022) 0.571 ± 0.023 0.607 ± 0.069 0.814 ± 0.021 0.605 ± 0.045 0.655 ± 0.040 0.650
TransMIL (Shao et al., 2021) 0.561 ± 0.049 0.641 ± 0.079 0.852 ± 0.020 0.645 ± 0.069 0.669 ± 0.110 0.674
CoADS (Zhao et al., 2023) 0.549 ± 0.066 0.631 ± 0.082 0.847 ± 0.032 0.618 ± 0.032 0.641 ± 0.029 0.657
GraphLSurv (Liu et al., 2023) 0.551 ± 0.013 0.586 ± 0.052 0.787 ± 0.021 0.585 ± 0.064 0.649 ± 0.043 0.632
HGT (Hou et al., 2023) 0.575 ± 0.092 0.639 ± 0.070 0.853 ± 0.039 0.642 ± 0.049 0.661 ± 0.052 0.674

Ours 0.597 ± 0.045 0.651 ± 0.076 0.862 ± 0.019 0.664 ± 0.065 0.663 ± 0.031 0.687
w
p
f
𝑀

Table 3
Analysis of the number of local prototypes on TCGA datasets in terms of c-index.

Threshold BLCA BRCA GBMLGG

0.75 0.575 ± 0.056 0.619 ± 0.067 0.836 ± 0.030
0.80 0.577 ± 0.047 0.634 ± 0.082 0.839 ± 0.031
0.85 0.582 ± 0.051 0.633 ± 0.078 0.842 ± 0.024
0.90 0.583 ± 0.050 0.649 ± 0.068 0.830 ± 0.035
0.95 0.537 ± 0.046 0.631 ± 0.080 0.835 ± 0.028

Threshold LUAD UCEC Overall

0.75 0.609 ± 0.074 0.598 ± 0.093 0.647
0.80 0.616 ± 0.070 0.600 ± 0.089 0.653
0.85 0.617 ± 0.067 0.583 ± 0.101 0.651
0.90 0.631 ± 0.070 0.600 ± 0.109 0.658
0.95 0.627 ± 0.071 0.605 ± 0.110 0.647

In terms of the data, we randomly took non-overlapping 80% and
0% WSIs of each dataset as training and testing data, respectively. To
ssess the feasibility and stability of the proposed algorithm, we utilized
he five-fold cross-validation for model evaluation. Furthermore, to
nsure a fair comparison, all the compared weakly supervised deep
earning methods followed the identical data splitting strategy. The
oncordance index (c-index), which can quantify the model’s ability to
orrectly rank the survival outcomes of different patients, is employed
n this study for performance evaluation.

.3. Comparison with state-of-the-art methods

This subsection provides the performance comparison between our
roposed DM-GNN with other weakly supervised learning methods
or WSI-based cancer prognosis. Here, these baseline methods can be
ategorized as attention-based (Ilse et al., 2018; Lu et al., 2021), graph-
ased (Li et al., 2018; Chen et al., 2021; Carmichael et al., 2022; Liu
t al., 2023; Hou et al., 2023), transformer-based (Shao et al., 2021)
nd their mixture (Zhao et al., 2023). As we can see from Table 2,
M-GNN outperformed all previous techniques on the four cancer

ypes except on the UCEC dataset. The overall performance of DM-
NN reaches 0.687, surpassing the second-best methods by 1.3%. On

he TCGA-UCEC dataset, TransMIL (Shao et al., 2021) outperformed
ur DM-GNN by 0.6%; however, DM-GNN achieved the surpassing on
he other four datasets by at least 1%. Additionally, one significant
imitation of TransMIL (Shao et al., 2021) lies in the dramatically
ncreasing computation on the large-size WSIs. DeepGraphConv (Li
t al., 2018) tried to enhance the patch-level features by aggregating
imilar patches from the global view. Nevertheless, using the PCA-
elected features to model the graph could lead to unrepresentative
dges. Additionally, the high-similarity nature of instance features is
ot considered in this process. Patch-GCN (Chen et al., 2021) par-
icularly considered the microenvironment information by extensively
xploring the spatial contextual information of WSIs; however, they
gnored both the correlations within morphologically similar patches
6

nd the communication between informative ones, resulting in at least
4.5% worse performance than ours. In terms of CoADS (Zhao et al.,
2023), GraphLSurv (Liu et al., 2023), and HGT (Hou et al., 2023),
they additionally considered the long-range patch correlation while
modeling the WSIs. They either use the learnable relationships or
the patch characteristics. Based on the experiment results, we can
easily conclude that our learning strategy utilizing two branches to
model the morphological and latent correlations is superior to them
for a more profound understanding of the patients. In conclusion, our
proposed DM-GNN represents an advanced and effective approach for
WSI-based cancer prognosis, holding significant potential as a powerful
tool to improve our understanding of the interdependencies among
patches, enhance the effectiveness of WSI-based survival prediction,
and contribute to the fields of digital pathology and precision medicine.

4.4. Ablation study

Analysis of the threshold for the Affinity Matrix. As discussed
in Section 3.3, we employed a pre-defined threshold to binarize the
affinity matrix and established the correlations between patches with
similar morphological characteristics. Here, to examine the effect of the
thresholds on model performance, we specifically tested the varying
thresholds ranging from 0.75 to 0.95 with a stepsize of 0.05. In this test-
ing phase, we only utilized the global analysis branch to model the WSIs
and mean operation as the readout function. As shown in Table 3, our
model performed best on TCGA-BLCA, TCGA-BRCA, and TCGA-LUAD
datasets with a threshold of 0.90, achieving c-index values of 0.583,
0.649, and 0.631, respectively. When tested on the TCGA-GBMLGG and
TCGA-UCEC datasets, the model achieved the best performance under
the thresholds of 0.85 and 0.95, respectively. The model underwent a
substantial decline in performance with the threshold setting as 0.75.
This might be attributed to the established correlations and message
passing between dissimilar patches, which impeded node-level feature
learning and consequently affected the discriminative power of the
learned representations. On the other hand, when the threshold reached
0.95, there was also a performance decline across the four datasets.
This suggests that strict restrictions might disrupt the learning of the
potential correlations between patches, thus negatively impacting the
message-passing process. Moreover, we observed that different kinds of
tumors have distinct optimal thresholds, which are potentially reflec-
tive of the fact that each cancer type possesses unique morphological
characteristics. All the experiments in Table 4 were conducted using
the optimal threshold of each dataset as the default setting.

Ablation study of each proposed module. In this subsection,
e conducted the ablation study to examine the effectiveness of the
roposed branches and modules through benchmarking experiments on
ive TCGA datasets. The experimental results are provided in Table 4.
𝑜𝑑𝑒𝑙0 utilized the FUB for feature extraction and the thresholds

for matrix binarization were referred to the optimal option of each
dataset in Table 3. 𝑀𝑜𝑑𝑒𝑙1 and 𝑀𝑜𝑑𝑒𝑙2 constructed the graph of GAB
based on ATM and its momentum one (MAM), respectively, for feature

engineering. 𝑀𝑜𝑑𝑒𝑙3 is the combination of 𝑀𝑜𝑑𝑒𝑙0 and 𝑀𝑜𝑑𝑒𝑙2. In
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Table 4
Ablation study on the TCGA-GBMLGG, TCGA-LUAD and TCGA-UCEC datasets. Specifically, we evaluate the significance of the proposed FUB, GAB, and AARM in terms of c-index
with detail.

BLCA BRCA GBMLGG LUAD UCEC Overall

0 FUB + mean 0.583 ± 0.050 0.649 ± 0.068 0.842 ± 0.024 0.631 ± 0.070 0.605 ± 0.110 0.662
1 GAB (w/ ATM) + mean 0.568 ± 0.052 0.622 ± 0.058 0.841 ± 0.041 0.626 ± 0.088 0.617 ± 0.098 0.655
2 GAB (w/ MAM) + mean 0.571 ± 0.047 0.633 ± 0.070 0.852 ± 0.023 0.626 ± 0.064 0.629 ± 0.049 0.660
3 FUB + GAB (w/ MAM) + mean 0.576 ± 0.049 0.645 ± 0.078 0.855 ± 0.026 0.642 ± 0.060 0.661 ± 0.033 0.676
4 FUB + GAB (w/ MAM) + AARM 0.587 ± 0.056 0.649 ± 0.082 0.857 ± 0.025 0.661 ± 0.067 0.661 ± 0.058 0.683
5 FUB + GAB (w/ MCM) + AARM 0.597 ± 0.045 0.651 ± 0.076 0.862 ± 0.019 0.664 ± 0.065 0.663 ± 0.031 0.687
Fig. 3. Attention visualization of DM-GNN on two WSIs in high-risk and low-risk cohorts from the TCGA-BLCA dataset. (a,d), (b,e) and (c,f) present the segmented WSIs,
attention-mapped WSIs, and high-attention patches, respectively. Particularly, experienced pathologists depict the morphological features of the attention patches, revealing the
prediction insights of the trained model.
terms of 𝑀𝑜𝑑𝑒𝑙4, we added the AARM module on top of 𝑀𝑜𝑑𝑒𝑙3
for feature aggregation. The final 𝑀𝑜𝑑𝑒𝑙5 represents our proposed
DM-GNN model with spatial contextual information. In comparison
with other state-of-the-art methods in Table 2, 𝑀𝑜𝑑𝑒𝑙0 and 𝑀𝑜𝑑𝑒𝑙2
showed superior overall performance than DeepGraphConv (Li et al.,
2018), Patch-GCN (Chen et al., 2021), CoADS (Zhao et al., 2023),
and GraphLSurv (Liu et al., 2023), and competitive performance than
TransMIL (Shao et al., 2021) and HGT (Hou et al., 2023). The c-index
results from 𝑀𝑜𝑑𝑒𝑙0, 𝑀𝑜𝑑𝑒𝑙1, and 𝑀𝑜𝑑𝑒𝑙2 demonstrate that establish-
ing correlations between the morphologically similar patches in FUB
and latent communications within informative patches in GAB are both
powerful feature extractors for WSIs. Based on the performance of
𝑀𝑜𝑑𝑒𝑙0 and 𝑀𝑜𝑑𝑒𝑙2, GAB did not perform as effectively as FUB on
the TCGA-BLCA and TCGA-BRCA datasets. Apart from the intrinsic
factors caused by different cancer types, we found that the size of WSIs
could also potentially influence the optimization of the neural network.
The detailed results and discussion can be found in the Supplementary
Material.

By comparing the performance of 𝑀𝑜𝑑𝑒𝑙1 and 𝑀𝑜𝑑𝑒𝑙2, we observed
a performance increase and a decrease in terms of mean and standard
deviation, respectively. For instance, on the TCGA-UCEC dataset, the
mean c-index increased by 1.2% and the standard deviation decreased
by 4.9%. This suggests that momentum operation in GAB can help
the model to converge and improve the training stability. Compared
with 𝑀𝑜𝑑𝑒𝑙2 and 𝑀𝑜𝑑𝑒𝑙0, 𝑀𝑜𝑑𝑒𝑙3 achieved significant performance
improvement in terms of c-index value on the TCGA-LUAD and TCGA-
UCEC datasets by at most 6%. Such improvement indicates that two
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branches are complementary with each other and accordingly, combin-
ing them together can considerably improve the representations from
different views. In Supplementary Material Table 4, we also combine
TransMIL (Shao et al., 2021) with the GAB and FUB for cancer analysis.
However, the performance is not consistently incremental with some
having a big drop, which indirectly demonstrates the complementary
nature of the FUB and GAB in cancer analysis. After replacing the
mean readout function with our proposed AARM, 𝑀𝑜𝑑𝑒𝑙4 also achieved
performance improvement to a certain degree compared to 𝑀𝑜𝑑𝑒𝑙3. Es-
pecially on the TCGA-LUAD datasets, the improvement reached 1.9%.
In the case of 𝑀𝑜𝑑𝑒𝑙5, we added the spatial contextual correlations dur-
ing the graph construction. Although the performance improvements
may not be pronounced, the standard deviation was decreased, indi-
cating that the model’s performance on the five-fold cross-validation
became more stable. In conclusion, each proposed module or branch is
effective and they can work well both independently and cooperatively.

4.5. Kaplan–Meier curve analysis

The Kaplan–Meier estimator, alternatively referred to as the product
limit estimator, is a non-parametric statistic employed for estimating
the survival function from lifetime data (Kaplan and Meier, 1958). The
Kaplan–Meier estimator is instrumental in areas where an understand-
ing of the time until an event occurs is paramount, such as in medical
research, biology, engineering, and economics. In this subsection, we
applied the Kaplan–Meier curves to evaluate the distinction and sep-
aration between the model-predicted high-risk and low-risk patients
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Fig. 4. Case study of the WSI from TCGA-GBMLGG dataset in terms of segmented WSI (a), attention WSI (b), affinity matrix (c), and attention matrix (d).
on the TCGA-BLCA, TCGA-BRCA, TCGA-GBMLGG, TCGA-LUAD, and
TCGA-UCEC datasets. As illustrated in Fig. 2, we visualized both the
ground truth (GT) and DM-GNN predicted distributions across the five-
fold testing data for a more comprehensive comparison. Here, the
ground truth referred to the patient’s living status at the timepoint 𝑡2.
Regarding the testing data, patients were categorized according to the
optimal thresholds which referred to receiver operating characteristic
(ROC) curves of the training data. The high-risk and low-risk patients
were represented by red and blue curves, respectively. The P-Values
on the TCGA-BLCA, TCGA-BRCA, TCGA-GBMLGG, TCGA-LUAD, and
TCGA-UCEC datasets were 0.02346, 0.00042, 0.0000, 0.00419, and
0.04409, respectively. All of the P-Values were less than 0.05, indicat-
ing a strong statistical significance of the observed difference derived
by our proposed DM-GNN. By comparing the distribution between
our predicted and ground truth, we observed that the predicted low-
risk curves closely resembled the ground truth. With respect to the
high-risk patients, our model exhibited a certain degree of hysteresis,
indicating that some patients might experience worse outcomes than
the model predictions. Overall, we can conclude that the proposed DM-
GNN method has a strong capability of distinguishing and stratifying
high-risk and low-risk patients.

4.6. Model interpretation

In this subsection, we interpreted our proposed DM-GNN by visual-
izing the attention distribution, as well as retrieving and depicting the
high-attention patches. The interpretations were conducted in high-risk
and low-risk cohorts from the TCGA-BLCA dataset. Fig. 3 shows the
original WSIs after segmentation (a, d), attention-mapped WSIs (b, e),
and high-attention patches (c, f). Generally, cancer cells, characterized
by larger nuclei than normal cells, tend to appear darker after under-
going the Hematoxylin and Eosin (HE) staining process (Luna, 1968).
This characteristic in appearance aids in the identification and differ-
entiation of cancerous cells from healthy cells during histopathological
analysis. By examining the original WSIs and attention-mapped images,
it is evident that the model focuses more on cancer cells and their
spatial contextual neighbors rather than normal cells (we randomly
marked some normal tissue regions with yellow dashed lines), high-
lighting its superior capability in tissue identification. Furthermore, we
retrieved the high-attention patches for each slide (Fig. 3 c, f) and
depicted their morphological features by experienced pathologists. The
WSI of the low-risk patient indicates a significant presence of immune
cells and showed minimal signs of malignant or abnormal attributes,
along with a high differentiation degree. On the contrary, the WSI of the
high-risk patient displays a high malignancy rate. The nuclei of these
tumor cells come in a variety of shapes, some of which are featured by
multiple nuclei. Moreover, the chromatin within these cells is tightly
compacted, for which there is a lower level of cell differentiation. The
depiction of the high-attention patches from pathologists indicated the
useful prediction insights provided by the well-trained model, which
enhanced the model’s interpretation capability. Overall, our proposed
DM-GNN represents a useful tool to assist pathologists in cancer patient
survival analysis.
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4.7. Case study for AFM and MAM visualization

In this subsection, we performed a case study by visualizing the
dependencies during the two graph construction processes. In Fig. 4,
we specifically showcased the segmented WSI, attention-mapped WSI,
AFM, and MAM. To enhance clarity in the visualization, we selected
a WSI from the TCGA-GBMLGG dataset that exhibits two distinct
morphological tissues (denoted as A and B in Fig. 4) located at dif-
ferent regions of the image. Upon a close inspection of the AFM, we
observed that the two tissue regions updated their features indepen-
dently without exploring any cross-correlations. Conversely, the MAM
allowed each patch to establish correlations from a global perspective.
Notably, the intra-correlations within tissue A were weak and the intra-
correlations within tissue B were very strong. Furthermore, connections
between tissues A and B can be observed, indicating inter-correlations
between the two regions. Based on the analysis and observations pre-
sented, we can conclude that the two graphs constructed in the two
branches of the model are theoretically distinct and have the po-
tential to be complementary to each other. MAM emphasized global
correlations and established connections between patches based on a
global viewpoint. On the other hand, AFM allows independent feature
updates within specific tissue regions without considering inter-region
correlations. This distinct construction of the two graphs enables the
model to capture different aspects of the data, enhancing its over-
all understanding and representation of the underlying information.
By combining the information from both branches, the model can
leverage the complementary nature of the two graphs to improve its
performance and predictive capabilities.

5. Conclusion

In this study, we have developed a novel dual-stream multi-
dependency graph neural network, referred to as DM-GNN to im-
prove histopathology image-based cancer patient survival analysis.
Importantly, DM-GNN is capable of modeling the complex correlations
between numerous morphology-diverse patches in each WSI, thereby
enabling a more profound understanding and inference of patients’
survival status. More specifically, DM-GNN models the original WSI
as two independent graphs with theoretically distinct dependencies,
which focus on the morphological similarities and global co-activating
correlations, respectively. Leveraging such a strategy, DM-GNN can
successfully establish the deep correlations between patches from the
global viewpoint, thereby being able to conduct a comprehensive
analysis of each WSI. Moreover, we also propose a new affinity-guided
attention recalibration module to enable more robust node-level feature
aggregation against noise from multiple perspectives. To assess the
performance and utility of the proposed DM-GNN framework, we
have performed extensive benchmarking experiments on five TCGA
benchmark datasets. We envision that the development and availability
of the data-driven deep learning-based tools, such as DM-GNN proposed
in this study, can be explored as powerful tools to facilitate community-
wide efforts and inform clinical decision-making underpinning digital
pathology and precision oncology.
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