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Monte Carlo computer simulations were used to investigate the performance
of three x? test statistics in confirmatory factor analysis (CFA). Normal theory
maximum likelihood x* (ML), Browne’s asymptotic distribution free y?
(ADF), and the Satorra-Bentler rescaled y2 (SB) were examined under vary-
ing conditions of sample size, model specification, and multivariate distribu-
tion. For properly specified models, ML and SB showed no evidence of bias
under normal distributions across all sample sizes, whereas ADF was biased
at all but the largest sample sizes. ML was increasingly overestimated with
increasing nonnormality, but both SB (at all sample sizes) and ADF (only
at large sample sizes) showed no evidence of bias. For misspecified models,
ML was again inflated with increasing nonnormality, but both SB and ADF
were underestimated with increasing nonnormality. It appears that the power
of the SB and ADF test statistics to detect a model misspecification is attenu-

ated given nonnormally distributed data.

Confirmatory factor analysis (CFA) has become
an increasingly popular method of investigating
the structure of data sets in psychology. In contrast
to traditional exploratory factor analysis that does
not place strong a priori restrictions on the struc-
ture of the model being tested, CFA requires the
investigator to specify both the number of factors
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and the specific pattern of loadings of each of the
measured variables on the underlying set of fac-
tors. In typical simple CFA models, each measured
variable is hypothesized to load on only one factor,
and positive, negative, or zero (orthogonal) corre-
lations are specified between the factors. Such
models can provide strong evidence about the con-
vergent and discriminant validity of a set of mea-
sured variables and allow tests among a set of
theories of measurement structure. More compli-
cated CFA models may specify more complex pat-
terns of factor loadings, correlations among errors
or specific factors, or both. In all cases, CFA mod-
els set restrictions on the factor loadings, the corre-
lations between factors, and the correlations be-
tween errors of measurement that permit tests of
the fit of the hypothesized model to the data.
There are two general classes of assumptions
that underlie the statistical methods used to esti-
mate CFA models: distributional and structural
(Satorra, 1990). Normal theory maximum likeli-
hood (ML) estimation has been used to analyze
the majority of CFA models. ML makes the distri-
butional assumption that the measured variables
have a multivariate normal distribution in the pop-
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ulation. However, the majority of data collected
in behavioral research do not follow univariate
normal distributions, let alone a multivariate nor-
mal distribution (Micceri, 1989). Indeed, in some
important areas of research such as drug use, child
abuse, and psychopathology, it would not be rea-
sonable to even expect that the observed data
would follow a normal distribution in the popula-
tion. In addition to the distributional assumption,
ML (and all methods of estimation) makes the
structural assumption that the structure tested in
the sample accurately reflects the structure that
exists in the population. If the sample structure
does not adequately conform to the corresponding
population structure, severe distortions in all as-
pects of the final solution can result.

Although the chi-square test statistic can be
used to measure the extent of the violation of the
structural assumption (Lawley & Maxwell, 1971),
the accuracy of this test statistic can be compro-
mised given violation of the distributional assump-
tion (Satorra, 1990). Violations of both the distri-
butional and structural assumptions are common
(and often unavoidable) in practice and can poten-
tially lead to seriously misleading results. It is thus
important to fully understand the effects of the
multivariate nonnormality and specification error
on maximum likelihood estimation and other al-
ternative estimators used in CFA.

Methods of Estimation

By far the most common method used to esti-
mate confirmatory factor models is normal theory
ML. Nearly all of the major software packages use
ML as the standard default estimator (e.g., EQS,
Bentler, 1989; LISREL, Joreskog & Sorbom,
1993; PROC CALIS, SAS Institute, Inc., 1990;
RAMONA, Browne, Mels, & Coward, 1994).
Under the assumptions of multivariate normality,
proper specification of the model, and a suffi-
ciently large sample size (N), ML provides asymp-
totically (large sample) unbiased, consistent, and
efficient parameter estimates and standard errors
(Bollen, 1989). An important advantage of ML is
that it allows for a formal statistical test of model
fit. (N — 1) multiplied by the minimum of the ML
fit function is distributed as a large sample chi-
square with 1/2(p)(p + 1) — t degrees of freedom,
where p is the number of observed variables and
t is the number of freely estimated parameters
(Bollen, 1989).

One potential limitation of ML estimation is
the strong assumption of multivariate normality.
Given the presence of non-zero third- and (partic-
ularly) fourth-order moments (skewness and kur-
tosis, respectively),' the resulting ML parameter
estimates are consistent but not efficient, and the
minimum of the ML fit function is no longer dis-
tributed as a large sample central chi-square. In-
stead, (N — 1) multiplied by the minimum of the
ML fit function generally produces an inflated
(positively biased) estimate of the referenced chi-
square distribution (Browne, 1982; Satorra, 1991).
Hence, using the normal theory chi-square statistic
as a measure of model fit under conditions of non-
normality will lead to an inflated Type I error rate
for model rejection. Consequently, in practice a
researcher may mistakenly reject or opportunisti-
cally modify a model because the distribution of
the observed variables is not multivariate normal
rather than because the model itself is not correct
(see MacCallum, 1986; MacCallum, Roznowski, &
Necowitz, 1990).

Several different approaches have been pro-
posed to address the problems with ML estimation
under conditions of multivariate nonnormality.
One example is the development of alternative
methods of estimation that do not assume multi-
variate normality. One such estimator that is cur-
rently available in structural modeling programs
such as EQS (Bentler, 1989), LISCOMP (Muthén,
1987), LISREL (Joreskog & Sérbom, 1993), and
RAMONA (Browne et al., 1994) is Browne’s
(1982, 1984) asymptotic distribution free (ADF)
method of estimation. The derivation of the ADF
estimator was not based on the assumption of mul-
tivariate normality so that variables possessing
non-zero kurtoses theoretically pose no special
problems for estimation. ADF provides asymptot-
ically consistent and efficient parameter estimates
and standard errors, and (N — 1) times the mini-
mum of the fit function is distributed as a large
sample chi-square (Browne, 1984). One practical
disadvantage of ADF is that it is computationally

' The multivariate normal distribution is actually char-
acterized by skewness equal to 0 and kurtosis equal to 3.
However, it is common practice to subtract the constant
value of 3 from the kurtosis estimate so that the normal
distribution is characterized by zero skewness and zero
kurtosis. We will similarly refer to the normal distribu-
tion as defined by zero skewness and zero kurtosis.
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very demanding. Browne (1984) anticipated that
models with greater than 20 variables could not
be feasibly estimated with ADF. A second possible
disadvantage is that initial findings suggest that
this estimator performs poorly at the small to mod-
erate sample sizes that typify much of psychologi-
cal research.

A second approach that has been developed
for computing a more accurate test statistic under
conditions of nonnormality is to adjust the normal
theory ML chi-square estimate for the presence
of non-zero kurtosis. Because the normal theory
chi-square does not follow the expected chi-square
distribution under conditions of nonnormality, the
normal theory chi-square must be corrected, or
rescaled, to provide a statistic that more closely
approximates the referenced chi-square distribu-
tion (Browne, 1982, 1984). One variant of the re-
scaled test statistic that is currently only available
in EQS (Bentler, 1989) is the Satorra-Bentler chi-
square (SB y?% Satorra, 1990, 1991; Satorra &
Bentler, 1988). The SB x? corrects the normal the-
ory chi-square by a constant k, a scalar value that
is a function of the model implied residual weight
matrix, the observed multivariate kurtosis, and the
model degrees of freedom. The greater the degree
of observed multivariate kurtosis, the greater
downward adjustment that is made to the inflated
normal theory chi-square,

Review of Monte Carlo Studies

Muthén and Kaplan (1985) studied a properly
specified four indicator single-factor model under
five distributions ranging from normal to severely
nonnormal for one sample size (1,000). For univar-
iate skewness greater than 2.0, the ML x? was
clearly inflated whereas the ADF y?remained con-
sistent. Muthén and Kaplan (1992) extended these
findings by adding more complex model specifica-
tions, an additional sample size (500), and increas-
ing the number of replications to 1,000 per condi-
tion. The normal theory chi-square was extremely
sensitive to both nonnormality and model com-
plexity (defined as the number of parameters esti-
mated in the model). The ADF x? appeared to be
very sensitive to model complexity, with extreme
inflation of the model chi-square as the tested
model became increasingly complex. The ADF x?
was also particularly inflated at the smaller sam-
ple size.

Satorra and Bentler (1988) performed a Monte
Carlo simulation using a properly specified four in-
dicator single-factor model to evaluate the behav-
ior of the SB y? test statistic. The unique variances
of the four indicators were calculated with univari-
ate skewness of 0 and ahomogenous univariate kur-
tosis of 3.7. The models were estimated using ML,
unweighted least squares (ULS), and ADF, based
on 1,000 replications of a single sample size of 300.
The normal theory ML y?and the SB y? performed
similarly to one another. On average, the ML x?
slightly underestimated the expected value of the
model chi-square while the SB y? slightly overesti-
mated the expected value. However, the ML y?had
a larger variance than did the SB x°. The ADF x?
resulted in the highest average value, although it
also attained the lowest variance.

Chou, Bentler, and Satorra (1991) similarly used
a Monte Carlo simulation to examine the ML,
ADF, and SB yx* test statistics for a properly speci-
fied model under varying conditions of normality.
A two-factor six indicator CFA model was repli-
cated 100 times per condition based on two sample
sizes (200 and 400) and six multivariate distribu-
tions. Two versions of the model were estimated,
one in which all of the necessary parameters were
freely estimated, and one in which the factor load-
ings were fixed to the population values. Consis-
tent with previous research, the ML x? was inflated
under nonnormal conditions. The SB x? outper-
formed both the ML and ADF x? test statistics in
nearly all conditions.

Finally, Hu, Bentler,and Kano (1992) performed
a major simulation study based on a three-factor
confirmatory factor model with five indicators per
factor. Six sample sizes were used (ranging from 150
to 5,000) with 200 replications per condition. Seven
different symmetric distributions were considered,
ranging from normal to severely nonnormal (high
kurtosis). The normal theory estimators (maximum
likelihood and generalized least squares) provided
inflated chi-square values as nonnormality in-
creased. The ADF test statistic was relatively unaf-
fected by distribution but was only reliable at the
largest sample size (5,000). Finally, the SB y? per-
formed the best of all test statistics, although mod-
els were rejected at a higher frequency than was ex-
pected at small sample sizes.

In summary, Monte Carlo simulation studies
have consistently supported the theoretical predic-
tion that the normal theory ML x* test statistic is
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significantly inflated as a function of multivariate
nonnormality. The ADF x? is theoretically asymp-
totically robust to multivariate nonnormality, but
its behavior at smaller (and more realistic) sample
sizes is poor. The SB y? has not been fully exam-
ined, but initial findings indicate that it outper-
forms both the ML and ADF test statistics under
nonnormal distributions, although it does tend to
overreject models at smaller sample sizes.
Although the ramifications of violating the distri-
butional assumptions in CFA is becoming better
understood, much less is known about violations of
the structural assumption. Recent work has ad-
dressed the effects of model misspecification on the
computation of parameter estimates and standard
errors (Kaplan, 1988, 1989) as well as post hoc
model modification (MacCallum, 1986) and the
need for alternative indices of fit (MacCallum,
1990). However, little is known about the behavior
of chi-square test statistics under simultaneous vio-
lations of both the distributional and the structural
assumptions. Indeed, we are not aware of a single
empirical study that has examined the ADF and SB
X’ test statistics under these two conditions. Given
the low probability that the structure tested in a
sample precisely conforms to the structure that ex-
ists in the population, it is critical that a better un-
derstanding be gained of the behavior of the test
statistics under these more realistic conditions.

The Present Study

A series of Monte Carlo computer simulations
were used to study the effects of sample size, multi-
variate nonnormality, and model specification on
the computation of three chi-square test statistics
that are currently widely available to the practicing
researcher: ML, SB, and ADF.? Four specifications
of an oblique three-factor model with three indica-
tors per factor were considered. The first two mod-
els were correctly specified such that the structure
estimated in the sample precisely corresponded to
the structure that existed in the population. The
second two models were misspecified such that the
structure tested in the sample did nor correspond
to the structure that existed in the population.

Method
Model Specification

Four specifications of an oblique three-factor
model with three indicators per factor were exam-

ined. The basic confirmatory factor model is pre-
sented in Figure 1. The population parameters
consisted of factor loadings (each A = .70), unique-
nesses (each ©; = .51), interfactor correlations
(each ¢ = .30), and factor variances (all set to 1.0).

Model 1. Model 1 was properly specified such
that the model that was estimated in the sample
directly corresponded to the model that existed in
the population. Thus, both the sample and the
population models corresponded to the solid lines
presented in Figure 1.

Model 2. Model 2 contained two factor load-
ings that were estimated in the sample but did
not exist in the population. Thus, in Figure 1, the
double dashed lines represent the two factor load-
ings that linked Item 5 to Factor 3 and Item 8 to
Factor 2, and the expected value of these parame-
ters was 0. This is a misspecification of inclusion.
Note that from the standpoint of statistical theory,
estimation of parameters with an expected value
of 0 in the population does not bias the sample
results. Model 2 is thus considered to be a properly
specified model.

Model 3. Model 3 excluded two loadings from
the sample that did exist in the population. Thus,
in Figure 1, the single dashed lines represent the
two excluded factor loadings (both population
As = .35) that linked Item 6 to Factor 3 and Item
7 to Factor 2. The value of A = .35 was chosen to
reflect a small to moderate factor loading that
might be commonly encountered in practice. This
is a misspecification of exclusion.

Model 4. Finally, Model 4 was the combina-
tion of Models 2 and 3. Like Model 2, two factor
loadings were estimated in the sample that did
not exist in the population (the double dashed
lines linking Item 5 to Factor 3 and Item 8 to
Factor 2). Additionally, like Model 3, two factor
loadings were excluded from the sample that did
exist in the population (the single dashed lines
that linked Item 6 to Factor 3 and Item 7 to
Factor 2). This is a misspecification of both
inclusion and exclusion.

? Note that GLS is also available in standard packages
and is relatively widely used. However, GLS is a normal
theory estimator that is asymptotically equivalent to
ML, and previous studies (e.g., Muthén & Kaplan, 1985,
1992) have shown the behavior of ML and GLS to be
very similar.
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Figure 1. Nine-indicator three-factor oblique confirmatory factor analysis model with
population parameter values. Solid lines represent parameters that were shared be-
tween the sample and the population; single dashed lines represent parameters that
existed in the population (A = .35) but were omitted from the sample; double dashed
lines represent parameters that did not exist in the population (A = 0) but were

estimated in the sample.

Conditions

Multivariate distributions. Three population
distributions were considered for all four model
specifications (see Figure 2). Distribution 1 was
multivariate normal with univariate skewness and
kurtoses equal to 0. Distribution 2 was moderately
nonnormal with univariate skewness of 2.0 and
kurtoses of 7.0. Finally, Distribution 3 was severely
nonnormal with univariate skewness of 3.0 and
kurtoses of 21.0. These levels of nonnormality
were chosen to represent moderate and severe
nonnormality based on our examination of the
levels of skewness and kurtoses in data sets from
several community-based mental health and sub-
stance abuse studies.

Sample size. Four sample sizes were consid-
ered for all model specifications: 100, 200, 500,
and 1,000.

Replications. All models were replicated 200
times per condition.

Data generation. The raw data were generated
using both the PC and mainframe version of EQS
(Version 3; Bentler, 1989). Details of the data gen-
eration procedure are presented in the Appendix.

Measures

Three chi-square test statistics were studied:
normal theory ML, ADF, and the SB scaled y2.

All three test statistics were computed by EQS
(Version 3.0). Note that the ML and ADF statistics
provided by EQS should be identical to that
available through current versions of LISCOMP,
LISREL, and RAMONA.

Results
Expected Value of Test Statistics

The expected values of the chi-square test statis-
tics for Models 1 and 2 were simply the model
degrees of freedom for all three estimators across
all distributions and sample sizes (24.0 for Model
1 and 22.0 for Model 2). Because Models 3 and 4
were misspecified, the expected values of these
test statistics could not be computed directly. In-
stead, the expected values were computed as large
sample empirical estimates that differed as a func-
tion of method of estimation, multivariate distri-
bution, and sample size. Further details regarding
the computations of these estimates are presented
in the Appendix.

Monte Carlo Results

Tables 1, 2, 3, and 4 present the mean observed
value, the expected value, the percentage of bias,
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Figure 2.  Plots of normal (solid line), moderately non-
normal (dotted line), and severely nonnormal (dashed
line) empirical distributions based on a random sample
of N = 10,000.

and the percentage of models rejected at p < .05
for the ML, SB, and ADF x? test statistics for
all four model specifications.’ For the correctly
specified models (Models 1 and 2), the expected
rejection rate was 5%; and given 200 replications
and a = .05, the 95% confidence interval for the
percentage of rejected models defined an approxi-
mate upper and lower bound of 2% and 8%, respec-
tively. Rejection rates for the obtained chi-square
values falling within these bounds are consistent
with the null hypothesis that the estimator is unbi-
ased. Model rejection rates were not as meaningful
for misspecified models (Models 3 and 4), so rela-
tive bias was computed (the observed value minus
the expected value divided by the expected value).
Bias in excess of 10% was considered significant
(Kaplan, 1989).

Model Specification 1. Table 1 presents the re-
sults for Model 1. Recall that Model 1 was properly
specified such that the model estimated in the sam-
ple directly corresponded to the model that existed
in the population. The expected value for all three
test statistics was E(y?) = 24.0.

Under multivariate normality, the ML »? re-
jected the expected number of models across all
sample sizes (approximately 5%). Consistent with
both theory and previous simulation research, the

ML »? became increasingly positively biased as
the distribution became increasingly nonnormal.
This inflation was exacerbated with increasing
sample size. For example, nearly half of the cor-
rectly specified models were rejected for N = 1,000
under the severely nonnormal condition. Under
multivariate normality, the ADF x? was inflated
at small sample sizes, for example, rejecting 43%
of the correctly specified models at N = 100. The
performance of the ADF improved with increasing
sample size, but even under multivariate normality
at N = 1,000, 10% of the correct models were
rejected. The ADF »* was also positively biased
with increasing nonnormality, but this bias was
attenuated with increasing sample size. Finally, the
SB x? was very well behaved at nearly all sample
sizes across all distributions. For example, at a
sample size of N = 200 under severe nonnormality,
the SB x? rejected 7% of the properly specified
models (compared to 25% for ADF and 36% for
ML). Under these conditions, the performance of
the SB y*represented a distinct improvement over
the ML x? under conditions of nonnormality. In-
terestingly, the SB and ADF performed similarly
at samples of N = 500 and N = 1,000.

Model Specification 2. The results from Model
2 are presented in Table 2. Recall that Model 2
estimated two factor loadings in the sample that
did not exist in the population. Because the error
is the addition of two truly nonexistent parame-
ters, this can be considered a properly specified
model, and the expected value of the model chi-
square was equal to the model degrees of free-
dom for all estimators across all sample sizes,
E(xY) = 22.0.

Overall, the results from Model 2 closely fol-
lowed those of Model 1. Under multivariate nor-
mality, the rejection rates for both the ML and
SB were slightly higher than expected at N = 100
but were unbiased at N = 200 and greater. Under
multivariate normality, the ADF again rejected a
very high number of models at the two smaller
sample sizes but was unbiased at the two larger
sample sizes. As with Model 1, the ML x? was

* All improper solutions (nonconverged solutions and
solutions that converged but resulted in out-of-bound
parameters, ¢.g., Heywood cases) were dropped from
subsequent analyses. Collapsing across all conditions,
90% of the replications were proper for ML and 83%
were proper for ADF.
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Table 1

Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models

for Model Specification 1

Normal Moderately nonnormal Severely nonnormal

Observed Expected % % Observed Expected % % Observed Expected % %

Size  y? X X Bias Reject X X Bias  Reject X X Bias Reject
100 ML 25.01 240 4.0 55 29.35 24.0 220 200 3354 240 40.0 300
SB 25.87 24.0 80 7.5 26.06 24.0 9.0 8.5 27.26 240 140 130
ADF 36.44 24.0 520 430 38.04 240 590 490 44.82 24.0 870 680
200 ML 24.78 24.0 30 6.5 30.15 240 260 250 34.40 24.0 43.0 360
SB 2522 24.0 5.0 8.5 25.44 240 6.0 8.0 25.80 24.0 8.0 6.5
ADF 29.19 24.0 220 190 29.27 24.0 220 190 31.29 240 300 250
500 ML 23.94 240 0.0 35 31.26 240 300 240 35.55 24.0 480 400
SB 2410 24.0 0.0 5.0 25.44 240 6.0 6.9 24.85 240 4.0 8.5
ADF 2592 240 80 110 26.42 24.0 10.0 6.7 26.83 240 12.0 85
1000 ML 25.05 24.0 4.0 7.0 30.78 240 280 240 37.40 24.0 560 480
SB 25.16 24.0 5.0 8.0 2477 24.0 3.0 15 25.01 240 4.0 7.0
ADF 2519 24.0 7.0 9.5 25.36 240 6.0 75 2547 24.0 6.0 72

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal

distributions, respectively. ML = maximum likelihood; SB

free.

increasingly positively biased with increasing non-
normality, and this inflation was exacerbated with
increasing sample size. In comparison, the SB 2
showed minimal bias with increasing nonnormal-
ity, although the observed rejection rates at the
smallest sample size were slightly larger than ex-
pected. Even under severe nonnormality, the SB
x*? again showed little evidence of bias, especially
at sample sizes of N = 200 or greater. Finally,
the ADF x? was positively biased with increasing

Table 2

Satorra-Bentler rescaled; ADF = asymptotic distribution

nonnormality at the smaller sample sizes but was
unbiased at sample sizes of N = 500 and N =
1,000, even under severe nonnormality.

Model Specification 3. Model Specification 3
excluded two factor loadings in the sample (A =
.35) that truly existed in the population. These
results are presented in Table 3. Recall that due
to the exclusion of existing parameters, there was
a different expected value for each test statistic.
Also, because the model was misspecified in the

Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models

for Model Specification 2

Normal Moderately nonnormal Severely nonnormal
Observed Expected % % Observed Expected % % Observed Expected % %
Size x* x* X Bias  Reject X X’ Bias Reject b x* Bias Reject
100 ML 23.42 22.0 6.0 9.6 26.89 220 220 222 29.82 220 360 344
SB 24.19 22.0 90 121 23.80 220 8.0 8.5 25.07 22.0 140 111
ADF 31.0 220 41.0 305 34.95 22.0 590 408 46.45 22.0 111.0 632
200 ML 2248 220 2.0 6.0 27.70 220 26.0 26.5 31.77 220 440 367
SB 22.86 22,0 30 7.0 2375 20 8.0 8.5 24.10 220 10.0 8.5
ADF 26.43 22.0 200 175 26.06 2.0 180 145 28.52 220 300 220
500 ML 21.89 22.0 0.0 6.0 26.68 220 210 190 31.86 220 450 325
SB 22.02 220 0.0 7.0 21.90 220 0.0 5.5 2333 220 6.0 6.5
ADF 23.13 22.0 50 7.0 23.04 22.0 5.0 8.0 2402 22.0 9.0 55
1000 ML 2225 22.0 0.0 5.0 26.05 220 180 145 33.37 22.0 520 415
SB 2231 22.0 0.0 35 21.14 220 4.0 4.0 22.74 22.0 3.0 7.0
ADF 22.09 22.0 0.0 6.0 2332 220 6.0 9.5 23.41 220 6.0 15

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal

distributions, respectively. ML = maximum likelihood; SB

free.

Satorra-Bentler rescaled; ADF = asymptotic distribution
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Table 3

Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models

for Model Specification 3

Moderately nonnormal

Severely nonnormal

Observed Expected % %

Observed Expected % %

X’ Bias Reject X X Bias Reject

Normal
Observed Expected % %
Size  x? X X Bias  Reject X
100 ML 38.45 37.62 20 543 46.50
SB 39.63 37.65 50 57.9 37.63
ADF 52.04 33.74 54.0 80.3 60.88
200 ML 51.07 51.38 0.0 88.1 59.72
SB 51.65 51.44 0.0 89.9 47.04
ADF 50.17 43.59 15.0 85.6 47.93
500 ML 92.27 92.66 00 1000 99.39
SB 92.52 92.80 00 1000 75.04
ADF 76.89 73.11 50 1000 60.10

1000 ML 161.46 161.35 0.0 100:0 171.07
SB 161.66 161.74 00 1000 126.23
ADF 12771 12232 40  100.0 90.23

37.75 230 789 52.87 3177 400 814
33.99 110 491 38.10 30.85 240 471
29.68 1050 863 81.31 2729 1980 953
51.66 16.0 93.7 68.58 51.68 330 954
44.09 70 82.4 44.66 31.77 180 789
3542 36.0 84.8 47.16 30.61 540 752
93.37 60 1000 109.87 9342 180 100.0
74.40 1.0 100.0 63.46 58.52 8.0 97.2
52.63 140 99.5 53.67 40.58 320 967
162.88 50 100.0 180.90 162.98 11.0 100.0
124.89 20 1000 101.25 93.11 9.0 1000
81.31 11.0 1000 76.10 5720 33.0 1000

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal
distributions, respectively. ML = maximum likelihood; SB = Satorra-Bentler rescaled; ADF = asymptotic distribution free.

sample, the percentage of rejected models was no
longer a meaningful guide with which to judge the
behavior of the test statistics. Thus, the following
results will now be presented in terms of the rela-
tive bias in the test statistics.

Under multivariate normality, the expected val-
ues for the ML and SB y? were nearly identical
across all four sample sizes. This is further support
that for normal distributions, no scaling correction
is required for the ML x? and the SB x? thus
simplifies to the ML y?. Additionally, neither the
ML or SB test statistic showed appreciable bias
under normality across all four sample sizes. In
comparison, the empirical estimate of the ex-
pected value of the ADF y? was smaller than that
of the ML or SB test statistics. Recall that the
expected value for all three test statistics were
equal for the properly specified models. The lower
expected value of the ADF for misspecified mod-
els even under multivariate normality suggests that
this test statistic may have less power to reject the
null hypothesis compared with the ML or SB y
Unlike the ML and SB, the ADF was significantly
positively biased at the two smaller sample sizes.
For example, at N = 100 the average observed
ADF x? was 54% larger than the expected value.
This bias dropped to 15% at N = 200 and was
negligible at the two larger sample sizes.

The findings become more complicated given
nonnormal distributions. The expected value of

the ML y? was the same across all three distribu-
tions. As with the previous models, the ML x?
showed increasing levels of positive bias with in-
creasing nonnormality. A particularly interesting
finding pertained to the expected values of the SB
and ADF test statistics under nonnormality. Both
the expected and the observed values of the SB
and ADF test statistics decreased with increasing
nonnormality. For example, at sample size N =
200, the expected value for the SB y? was approxi-
mately 51 under normality, 44 under moderate
nonnormality, and 38 under severe nonnormality.
The ADF test statistic showed a similar pattern.
The direct interpretation of this finding is that it
is increasingly difficult to detect a misspecification
within the model given the added variability due
to the nonnormal distribution of the data. Thus,
the power of SB and ADF test statistics decreased
with increasing nonnormality.

Under moderate nonnormality, the SB y? was
slightly biased at N = 100 (11%) but was unbiased
at sample sizes of N = 200 and above. In compari-
son, also under moderate nonnormality, the ADF
x? showed extreme bias at the smaller sample sizes

4 Models 1 and 2 could have similarly been evaluated
using the percentage of bias, and the same conclusions
would have been drawn. The percentage of rejected
models was chosen instead for Models 1 and 2 given
the more direct interpretability of the findings.
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Table 4

Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models

for Model Specification 4

Normal Moderately nonnormal Severely nonnormal

Observed  Expected % % Observed Expected % % Observed Expected % %

Size X X Bias  Reject X X Bias Reject X X Bias  Reject
100 ML 3403 32.52 5.0 487 40.37 3252 240 63.4 45.15 3245 390 786
SB 3497 32.56 7.0 51.8 33.94 29.76 14.0 455 34.09 27.33 250 503
ADF 47.99 30.66 56.0 821 48.67 2719 790 85.4 63.25 2506 1520 918
200 ML 4375 43.14 1.0 81.1 49.84 43.14 16.0 91.0 58.14 43.01 350 881
SB 4434 43.23 3.0 81.6 39.55 37.59 5.0 67.9 38.48 32mn 180 604
ADF 46.42 39.41 18.0 855 41.84 3243 290 73.4 46.05 28.16 640 845
500 ML 75.29 75.04 00 1000 81.35 75.04 80 1000 91.71 74.68 230 1000
SB 75.62 75.23 00 1000 62.09 61.09 20 97.0 55.94 48.85 150 926
ADF 69.62 65.66 6.0 1000 53.84 48.15 12.0 942 49.13 3745 3.0 932

1000 ML 128.71 128.20 00  100.0 133.86
SB 129.16 128.56 0.0 1000 100.48
ADF 111.39 109.41 20 1000 80.%1

128.20 40 1000 144.56 127.46 130 100.0
100.26 00 1000 83.44 75.76 100 100.0
74.35 90 100.0 68.25 52.92 30.0 1000

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal
distributions, respectively. ML = maximum likelihood; SB = Satorra-Bentler rescaled; ADF = asymptotic distribution free.

and remained biased even at N = 1,000 (11%).
Under severe nonnormality, the SB x? showed
substantial bias at the two smaller sample sizes
(e.g., 18% at N = 200) but was only moderately
biased at the larger sample sizes (e.g., 9% at N =
1,000). The ADF showed very high levels of rela-
tive bias across all four sample sizes under severe
nonnormality and was overestimated by 33% even
at the largest sample size N = 1,000.

Model Specification 4. Model Specification 4
contained both errors of inclusion and exclusion.
Two cross-loadings existed in the population that
were not estimated in the sample (A = .35), and
two cross-loadings were estimated in the sample
that did not exist in the population (A = 0). These
results are presented in Table 4.

The findings from Model Specification 4 fol-
lowed the same general pattern as was observed
for Model Specification 3. The primary difference
was that the expected values and rejection rates
in Model 4 were lower compared with those of
Model 3. This result may initially appear counter-
intuitive given that Model 4 combined errors of
both inclusion and exclusion. However, unlike
Model 3, Model 4 contained the simultaneous esti-
mation of the two truly nonexistent paths and the
exclusion of the two truly existent paths. The mean
estimated factor loadings for the two additional
paths in Model 2 (where no other paths were ex-
cluded) was A = 0 (the population expected value).

However, the mean factor loadings for these same
two additional paths in Model 4 was A = —.40.
Thus, these additional free parameters served to
“absorb” the misspecification, and Model 4 re-
sulted in a better fit to the data than did Model 3.

As with Model 3, under multivariate normality,
the expected values of the ML and SB x? were
equal to one another whereas the expected value
of the ADF x? was smaller. Neither the ML or SB
x° showed any significant bias under the normal
distribution across any of the four sample sizes.
The largest bias was for the SB x? at N = 100
(7%), but the magnitude of bias dropped to near
(0 at sample sizes of N = 200 and above. In compari-
son, the ADF x? was again significantly overesti-
mated at the two smaller sample sizes but was
unbiased at sample sizes of N = 500 and above.

The expected value of the ML y? was again
equal across distributions, and the ML y? was in-
creasingly positively biased with increasing non-
normality. Like Model 3, the expected values for
the SB and ADF y? decreased with increasing
nonnormality. The SB x? showed increasing posi-
tive bias with increasing nonnormality. This bias
became negligible at N = 200 under moderate
nonnormality (5%) but was still slightly biased
even at N = 1,000 under severe nonnormality
(10%). Finally, the ADF x? was again strongly
biased, with increasing nonnormality even at the
largest sample size.
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Discussion

The first two models were theoretically prop-
erly specified. Model 1 was estimated in the
sample precisely as it existed in the population,
whereas Model 2 included two parameters in the
sample that did not exist in the population. The
findings for the ML x? from Models 1 and 2
closely replicate both previous theoretical predic-
tions and empirical findings. For example, the
ML x? showed no evidence of bias across all
sample sizes under multivariate normal distribu-
tions but was significantly inflated with increasing
nonnormality. Thus, a correct model was signifi-
cantly more likely to be erroneously rejected
based on the ML x? given departures from a
multivariate normal distribution (thus resulting
in an increased Type I error rate).

The ADF and SB test statistics have been pro-
posed as alternatives to the normal theory ML test
statistic when the observed data do not meet the
multivariate normality assumption. Consistent
with previous research on properly specified mod-
els, the ADF y? was substantially inflated at
smaller sample sizes, even under multivariate nor-
mal distributions. Although this small sample size
inflation was exacerbated with increasing nonnor-
mality, the ADF was unbiased at sample sizes of
N = 500 and above, regardless of distribution.
The SB y? performed quite well across nearly all
sample sizes and all distributions and showed no
evidence of bias even under severely nonnormal
distributions at sample sizes of N = 200 or more.
These are very heartening findings for the practic-
ing researcher who encounters nonnormal data
as a way of life (e.g., in the study of adolescent
substance use or psychopathology). Not only was
the SB x? accurate under even severely nonnormal
distributions, but the SB x? simplified to the ML
x*? under conditions of multivariate normality. As-
suming a properly specified model, the SB y? ap-
pears to be a very useful measure of fit given mod-
erately sized samples and nonnormal data.

Whereas many of the results from Models 1
and 2 were predicted from theory and previous
research, the findings from Models 3 and 4 were
not. Recall that Models 3 and 4 were two variations
of a misspecified model where the model estimated
in the sample did not conform to the model that
existed in the population. Studying the behavior
of the test statistics under these conditions is of

particular interest given the high likelihood that
the model estimated in the sample does not pre-
cisely conform to the model that exists in the popu-
lation. The results for the ML y? were as expected:
The ML test statistic showed no evidence of bias
at any sample size under multivariate normality
but was increasingly inflated given increasing non-
normality. As in Models 1 and 2, the SB x? also
showed no evidence of bias at any sample size
given multivariate normality, and thus simplified
to the ML y2. Interestingly, the expected value
for the ADF x? under model misspecification was
much smaller than that of the ML and SB, even
under multivariate normality. This suggests that,
compared to the ML and SB, the ADF test statistic
may be a less powerful test of the null hypothesis.
This conclusion is tentative, and more work is
needed to better understand this finding. Like
Models 1 and 2, the ADF was positively biased
under multivariate normal distributions at the two
smaller sample sizes but showed no bias at the two
larger sample sizes.

The most surprising findings related to the be-
havior of the SB and ADF test statistics under the
simultaneous conditions of misspecification and
multivariate nonnormality (Models 3 and 4). The
expected values of these test statistics markedly
decreased with increasing nonnormality. That is,
all else being equal, the SB and ADF test statistics
were less likely to detect a specification error given
increasing departures from a multivariate normal
distribution. The more severe the nonnormality,
the greater the corresponding loss of power. This
result was unexpected, and we are not aware of
any previous discussions of this finding.

Although the specific reason for this loss of
power is currently not known, we theorize that it
is due to the inclusion of the fourth-order moments
(kurtoses) in the computation of the SB and ADF
test statistics, information that is ignored by the
normal theory ML y?. Recall that a normal distri-
bution is completely described by the first two
moments, the mean and the variance. As the distri-
bution becomes increasingly nonsymmetric, is
characterized by thicker or thinner tails (compared
with the normal curve), or both, additional param-
eters are needed to describe this more complex
distribution. Because ML is a normal theory esti-
mator, it is assumed that the fourth-order mo-
ments are equal to 0, multivariate kurtosis is ig-
nored, and the expected value of the ML »? is
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equal across all distributions.’ In contrast, the
ADF and SB do not assume multivariate normal-
ity, the fourth-order moments are not assumed to
equal 0, and measures of multivariate kurtosis are
explicitly incorporated into the computation of the
test statistics. As a result, the expected values of
the ADF and SB directly depend upon the particu-
lar characteristics of the multivariate distribution
under consideration.

The inclusion of multivariate kurtosis into the
computation of the SB and ADF test statistics
provides the critical information necessary to fully
describe the more complex nonnormal distribu-
tion. However, this added information resulting
from the more complex distribution also reduces
the ability of the SB and ADF to identify a given
model misspecification. Otherwise stated, we can
think of a hypothetical signal to noise ratio in
which the test statistic is attempting to identify the
presence of the signal (i.e., the misspecification)
against the background noise (i.e., the sampling
variability of the data). Compared with the normal
distribution, the nonnormal distribution is charac-
terized by additional noise (in the form of non-
zero kurtosis) that makes it correspondingly more
difficult to identify the presence of the signal. Thus,
any particular signal is easier to detect given multi-
variate normality than is the very same signal given
the multivariate nonnormal distributions consid-
ered here. The power of the ADF and SB test
statistics (and any test statistic that incorporates
information from fourth-order moments) to detect
a given misspecification is thus decreased as multi-
variate nonnormality increases.® This interpreta-
tion is only speculative, and we are currently work-
ing on discerning precisely why this loss of power
under nonnormality exists.

There are two important implications of these
findings for the practicing researcher. First, the SB
x?® will almost always be smaller than the ML x?
under conditions of multivariate nonnormality.
However, the lower SB y? does not necessarily
imply that the model is a better fit to the data
because under nonnormality there is a simultane-
ous decrease in the ability of the SB x? to detect
a model misspecification. The SB x?is smaller than
the ML x? because of two (inseparable) reasons:
a correction for the inflation to the normal theory
ML x? and a decrease in statistical power to detect
a misspecification. The ML x? and SB x? should
thus be interpreted with this in mind.

A second implication of these findings is that if
a researcher is planning a study that will not be
characterized by a multivariate normal distribu-
tion, further steps must be taken to compensate
for the decreased statistical power that results as
a function of the nonnormal data (i.e., plan to
include additional subjects in the study). For ex-
ample, the power estimation methods developed
by Satorra and Saris (1985) only apply to normal
theory estimators. Using this method to compute
the required sample size needed to achieve a given
level of statistical power will be underestimated if
the hypothesized model was misspecified and
tested based on data that do not follow a multivari-
ate normal distribution.

Recommendations

On the basis of the previous results, we have
several recommendations for the practicing re-
searcher. First, we have not identified at what point
the data appreciably deviate from multivariate
normality. Similar to previous researchers (e.g.,
Muthén and Kaplan, 1985, 1992), we found sig-
nificant problems arising with univariate skewness
of 2.0 and kurtoses of 7.0. Further research is
needed to better understand more precisely when
nonnormality becomes problematic, but it seems
clear that obtained univariate values approaching
at least 2.0 and 7.0 for skewness and kurtoses are
suspect. Second, we agree with previous research-
ers (e.g., Hu et al., 1992; Muthén & Kaplan, 1992)
that the ADF y? not be used with small sample
sizes. Although we found adequate behavior at
samples as small as N = 500, other researchers
have found problems with the ADF x? at samples
as large as N = 5,000 when testing more complex
models (Hu et al., 1992). There are some epidemi-
ological and catchment area studies that do have
these large sample sizes available, and in these
cases the ADF is a promising method of estima-
tion, particularly for smaller models. Recent re-
search has also shown the possibility of using boot-
strapping techniques to compute more stable ADF

S Note that although the obtained ML x? values in-
creased with increasing nonnormality, the expected ML
x* values were equal across distribution.

® We thank both Albert Satorra and Peter Bentler,
whom each independently suggested this same argu-
ment as a potential explanation for the obtained results.
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x? estimates (Yung and Bentler, 1994); however,
more work is needed to explore the utility of this
approach in applied research settings.

Finally, relative to the ML »? and the ADF y?,
the SB x? behaved extremely well in nearly every
condition across sample size, distribution, and
model specification. Additionally, the SB y? had
the desirable property of simplifying to the ML x?
under multivariate normality. We thus recom-
mend reporting both the ML x? and the SB x?
when nonnormal data is suspected with the clear
realization that the lower SB value may be re-
flecting decreased power and not simply that the
model is a better fit to the data based on the SB
x> Model fit should thus be evaluated with appro-
priate caution. There are a few disadvantages to
using the SB x?in practice. One is that the compu-
tation of the SB x” requires raw data, which might
pose a problem for some researchers. Second, the
SB x? is currently only available in EQS. This
poses a practical problem for researchers who are
either not trained in or do not have access to EQS.
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Appendix

Technical Details

Data Generation

EQS generates the raw data with non-zero skewness
and kurtosis using the formulae developed by Fleishman
(1978) in accordance with the procedures described by
Vale and Maurelli (1983). The raw data were generated
based upon the covariance matrix implied by the model
parameters for each of the three models. The availability
of the raw data was necessary for the computation of
the ADF and SB x? test statistics.

The samples were created using the model implied
population covariance matrix 3(6). The measurement
equations consisted of the population parameter values
that defined the particular model. EQS generated the
population covariance matrix based on these measure-
ment equations. The sample raw data were created using
a random number generator in conjunction with the
characteristics of the population covariance matrix. The
raw data were generated under two constraints: (a) the
expected value of S should equal the population covari-
ance matrix %(6), and (b) the expected value of the
indices of skewness and kurtosis should equal the values
specified for each measured variable.

Verification of Data Generation

To verify that EQS properly generated the raw data
in accordance with the desired levels of skewness and
kurtoses, three sets of raw data of sample size N =
60,000 were generated. The three data sets were pro-
duced using the same procedures that created the multi-
variate normal, moderately nonnormal, and severely
nonnormal distributions for the simulations. The large
sample size provides a more accurate estimate of the
coefficients of skewness and kurtosis for the gener-
ated data.

Univariate skewness and kurtoses were computed for
the three samples of N = 60,000 using SAS PROC
UNIVARIATE. For the normally distributed condition

(skewness = 0, kurtosis = (), the mean univariate skew-
ness for the nine variables was .001 and the mean kurto-
sis was .004. For the moderately nonnormal distribution
(skewness = 2.0, kurtosis = 7.0), the mean skewness
was 1.973 and the mean kurtosis was 6.648. Finally, for
the severely nonnormal distribution (skewness = 3.0,
kurtosis = 21.0), the mean skewness was 2.986 and the
mean kurtosis was 21.44. These large sample values of
skewness and kurtosis closely reflected the population
values. Previous published studies have also successfully
utilized this same method of data generation (Chou et
al., 1991; Hu et al., 1992).

Expected Value of Test Statistics

For a properly specified model, the expected value
for all three chi-square test statistics is equal to the
model degrees of freedom. Thus, the expected chi-
square for Model 1 was 24.0 and for Model 2 was 22.0.
A complication arises when computing the expected
value of the test statistics for the misspecified models.
Under misspecification, the expected value of the model
chi-square is a combination of the model degrees of
freedom plus the noncentrality parameter, A. The value
of A is dependent on both the particular method of
estimation and sample size, with the expected value of
the model chi-square becoming larger with increasing
sample size.

Satorra and Saris (1985) provided a method for com-
puting the noncentrality parameter for normal theory
ML for misspecified models. First, a covariance matrix
is created to reflect the structure of the model as it exists
in the population. Second, this covariance matrix is used
to estimate the model as it is thought to exist in the
sample. The chi-square value that results from this
model is the corresponding noncentrality parameter A.
This value, when added to the model degrees of free-
dom, provides the expected value of the ML x? test
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statistic under model misspecification (Kaplan, 1988;
Saris & Stronkhorst, 1984).

The Satorra-Saris method does not apply to the ADF
or SB test statistics, and it is currently not known how
to compute the theoretical expected values of these
test statistics for misspecified models, particularly under
conditions of nonnormality. We thus computed an em-
pirical estimate of the expected value of the SB and
ADF test statistics. Three samples of N = 60,000 were
generated using EQS reflecting the normal, moderately
nonnormal, and severely nonnormal distributions de-
scribed previously. Models 3 and 4 were then fit to these
three large samples, and the minimum of the fit function
for SB and ADF was obtained. This value was then
scaled by the sample size (minus 1) of interest (100, 200,
500, and 1000) and was added to the model degrees of
freedom to result in a large sample empirical estimate
of the expected value of the chi-square test statistics
under misspecification. We thank Douglas Bonett for
pointing out the dependence of the noncentrality pa-

rameter on the method of estimation and Peter Bentler
for suggesting the procedure to compute the empirical
estimates of the population noncentrality parameters.
For comparative purposes, the expected values of the
test statistics for Models 1 and 2 were also computed
using the large sample empirical method. All expected
values for all test statistics across all conditions were
very close to the corresponding model degrees of free-
dom. Additionally, the Satorra-Saris method was used
to compute the expected value for ML for Models 3
and 4, and these values closely approximated the large
sample empirical estimates. This cross-validation of esti-
mation methods increases our confidence in the accu-
racy of the large sample empirical estimates of the ex-
pected values.
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