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ABSTRACT 

The exponential growth of data in cloud-based systems, coupled with rising 

concerns about data privacy, has spurred the demand for secure, privacy-

preserving analytical methods. This paper proposes a federated cloud framework 

integrating Differential Privacy (DP) and Secure Multi-Party Computation 

(SMPC) into analytical pipelines. The approach enables collaborative data 

analytics across decentralized institutions without compromising sensitive 

information. By combining DP's statistical obfuscation and SMPC's 

cryptographic protection, the system supports privacy guarantees even in 

adversarial or semi-honest settings. Evaluation results demonstrate that the 

proposed design balances utility, privacy, and scalability—making it suitable for 

sectors like healthcare, finance, and smart governance. 
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1.Introduction: 

With the shift toward cloud-native architectures and the proliferation of data 

collection platforms, privacy breaches have become a pressing concern for 

organizations managing sensitive datasets. Centralized storage models are 

increasingly vulnerable to cyberattacks, regulatory violations, and data misuse. 
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As a response, federated analytics frameworks—where data remains localized 

while models or aggregates are shared—have gained traction. 

Yet, federated systems alone are not sufficient to guarantee individual-level 

privacy. Techniques like Differential Privacy (DP) and Secure Multi-Party 

Computation (SMPC) offer robust mathematical privacy assurances. This paper 

introduces a hybrid analytical pipeline that merges the strengths of both 

techniques in a federated cloud context, enabling secure, collaborative analytics 

without centralizing raw data. The framework is designed for high-risk 

environments, particularly in healthcare, finance, and national infrastructure 

systems. 

 

 
Figure 1: Secure Data Flow in Privacy-Preserving Analytical Pipelines 

Using Differential Privacy 

 

2. Literature Review 

 The foundation of Differential Privacy was laid by Dwork et al. (2006), who 

formalized the concept of privacy-preserving statistical analysis through noise 

addition. Since then, differential privacy has seen widespread adoption in systems 

like Apple’s telemetry collection and Google’s RAPPOR. 

 Secure Multi-Party Computation (Yao, 1986; Lindell & Pinkas, 2009) 

provides a cryptographic guarantee that multiple parties can jointly compute a 

function without revealing their private inputs. Notable implementations like 

Sharemind and SEPIA support SMPC-based analytics in cloud environments. 
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 Bonawitz et al. (2017) proposed a secure aggregation framework in federated 

learning systems using SMPC. Meanwhile, Truex et al. (2020) highlighted 

privacy risks in cross-silo federated analytics and emphasized hybrid models. 

Mohassel and Zhang (2017) introduced efficient SMPC protocols compatible with 

neural networks. 

Despite these advancements, most real-world systems rely solely on one 

privacy-preserving technique. This paper contributes by designing an integrated 

pipeline using both DP and SMPC, providing defense-in-depth for federated 

analytics. 

 

3. System Architecture 

 The proposed architecture consists of four layers: 

1. Federated Data Clients – Institutions with sensitive datasets run local 

compute agents. 

2. Privacy Engine – Applies DP noise or encodes values for SMPC. 

3. Coordinator Node – Aggregates encrypted or obfuscated statistics. 

4. Analytics Engine – Performs secure computation or trains global models on 

protected aggregates. 

The system ensures that raw data never leaves client premises. All intermediate 

statistics are differentially private or encrypted with secret shares. The analytics 

engine is cloud-hosted but only accesses encoded data streams. 

 

4. Methodology 

 Our privacy-preserving pipeline employs: 

• (ε, δ)-Differential Privacy for statistical summaries 

• Secret-sharing-based SMPC for aggregations like sum, mean, and 

histogram computations 

 Each client pre-processes data using DP Laplace/Gaussian mechanisms or 

generates additive shares. These are sent to the coordinator, which performs 

secure aggregation using a pre-defined protocol (e.g., SPDZ or ABY). Post-

processing is handled in a privacy-aware manner, ensuring that no party, including 

the cloud host, can infer individual values. 

To balance utility and privacy, the framework allows customizable noise budgets 

(ε) and fallback from full SMPC to local DP when compute constraints exist. 

 

5. Security and Privacy Guarantees 

 The system provides: 
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• Local and Global Differential Privacy, ensuring resistance to linkage 

attacks 

• Cryptographic confidentiality via SMPC in semi-honest adversary models 

• Auditability, with all privacy parameters and access points logged via 

blockchain-like immutability 

 Adversarial simulation experiments confirmed that no central or edge 

participant could reconstruct individual-level data from intermediate outputs. 

 

6. Experimental Evaluation 

 We evaluated the system on synthetic hospital data (50 federated clients, 1M 

records total) and real-world finance datasets using a hybrid AWS–on-prem setup. 

Each scenario compared three configurations: 

• Centralized analysis (baseline) 

• DP-only analytics 

• Hybrid DP + SMPC pipeline 

Key findings: 

• Latency: SMPC added 20–30% overhead; DP-only performed near baseline 

• Accuracy loss: Within 5% under ε = 1.0 

• Privacy breach probability: Near-zero across simulated attacks 

 

7. Result Analysis 

 The hybrid system preserved 92–95% of analytical accuracy in federated 

linear regression, even under tight privacy budgets (ε ≤ 1). Compared to DP-only 

systems, hybrid pipelines resisted more sophisticated adversarial reconstructions, 

such as gradient inversion attacks. The use of SMPC for sensitive aggregates, like 

patient counts or credit risk categories, reduced individual exposure risks. 

Performance trade-offs were acceptable for monthly reporting and policy 

modeling scenarios. However, latency could be a limiting factor in high-frequency 

applications like fraud detection or epidemic alerts. 
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