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Abstract. The multicommodity network flow problem is a classical issue in network optimization, where 

the objective is to route multiple commodities through interconnected nodes and arcs to minimize the 

overall flow cost. However, in practical scenarios, parameters such as arc capacities, node demands, and 

travel costs may be uncertain, and this uncertainty can significantly affect the optimal solution. To address 

this, several studies have developed methods to incorporate uncertainty into multicommodity network flow 

models. This study focuses on the discrete dynamic multicommodity flow (DDMF) problem with 

intermediate node storage, which aims to minimize the cost of network flow over time. To achieve this, the 

path-flow formulation of DDMF is considered for the minimum cost network flow problem under 

parameter uncertainty. The study explores different perspectives, including robust optimization, chance-

constrained (CC) optimization, and distributionally robust chance-constrained (DRCC) optimization. 

Certain models are formulated for each perspective. Furthermore, the performance of the DRCC, CC, 

proposed robust counterpart (RC), and stochastic optimization (SO) methods is compared. Computational 

results demonstrate that the DRCC and RC models offer efficient approaches that require significantly 

fewer CPU times compared to the CC and SO models for solving uncertain DDMF problems in large-scale 

networks. 
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1.  Introduction 

The multicommodity network flow (MCNF) problem is a highly significant issue in the field of network 

flow due to its broad application in various domains, including communication systems, urban traffic 

systems, railway systems, and logistics systems. In MCNF problems, multiple commodities need to be 

transferred from specific sources to designated sinks within a network, with each arc having a specific 

capacity. Many researchers have focused on MCNF problems and have proposed different linear and non-

linear models to address these problems. Notable works include Ford and Fulkerson [19], Hu [30], 

Nagamochi and Ibaraki [57], Kennington [33], Assad [2], McBride [50], Ouorou et al. [58], Guo and 

Niedermeier [27], Mahey and de Souza [48], Lee [41], Fakhri and Ghatee [17], Letchford and Salazar-

González [42], Karsten et al. [32], and Kabadurmus and Smith [31]. 

The MCNF problem with uncertain parameters has garnered the attention of several researchers. In 

summary, three types of approaches can be utilized to model inaccurate data in MCNF problems: fuzzy 

strategies, stochastic optimization (SO) methods, and robust optimization-based techniques. For instance, 

Ghatee and Hashemi [23] addressed the discrete dynamic multicommodity flow (DDMF) problem for 

minimizing the cost of network flow. They considered fuzzy numbers to represent the travel cost and travel 
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demands. Kureichik and Evgeniya [39] proposed a method to determine the maximum two-commodity 

flow when faced with fuzzy parameters, such as arc capacities, with vitality degree. Mejri et al. [52] focused 

on the discrete cost multicommodity flow problem with demand uncertainty. They presented a two-stage 

stochastic programming approach along with a simulation-optimization approach. Khezri and Khodayifar 

[36] focused on MCNF problem in the presence of uncertain parameters and various types of costs 

associated with each arc in the network. They presented a multi-objective approach to solving this problem, 

where the coefficients of the capacity constraints are modelled as random variables with the normal 

distribution, and the dependence between them has been modelled using an Archimedean copula. They 

applied copula theory and fuzzy programming approach to convert the uncertain multi-objective problem 

into a certain single-objective problem and employed the piecewise tangent approximation and the 

piecewise linear approximation methods to solving their presented models.  

Robust optimization (RO) is a powerful technique that has been extensively studied and applied in various 

fields, including engineering, finance, and operations research. The primary concept behind robust 

optimization is to account for uncertainty in the data and represent it as a set of possible scenarios, each 

representing a potential realization of the uncertain parameters. The objective is to find an optimal solution 

that performs well under all or most of these scenarios. For more detailed information, refer to the works 

of Ben-Tal and Nemirovski ([6], [7], and [8]) and Bertsimas and Sim [10]. Calafiore and El Ghaoui [13] 

explored distributionally robust chance-constrained linear programs and established explicit convex 

conditions to ensure compliance with probability constraints. Mudchanatongsuk et al. [55] proposed a 

robust formulation for the multicommodity network design problem, considering cost and demand 

uncertainty, and employed a column generation procedure for its solution. Altin et al. [1] considered 

polyhedral uncertainty in traffic demands for the network loading problem and presented a concise 

formulation of the problem. They also used an efficient branch and cut algorithm to solve it. Additional 

studies on this topic include the works of Peng and Jiang [59] and Silva et al. [63]. 

In various real-world applications such as road or air traffic control, production systems, and 

communication networks, the flow of entities can change over time. Ford and Fulkerson [20] introduced 

the maximum dynamic flow problem, demonstrating its relation to the minimum cost flow problem in a 

time-expanded network. Burkard et al. [12] investigated the quickest path problem and presented a strongly 

polynomial algorithm to solve it. Klinz and Woeginger [38] addressed the DDMF and devised a greedy 

algorithm for its solution. Sedeño-Noda and D. González-Barrera [62] focused on the quickest path problem 

and proposed a label setting algorithm that improved upon existing algorithms in the literature. Khodayifar 

[36] developed a model based on dynamic path flows for the DDMF and devised an algorithm based on the 

decomposition principle to solve it. Glockner and Nemhauser [24] considered the multicommodity dynamic 

network flow problem with capacity uncertainty and employed a Lagrangian decomposition method for its 

solution. Topaloglu and Powell [64] introduced an iterative dynamic programming-based methodology to 

solve the dynamic minimum cost integer multicommodity flow problem in the presence of stochastic data. 

Lee and Dong [40] proposed dynamic location and allocation models and developed a two-stage stochastic 

programming model for multi-period reverse logistic network design under uncertainties. They suggested 

a heuristic algorithm to solve this problem. Bozhenyuk et al. [11] addressed the DDMF problem with fuzzy 

parameters and proposed a solution method. Mattia [49] considered the robust network loading problem 

with polyhedral uncertainty in demands and proposed a branch and cut algorithm. Lu et al. [47] investigated 

a fuzzy intercontinental multi-modal routing problem with time and capacity uncertainties and used a 

defuzzification-based approach to solve a fuzzy mixed integer linear programming (MILP) model. 
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Rahmaniani et al. [61] described a Benders decomposition algorithm with acceleration techniques to solve 

the multicommodity capacitated network design problem with demand uncertainty. Mohammadi et al. [54] 

proposed a model for designing a reliable hazardous material transportation network under uncertainties 

and integrated chance-constrained programming with a possibilistic programming approach. They provided 

a solution framework. Bozhenyuk and Gerasimer [11] studied the two-commodity maximum dynamic flow 

problem with fuzzy arc capacities and crisp transit times using a fuzzy temporal graph. For additional 

studies, refer to Lin and Jaillet [46], Li et al. [44], Li and Lai [43], Charikar et al. [15], Khodayifar et al. 

[37], Rahmani [60], Mishra and Prakash Singh [53], Calvete et al. [14], Yeh et al. [66], Khanjani-Shiraz et 

al. [34], and El Khadiri and Yeh [16] and Van Ackooij et al. [65]. Table 1 provides a summary of relevant 

papers on multicommodity network flow problems in the literature. 

Table 1. Review of some multicommodity network flow problems. 

Year Reference Model features Type of 

mathematical 

programming 

to deal with the 

parameter 

uncertainty 

Solution 

method 

Type of 

algorithm 

Type of problem 

 

S
ta

ti
c 

D
y
n
am

ic
 

C
er

ta
in

 

U
n
ce

rt
ai

n
 

1958 Ford and 

Fulkerson [19] 

*  *  

 

- Simplex Exact Maximum 

multicommodity 

flow 

2001  Glockner and 

 Nemhauser [24] 

 *  * Stochastic Compath 

decomposition 

Heuristic DDMF 

2002 Fleischer and 

Skutella [18] 

 * *  - Condensed 

time-expanded 

network 

FPTAS Quickest 

multicommodity 

flow 

2005 Mudchanatongsu

k et al. [55] 

*   * Robust Column 

generation 

Exact Network design 

2006 Topaloglu and 

Powell [64] 

 *  * Stochastic Dynamic 

programming 

method 

Approximation Integer DDMF 

2007 Hall et al. [28]  * *  - Time-expanded 

network 

Exact DDMF 

2007 Hall et al. [28]  * *  - Time-expanded 

network 

Greedy Quickest 

multicommodity 

flow 

2009 Ghatee and 

Hashemi [23] 

*   * Fuzzy 𝑘-shortest path 

algorithms 

Exact Minimum cost 

MCNF 

2009 Lee and Dong 

[40] 

 *  * Stochastic Sampling 

method 

Heuristic Location and 

allocation 

2010 Li et al. [45] *  *  - Ant colony 

optimization 

(ACO) 

Meta-heuristic Minimum cost 

MCNF and 

minimum 

congestion 
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2011 Altin et al. [1] *   * Robust Branch and cut Heuristic  Network loading 

problem 

2012 Grob and 

Skutella [26] 

 * *  - Dynamic 

programming 

with Meggido’s 

parametric 

search [47] 

FPTAS Maximum 

multicommodity 

flow 

2015 Letchford and 

Salazar-

González [42] 

*  *  - Two-index or 

set partitioning 

formulations 

Exact Capacitated 

vehicle routing 

problem 

2015 Karsten et al. 

[32] 

 * *  - Column 

generation 

Exact Resource-

constrained 

shortest 

path problem 

2016 Mattia [49]  *  * Robust Branch and cut Exact and 

heuristic  

Network loading 

problem 

2016 Lu et al. [47]  *  * Fuzzy Defuzzification 

approach 

Heuristic Intercontinental 

multi-modal 

routing problem 

2017 Rahmaniani et 

al. [61]  

*   * Stochastic Benders 

decomposition  

Exact Multicommodity 

capacitated 

network design  

2017 Mohammadi et 

al. [54] 

 *  * Chance-

constrained 

programming  

A meta-

heuristic 

algorithm 

based on a 

lower bound 

approach 

Meta-heuristic Minimum total 

risk 

2017 Fragkos et al. 

[21] 

 * *  - Decomposition 

methods and 

heuristic 

algorithms 

Exact and 

heuristic 

Network design 

2017 Kureichik and 

Evgeniya [39] 

 *  * Fuzzy Augmenting 

path 

Exact Maximum 

multicommodity 

flow 

2017 Bozhenyuk et al. 

[11] 

 *  * Fuzzy Time-expanded 

network 

Exact Maximum 

multicommodity 

flow 

2018 Ghasemi et al. 

[22] 

 *  * Stochastic Particle swarm 

optimization 

and genetic 

algorithm  

Meta-heuristic DDMF and the 

minimum 

amount of the 

shortage of relief 

supplies 

2018 Zhang et al. [67]  * *  - Storage time 

aggregated 

graph 

Exact Maximum 

multicommodity 

flow 
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2018 Grande et al. 

[25] 

 * *  - Column 

generation 

Exact DDMF 

2019 Khodayifar [36]  * *  - Decomposition 

principle 

Exact DDMF 

2020 Mejri et al. [52] *   * Stochastic Cut-generation, 

column 

generation and, 

Monte-Carlo 

simulation  

Approximation Minimum cost 

MCNF and the 

expected 

penalties of 

unmet 

multicommodity 

demands 

 Current study  *  * Distributionally 

robust chance-

constrained 

Decomposition 

principle 

Exact DDMF 

DDMF: Discrete dynamic multicommodity flow for minimum cost network flow; FPTAS: Fully polynomial time 

approximation scheme. 

 

Contribution of this paper. Given that the decision analysis based on the uncertain data is inevitable in 

many real-world applications, therefore, this study focuses on the DDMF in the presence of uncertain 

parameters, such as the cost uncertainty, the demand uncertainty and, the arc capacity uncertainty. For this 

purpose, we develop the dynamic path formulation of the DDMF model proposed by Khodayifar [35] in 

the case of parameter uncertainty. To study the parameter uncertainty in the DDMF, for the first time, we 

consider the viewpoint which deals with the chance constraints in the DDMF problem under the distribution 

uncertainty and obtain the deterministic restrictions such that the probability constraints are guaranteed. All 

proposed models in this paper are LP problems that can be solved with the existing algorithms in the LP 

context. Also, in this paper, according to the special structure of the proposed models,  an algorithm based 

on the column-generation approach is provided for solving the proposed models. Finally, we show the 

efficiency of the proposed approach and compare the objective values and the CPU times of the proposed 

DRCC and SO method by using a numerical example and a number of experimental tests. We show that 

the proposed DRCC model requires significantly less CPU time than the SO model to solve the uncertain 

DDMF problem for large-scale networks. Also, experimental results show that the proposed solution 

method performs faster than the LP solver CPLEX. 

The remainder of this paper is organized as follows: Section 2 provides a review of the preliminaries and 

basic definitions outlined in Khodayifar [36]. In Section 3, we examine the DDMF problem in the presence 

of data uncertainty from a distributionally robust chance-constrained perspective. Section 4 introduces a 

column-generation method for solving the proposed models. In Section 5, we present the results through a 

numerical example and several experimental tests. Finally, Section 6 concludes the paper. 

 

2. Preliminaries and basic definitions 

Consider a directed network, denoted by 𝐺 = (𝑁, 𝐴, 𝐾, 𝑐, 𝑢, 𝜏, 𝒯), where 𝑁 is the set of |𝑁| = 𝑛 nodes, 𝐴 is 

the set of |𝐴| = 𝑚 arcs and, 𝐾 is the set of |𝐾| = ℎ commodities that must be transmitted over the network. 

Every commodity 𝑘 ∈ 𝐾 has only one source 𝑠𝑘
+ ∈ 𝑁 and one sink 𝑠𝑘

− ∈ 𝑁 and, 𝑅𝑘 is the amount of supply 

or demand of commodity 𝑘 ∈ 𝐾. Suppose that 𝑇 is the time horizon and the time is considered in discrete 

steps, i.e., 𝒯 = {0, 1, … , T}. Also, 𝜏𝑖𝑗 is the travel time on arc (𝑖, 𝑗), i.e., one unit of the flow of commodity 
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𝑘 which leaves node 𝑖 at time 𝑡, that flow arrives at node 𝑗 at time 𝑡 + 𝜏𝑖𝑗 . Assume that 𝑐𝑖𝑗
𝑘 (𝑡) and 𝑐𝑖

𝑘(𝑡) are 

the per-unit flow cost of commodity 𝑘 on arc (𝑖, 𝑗) at time 𝑡 ∈ 𝒯 and the per-unit stored flow cost of 

commodity 𝑘 at node 𝑖 from time 𝑡 − 1 to 𝑡, respectively. Moreover, 𝑢𝑖𝑗(𝑡), 𝑢𝑖
𝑘(𝑡), and 𝜏𝑖𝑗 are the upper 

bound on the amount of flow that can be transmitted on arc (𝑖, 𝑗) at time 𝑡 ∈ 𝒯, the upper bound on the 

amount of flow that can be stored in node 𝑖 from time 𝑡 − 1 to 𝑡, and the travel time on arc (𝑖, 𝑗) at time 𝑡, 

respectively.  

There are two types of formulations for the DDMF problem: the arc-flow formulation and the path-cycle 

flow formulation. In Khodayifar [36], the arc-flow formulation of the DDMF problem with storage at 

intermediate nodes was proposed as follows: 

min ∑ (∑ ∑ 𝑐𝑖𝑗
𝑘 (𝑡)𝑥𝑖𝑗

𝑘 (𝑡)

(𝑖,𝑗)∈𝐴𝑘∈𝐾

+ ∑ ∑ 𝑐𝑖
𝑘(𝑡)𝑦𝑖

𝑘(𝑡)

𝑖∈𝑁𝑘∈𝐾

)

𝑇

𝑡=0

𝑠. 𝑡. (2.1)

∑ 𝑥𝑖𝑗
𝑘 (𝑡)

𝑘∈𝐾

≤ 𝑢𝑖𝑗(𝑡), ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

∑ 𝑥𝑖𝑗
𝑘 (𝑡)

{𝑗: (𝑖,𝑗)∈𝐴}

− ∑ 𝑥𝑗𝑖
𝑘(𝑡 − 𝜏𝑗𝑖)

{𝑗: (𝑗,𝑖)∈𝐴}

+ 𝑦𝑖
𝑘(𝑡) − 𝑦𝑖

𝑘(𝑡 − 1) = 0, ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 − {𝑠𝑘
+, 𝑠𝑘

−}, 𝑡 ∈ 𝒯,

∑ ( ∑ 𝑥𝑖𝑗
𝑘 (𝑡)

{𝑗: (𝑖,𝑗)∈𝐴}

− ∑ 𝑥𝑗𝑖
𝑘(𝑡 − 𝜏𝑗𝑖)

{𝑗: (𝑗,𝑖)∈𝐴}

) = 𝑑𝑖
𝑘

𝑇

𝑡=0

, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾,

0 ≤ 𝑥𝑖𝑗
𝑘 (𝑡), 0 ≤ 𝑦𝑖

𝑘(𝑡) ≤ 𝑢𝑖
𝑘(𝑡), ∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

 

where  𝑑𝑖
𝑘 = {

𝑅𝑘 𝑖 = 𝑠𝑘
+

−𝑅𝑘 𝑖 = 𝑠𝑘
−

0 𝑜. 𝑤.

 

In model (2.1), the dynamic flow vector is represented by 𝑥𝑘, and the storage flow vector is represented by 

𝑦𝑘, both in the time horizon 𝑇. The objective function of model (2.1) aims to minimize the total cost of the 

dynamic flow vector 𝑥𝑘 and the storage flow vector 𝑦𝑘 within the time horizon 𝑇.  The first set of constraints 

imposes capacity limitations on the flow transferred on each arc (𝑖, 𝑗)  ∈  𝐴 at each time step 𝑡. The second 

set of constraints enforces flow conservation and the amount of stored flow for each commodity 𝑘 ∈ 𝐾 at 

each intermediate node 𝑖 during each time step 𝑡. The third set of constraints ensures flow conservation 

throughout the entire time horizon 𝑇. The fourth set of constraints specifies the capacity limitations for 

𝑥𝑘(𝑘 ∈ 𝐾)  and the storage capacity limitations for 𝑦𝑘  (𝑘 ∈ 𝐾). 

According to the flow decomposition theorem, the arc-flow formulation of the DDMF problem (model 2.1) 

can be reformulated using path-cycle flows. The path-cycle flow formulation of the DDMF problem has a 

simpler constraint structure (block-diagonal) compared to the arc-flow formulation. Therefore, our focus is 

on the path-cycle flow formulation of the DDMF problem. In Khodayifar [36], several definitions are 

proposed, and an assumption is imposed to formulate the path-cycle flow formulation of the DDMF 

problem. 

Assumption 1. For each commodity, the network does not contain a negative cycle, and this means that 

there is not a cycle with a negative length. 

Assumption 1 suggests that in an optimal solution of the path-cycle flow formulation of the DDMF problem, 

the flow on each cycle is zero. As a result, one can eliminate the cycle flow variables in the path-cycle flow 
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formulation by employing Assumption 1. Building on this assumption, Khodayifar [36] introduced the 

path-flow formulation of the DDMF problem. 

Definition 1. (Khodayifar [36]) An 𝑁𝑇𝑃 (𝑖, 𝛼) is a node-time pair (𝑖, 𝛼) ∈ 𝑁 × 𝒯 and shows a node in an 

arbitrary time step. For each (𝑖, 𝑗) ∈ 𝐴, 𝑁𝑇𝑃 (𝑖, 𝛼) is arc-linked to the 𝑁𝑇𝑃 ( 𝑗, 𝛽), if 𝛽 =  𝛼 + 𝜏𝑖𝑗 . Also, 

the 𝑁𝑇𝑃 (𝑖, 𝛼) is node-linked to the 𝑁𝑇𝑃 ( 𝑗, 𝛽) if 𝑖 =  𝑗 and 𝛼 ≠  𝛽. 

Definition 2. (Khodayifar [36]) For each commodity 𝑘, a dynamic path from node 𝑠𝑘
+ with departure time 

𝛼 to node 𝑠𝑘
− is a sequence of distinct NTPs (arc-linked or node-linked) as follows: 

𝑝𝛼: (𝑠𝑘
+, 𝛼) = (𝑖1, 𝑡1), (𝑖2, 𝑡2), … , (𝑖𝑟 , 𝑡𝑟) = (𝑠𝑘

−, 𝛽). 

For each commodity 𝑘, 𝑃𝑘 is the set of the dynamic paths from the source node 𝑠𝑘
+ to the sink node 𝑠𝑘

− in 

the network 𝐺 on time horizon 𝑇. 

For any dynamic path 𝑝𝛼 ∈ 𝑃𝑘 with the departure time 𝛼 and for each 𝑡 ≥ 𝛼 and all (𝑖, 𝑗) ∈ 𝐴, the arc-path 

indicator variable, 𝛿𝑖𝑗(𝑝𝛼 , 𝑡), is defined as follows: 

𝛿𝑖𝑗(𝑝𝛼 , 𝑡) = {
1 (𝑖, 𝑡) is arc − linked to (𝑗, 𝑡 + 𝜏𝑖𝑗) on dynamic path 𝑝𝛼

0 o. w.
 

and for each 𝑡 ≥ 𝛼 and 𝑖 ∈ 𝑁, the node-path indicator variable, 𝛾𝑖(𝑝𝛼 , 𝑡),  is defined as follows: 

𝛾𝑖(𝑝𝛼 , 𝑡)  = {
1 (𝑖, 𝑡) is node − linked to (𝑖, 𝑡 + 1) on dynamic path 𝑝𝛼

0 o. w.
 

Hence, the cost of a dynamic path 𝑝𝛼 for the commodity 𝑘, 𝑐𝑘(𝑝𝛼), is defined as: 

𝑐𝑘(𝑝𝛼) =  ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑐𝑖𝑗
𝑘 (𝑡)

(𝑖,𝑗)∈𝐴

𝑇

𝑡=0

+ ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑐𝑖
𝑘(𝑡)

𝑖∈𝑁

𝑇

𝑡=0

. 

Khodayifar [36] proposed the dynamic path-flow formulation of DDMF as follows: 

𝜉1
∗ = min ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

𝑠. 𝑡.

∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗(𝑡), ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

= 𝑅𝑘 , ∀𝑘 ∈ 𝐾,

∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡), ∀𝑖 ∈ 𝑁 − {𝑠𝑘

+, 𝑠𝑘
−}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

𝑓(𝑝𝛼) ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0,1, … , 𝑇 − 𝜏𝑝,

 

 

 

 

 

 

 

(2.2) 

where 𝜏𝑝 = ∑ 𝜏𝑖𝑗(𝑖,𝑗)∈𝑝  is the total transit time of path 𝑝, and the decision variable 𝑓(𝑝𝛼) is the flow on the 

dynamic path 𝑝 with the departure time 𝛼 from 𝑠𝑘
+.  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4485521

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



8 
 

Khodayifar [36] presented an algorithm based on the decomposition principle to solve model (2.2). The 

subsequent section focuses on developing the dynamic path formulation of the DDMF model (2.2) under 

parameter uncertainty with distributionally robust chance-constrained optimization technique. 

 

3. Uncertain discrete dynamic multicommodity flow problem 

In this section, we focus on model (2.2) and introduce uncertain parameters into this model while exploring 

distributionally robust chance-constrained optimization. Ben-Tal and Nemirovski (2000) emphasized that 

"if there is uncertainty in the data of an equality constraint, a good model-builder would not model the 

constraint as an equality, rather as a range constraint with the right-hand side bounds close to one another." 

Therefore, in our study of the dynamic multicommodity flow problem with uncertain parameters, we will 

make the following assumption within the network to formulate an equivalent model to model (2.2) in 

which all constraints are inequalities. 

Assumption 2. The underlying network does not contain a negative dynamic path (i.e., a dynamic path 

with a negative length). 

Theorem 1 formulates an equivalent model to model (2.2) by using Assumption 1 and Assumption 2. 

Theorem 1. Model (2.2) is equivalent to the following model (3.1), if Assumption 1 and Assumption 2 

hold. 

𝜉2
∗ = min ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

𝑠. 𝑡.

∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗(𝑡), ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑅𝑘 , ∀𝑘 ∈ 𝐾,

∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡), ∀𝑖 ∈ 𝑁 − {𝑠𝑘

+, 𝑠𝑘
−}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

𝑓(𝑝𝛼) ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0,1, … , 𝑇 − 𝜏𝑝.

 

 

 

 

 

 

 

(3.1) 

 

Proof. It is clear that 𝜉2
∗ ≤ 𝜉1

∗. Conversely, we prove 𝜉1
∗ ≤ 𝜉2

∗. We claim that, for each optimal solution of 

model (3.1), we have ∑ ∑ 𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 = 𝑅𝑘 . By contradiction, suppose that 𝑓∗ is an optimal solution 

for model (3.1) such that  

∃𝑘′ ∈ 𝐾; ∑ ∑ 𝑓∗(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘′

> 𝑅𝑘′ , 

where 𝑓∗(𝑝𝛼) is the optimal flow on the dynamic path 𝑝𝛼 ∈ 𝑃𝑘′
. Define 𝜗 = ∑ ∑ 𝑓∗(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘′ −

𝑅𝑘′ > 0. Suppose that there is 𝑝̃ ∈ 𝑃𝑘′
 with the departure time 𝛼̃ ∈ {0, … , 𝑇 − 𝜏𝑝}, such that 

∑ 𝑓∗(𝑝̃𝛼)
𝑇−𝜏𝑝

𝛼=0 = max
𝑝∈𝑃𝑘′

∑ 𝑓∗(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0  and 𝑓∗(𝑝̃𝛼̃) = max
{0,…,𝑇−𝜏𝑝}

𝑓∗(𝑝̃𝛼) = 𝛽. We consider two of the 

following cases: 
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Case 1. 𝛽 ≥ 𝜗. In this case, we define a flow in the dynamic network as follows: 

 

𝑓∗∗(𝑝𝛼) = 𝑓∗(𝑝𝛼), ∀𝑝 ∈ 𝑃𝑘 , 𝛼 ∈ {0, … , 𝑇 − 𝜏𝑝}, ∀𝑘 ≠ 𝑘′,

𝑓∗∗(𝑝𝛼) = 𝑓∗(𝑝𝛼), ∀𝑝 ∈ 𝑃𝑘′
, 𝑝 ≠ 𝑝̃, 𝛼 ∈ {0, … , 𝑇 − 𝜏𝑝},

𝑓∗∗(𝑝̃𝛼) = 𝑓∗(𝑝̃𝛼), 𝛼 ≠ 𝛼̃,

𝑓∗∗(𝑝̃𝛼̃) = 𝑓∗(𝑝̃𝛼̃) − 𝜗 ≥ 0.

 

Therefore, 𝑓∗∗ is a feasible solution for model (3.1) and ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓∗∗(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1 <

∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓∗(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1 . By this contradiction, ∑ ∑ 𝑓∗(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘′ = 𝑅𝑘′ . 

Case 2. 𝛽 < 𝜗, In this case, we define a flow in the network as follows: 

𝑓∗∗(𝑝𝛼) = 𝑓∗(𝑝𝛼), ∀𝑝 ∈ 𝑃𝑘 , 𝛼 ∈ {0, … , 𝑇 − 𝜏𝑝}, ∀𝑘 ≠ 𝑘′,

𝑓∗∗(𝑝𝛼) = 𝑓∗(𝑝𝛼), ∀𝑝 ∈ 𝑃𝑘′
, 𝑝 ≠ 𝑝̃, 𝛼 ∈ {0, … , 𝑇 − 𝜏𝑝},

𝑓∗∗(𝑝̃𝛼) = 𝑓∗(𝑝̃𝛼), 𝛼 ≠ 𝛼̃,

𝑓∗∗(𝑝̃𝛼̃) = 𝑓∗(𝑝̃𝛼̃) − 𝛽 ≥ 0.

 

Therefore, 𝑓∗∗ is a feasible solution for model (3.1) and ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓∗∗(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1 <

∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓∗(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1 . By this contradiction, in every optimal solution of model (3.1), we have: 

∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

= 𝑅𝑘 , ∀𝑘 ∈ 𝐾. 

Therefore, 𝜉2
∗ ≥ 𝜉1

∗. Hence, model (2.2) is equivalent to model (3.1) in the presence of Assumption 1 and 

Assumption 2.  

In the following, we impose the uncertain parameters on model (3.1) and present the certain equivalent 

models for the DRCC problem from different perspectives.  

 

3.1    Distributionally robust chance-constrained  

In this section, we present explicit deterministic counterparts of the distributionally robust chance-

constrained model for different families of probability distributions. Let 𝑈𝑖𝑗(𝑡), 𝑈𝑘 , and 𝑈𝑖
𝑘(𝑡)  represent 

the families of probability distributions for 𝑢𝑖𝑗(𝑡), 𝑅𝑘, and 𝑢𝑖
𝑘(𝑡), respectively, where (𝑖, 𝑗)  ∈  𝐴, 𝑖 ∈

 𝑁, 𝑡 ∈  𝑇, and 𝑘 ∈  𝐾. Accordingly, the DRCC model with confidence levels 𝜀, 𝜀′, and 𝜀′′ is as follows: 
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min ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

𝑠. 𝑡. (3.2)

inf
𝑢𝑖𝑗(𝑡)~𝑈𝑖𝑗(𝑡)

Pr (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗(𝑡)) ≥ 1 − 𝜀𝑖𝑗(𝑡), ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

inf
𝑅𝑘~𝑈𝑘

Pr ( ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑅𝑘) ≥ 1 − 𝜀𝑘
′ , ∀𝑘 ∈ 𝐾,

inf
𝑢𝑖

𝑘(𝑡)~𝑈𝑖
𝑘(𝑡)

Pr ( ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡)) ≥ 1 − 𝜀𝑖,𝑘

′′ (𝑡) , ∀𝑖 ∈ 𝑁 − {𝑠𝑘
+, 𝑠𝑘

−}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

𝑓(𝑝𝛼) ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0, … , 𝑇 − 𝜏𝑝.

 

In the following, we discuss three classes of distributions. In Section 3.1.1, we examine the family of 

distributions on 𝑢𝑖𝑗(𝑡), 𝑅𝑘 , and 𝑢𝑖
𝑘(𝑡), for all (𝑖, 𝑗)  ∈  𝐴, 𝑖 ∈  𝑁, 𝑡 ∈  𝑇, and 𝑘 ∈  𝐾, with given means and 

variances. Section 3.1.2 focuses on the family of distributions on 𝑢𝑖𝑗(𝑡), 𝑅𝑘 , and 𝑢𝑖
𝑘(𝑡), for all (𝑖, 𝑗)  ∈

 𝐴, 𝑖 ∈  𝑁, 𝑡 ∈  𝑇, 𝑎𝑛𝑑 𝑘 ∈  𝐾, defined over independent bounded intervals. In Section 3.1.3, we study a 

special family of distributions on 𝑢𝑖𝑗(𝑡), 𝑅𝑘 , and 𝑢𝑖
𝑘(𝑡), for all (𝑖, 𝑗)  ∈  𝐴, 𝑖 ∈  𝑁, 𝑡 ∈  𝑇, and 𝑘 ∈  𝐾, 

known as radially symmetric non-increasing distributions. 

 

3.1.1. DRCC in the presence of the family of distributions with known mean and variance (DRCC 

(type I)) 

In this section, we consider the family of distributions on 𝑢𝑖𝑗(𝑡), which comprises all distributions with a 

given mean 𝑢̂𝑖𝑗(𝑡) and variance 𝜎𝑢𝑖𝑗(𝑡)
2 . Similarly, we consider the family of distributions on 𝑢𝑖

𝑘(𝑡), which 

encompasses all distributions with a given mean 𝑢̂𝑖
𝑘(𝑡) and variance 𝜎

𝑢𝑖
𝑘(𝑡)

2 . Additionally, we examine the 

family of distributions on 𝑅𝑘 , which includes all distributions with a given mean 𝑅̂𝑘 and variance 𝜎𝑅𝑘(𝑡)
2 . 

The following theorem holds: 

Theorem 2. The distributionally robust chance-constrained model (3.2), in the case of knowing the mean 

and variance, referred to as DRCC (type I), is equivalent to model (3.3): 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4485521

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



11 
 

min ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

𝑠. 𝑡. (3.3)

∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≥ 𝑢̂𝑖𝑗(𝑡) − √1 − 𝜀𝑖𝑗(𝑡)𝜎𝑢𝑖𝑗(𝑡)
2 , ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

𝑅̂𝑘 + √1 − 𝜀𝑘
′ 𝜎𝑅𝑘

2 ≥ ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

, ∀𝑘 ∈ 𝐾,

∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑢̂𝑖
𝑘(𝑡) − √1 − 𝜀𝑖,𝑘

′′ (𝑡)𝜎
𝑢𝑖

𝑘(𝑡)
2 , ∀𝑖 ∈ 𝑁 − {𝑠𝑘

+, 𝑠𝑘
−}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

𝑓(𝑝𝛼) ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0, … , 𝑇 − 𝜏𝑝.

 

Proof. Suppose that 𝜀𝑖𝑗(𝑡) ∈ (0,1). For all (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, we define, −𝑢𝑖𝑗(𝑡) = −𝑢̂𝑖𝑗(𝑡) + 𝜎𝑢𝑖𝑗(𝑡)
2 𝑧𝑖𝑗(𝑡), 

where, 𝐸{𝑧𝑖𝑗(𝑡)} = 0, 𝑉𝑎𝑟{𝑧𝑖𝑗(𝑡)} = 1. Now, we use the multivariate Chebyshev inequalities (Bertsimas 

and Popescu [9]) to obtain the following inequalities: 

sup
𝑢𝑖𝑗(𝑡)~𝑈𝑖𝑗(𝑡)

Pr (− ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

< −𝑢̂𝑖𝑗(𝑡) + 𝜎𝑢𝑖𝑗(𝑡)
2 𝑧𝑖𝑗(𝑡)) =

sup
𝑢𝑖𝑗(𝑡)~𝑈𝑖𝑗(𝑡)

Pr (𝑢̂𝑖𝑗(𝑡) − ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

< 𝜎𝑢𝑖𝑗(𝑡)
2 𝑧𝑖𝑗(𝑡)) =

1

1 + 𝑑𝑖𝑗
2 (𝑡)

,

 

where, 𝑑𝑖𝑗
2 (𝑡) = inf

𝜎𝑢𝑖𝑗(𝑡)
2 𝑧(𝑡)>𝑢̂𝑖𝑗(𝑡)−𝐴𝑖𝑗(𝑡)

|𝑧(𝑡)|2, such that, 𝐴𝑖𝑗(𝑡) = ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1  for a 

fixed flow 𝑓. We consider two of the following cases: 

 

a) 𝑢̂𝑖𝑗(𝑡) ≤ 𝐴𝑖𝑗(𝑡). In this case, we can just take 𝑧𝑖𝑗(𝑡) = 0, and obtain the infimum 𝑑𝑖𝑗
2 (𝑡) = 0.  

b) 𝑢̂𝑖𝑗(𝑡) > 𝐴𝑖𝑗(𝑡). In this case, (
𝑢̂𝑖𝑗(𝑡)−𝐴𝑖𝑗(𝑡)

𝜎𝑢𝑖𝑗(𝑡)
2 )

2

 is the infimum for |𝑧𝑖𝑗(𝑡)|
2

. So,  

𝑑𝑖𝑗
2 (𝑡) = inf

𝜎𝑢𝑖𝑗(𝑡)
2 𝑧(𝑡)>𝑢̂𝑖𝑗(𝑡)−𝐴𝑖𝑗(𝑡)

|𝑧𝑖𝑗(𝑡)|
2

= (
𝑢̂𝑖𝑗(𝑡) − 𝐴𝑖𝑗(𝑡)

𝜎𝑢𝑖𝑗(𝑡)
2 )

2

. 

In summarizing, we have 

𝑑𝑖𝑗
2 (𝑡) = {

0 𝑢̂𝑖𝑗(𝑡) ≤ 𝐴𝑖𝑗(𝑡)

(
𝑢̂𝑖𝑗(𝑡) − 𝐴𝑖𝑗(𝑡)

𝜎𝑢𝑖𝑗(𝑡)
2 )

2

𝑢̂𝑖𝑗(𝑡) > 𝐴𝑖𝑗(𝑡)
 

Hence, the first constraint of the model (3.2) is satisfied if and only if 𝑢̂𝑖𝑗(𝑡) >

∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1  and 
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1

1 + 𝑑𝑖𝑗
2 (𝑡)

≤ 𝜀𝑖𝑗(𝑡) ↔ √1 − 𝜀𝑖𝑗(𝑡)𝜎𝑢𝑖𝑗(𝑡)
2 ≥ 𝑢̂𝑖𝑗(𝑡) − ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼).

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

 

By a similar argument as that above, the second constraint of the model (3.2) is satisfied if and only if 𝑅̂𝑘 <

∑ ∑ 𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘  and √1 − 𝜀𝑘
′ 𝜎𝑅𝑘

2 ≥ ∑ ∑ 𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 − 𝑅̂𝑘 . 

Similarly, the third constraint of the model (3.2) is satisfied if and only if 𝑢̂𝑖
𝑘(𝑡) >

∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼),
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘  and 

√1 − 𝜀𝑖,𝑘
′′ (𝑡)𝜎

𝑢𝑖
𝑘(𝑡)

2 ≥ 𝑢̂𝑖
𝑘(𝑡) − ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

. 

Hence, model (3.2) is equivalent to model (3.3), and this completes the proof.  

It is worth noting that, in practice, model (3.3) tends to be too large. It often contains thousands of columns, 

representing a seemingly unlimited number of dynamic paths. Consequently, solving the proposed model 

explicitly and utilizing existing algorithms in the LP context becomes a challenging task. To address this 

issue, we introduce a method based on the column-generation approach principle (inspired by the revised 

simplex method) in section 4.2. This method allows us to solve the model without explicitly enumerating 

all the dynamic paths. 

 

3.1.2. DRCC in the case of the random data in independent intervals (DRCC (type II)) 

In this section, we analyze an uncertainty model where the random data 𝑢𝑖𝑗(𝑡) have known mean 𝑢̂𝑖𝑗(𝑡) 

and the individual elements are only known to belong with probability one to independent bounded 

intervals; i.e., we assume that 𝑢𝑖𝑗(𝑡) = 𝑢̂𝑖𝑗(𝑡) + 𝑤𝑖𝑗(𝑡), where 𝑤𝑖𝑗(𝑡) ∈ [𝑙𝑖𝑗
−(𝑡), 𝑙𝑖𝑗

+ (𝑡)] for all (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈

𝒯. Similarly, suppose that the random data 𝑅𝑘 have known mean 𝑅̂𝑘 and the individual elements are only 

known to belong with probability one to independent bounded intervals; i.e., we assume that 𝑅𝑘 = 𝑅̂𝑘 +

𝑠𝑘 , where 𝑠𝑘 ∈ [𝑙𝑘
−, 𝑙𝑘

+] for all 𝑘 ∈ 𝐾. Also, suppose that the random data 𝑢𝑖
𝑘(𝑡) have known mean 𝑢̂𝑖

𝑘(𝑡) 

and the individual elements are only known to belong with probability one to independent bounded 

intervals; i.e., we assume that 𝑢𝑖
𝑘(𝑡) = 𝑢̂𝑖

𝑘(𝑡) + 𝑤𝑖
𝑘(𝑡), where 𝑤𝑖

𝑘(𝑡) ∈ [𝑙𝑖
𝑘−(𝑡), 𝑙𝑖

𝑘+(𝑡)] for all 𝑖 ∈ 𝑁, 𝑡 ∈

𝒯, 𝑘 ∈ 𝐾. Let us denote 𝑈̅𝑖𝑗(𝑡), 𝑈̅𝑘 and 𝑈̅𝑖
𝑘(𝑡) are the families of the probability distributions on 𝑢𝑖𝑗(𝑡), 𝑅𝑘, 

and 𝑢𝑖
𝑘(𝑡), for all (𝑖, 𝑗) ∈ 𝐴, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯 and 𝑘 ∈ 𝐾, respectively. By the above assumptions and notations,  

we express Theorem 3. 

Theorem 3. For any confidence levels 𝜀𝑖𝑗(𝑡), 𝜀𝑘
′ , 𝜀𝑖,𝑘

′′ (𝑡) ∈ (0,1), the distributionally robust chance-

constrained  

inf
𝑢𝑖𝑗(𝑡)~𝑈̅𝑖𝑗(𝑡)

Pr (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗(𝑡)) ≥ 1 − 𝜀𝑖𝑗(𝑡), 

holds if  

𝑢̂𝑖𝑗(𝑡) + √
1

2
(𝑙𝑖𝑗

+(𝑡) − 𝑙𝑖𝑗
− (𝑡)) ln

1

(1 − 𝜀𝑖𝑗(𝑡))
≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

. 

And the distributionally robust chance-constrained  
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inf
𝑅𝑘~𝑈̅𝑘

Pr ( ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑅𝑘) ≥ 1 − 𝜀𝑘
′ , 

holds if  

√
1

2
(𝑙𝑘

+ − 𝑙𝑘
−) ln (

1

𝜀𝑘
′ ) + 𝑅̂𝑘 ≤ ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

. 

And the distributionally robust chance-constrained 

inf
𝑢𝑖

𝑘(𝑡)~𝑈̅𝑖
𝑘(𝑡)

Pr ( ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡)) ≥ 1 − 𝜀𝑖,𝑘

′′ (𝑡), 

holds if 

𝑢̂𝑖
𝑘(𝑡) + √

1

2
(𝑙𝑖

𝑘+(𝑡) − 𝑙𝑖
𝑘−(𝑡)) ln

1

(1 − 𝜀𝑖,𝑘
′′ (𝑡))

≥ ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

. 

Proof. For all (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, we define, 𝑢𝑖𝑗(𝑡) = 𝑢̂𝑖𝑗(𝑡) + 𝑤𝑖𝑗(𝑡). Therefore, by applying the Hoeffding 

tail probability inequality (see Hoeffding [28]), we have: 

1 − 𝜀𝑖𝑗(𝑡) ≤ Pr (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

− 𝑢̂𝑖𝑗(𝑡) ≤ 𝑤𝑖𝑗(𝑡)) ≤ 𝑒

−2(∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼,𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝
𝛼=0𝑝∈𝑃𝑘

ℎ
𝑘=1 −𝑢̂𝑖𝑗(𝑡))

2

(𝑙𝑖𝑗
+ (𝑡)−𝑙𝑖𝑗

− (𝑡)) . 

It is clear that, the following equivalence relation is held: 

𝑒

−2(∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼,𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝
𝛼=0𝑝∈𝑃𝑘

ℎ
𝑘=1 −𝑢̂𝑖𝑗(𝑡))

2

(𝑙𝑖𝑗
+ (𝑡)−𝑙𝑖𝑗

− (𝑡)) ≥ 1 − 𝜀𝑖𝑗(𝑡) ↔

𝑢̂𝑖𝑗(𝑡) + √
1

2
(𝑙𝑖𝑗

+ (𝑡) − 𝑙𝑖𝑗
−(𝑡)) ln

1

(1 − 𝜀𝑖𝑗(𝑡))
≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

.

 

This means that, if 𝑢̂𝑖𝑗(𝑡) + √
1

2
(𝑙𝑖𝑗

+ (𝑡) − 𝑙𝑖𝑗
−(𝑡)) ln

1

(1−𝜀𝑖𝑗(𝑡))
≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1 , then  

inf
𝑢𝑖𝑗(𝑡)~𝑈̅𝑖𝑗(𝑡)

Pr (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗(𝑡)) ≥ 1 − 𝜀𝑖𝑗(𝑡). 

 

By a similar argument as that above, if √
1

2
(𝑙𝑘

+ − 𝑙𝑘
−) ln (

1

𝜀𝑘
′ ) + 𝑅̂𝑘 ≤ ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 , then, we have 

inf
𝑅𝑘~𝑈̅𝑘

Pr (∑ ∑ 𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 ≥ 𝑅𝑘) ≥ 1 − 𝜀𝑘
′ . 
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Similarly, for all 𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯, if 𝑢̂𝑖
𝑘(𝑡) + √

1

2
(𝑙𝑖

𝑘+(𝑡) − 𝑙𝑖
𝑘−(𝑡)) ln

1

(1−𝜀𝑖,𝑘
′′ (𝑡))

≥

∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 , then, we have: 

inf
𝑢𝑖

𝑘(𝑡)~𝑈̅𝑖
𝑘(𝑡)

Pr ( ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡)) ≥ 1 − 𝜀𝑖,𝑘

′′ (𝑡). 

It completes the proof. This means that, in the presence of the random parameter in the independent 

intervals, the distributionally robust chance-constrained model, in the case of independent intervals, denoted 

by DRCC (type II), is as follows: 

min ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

𝑠. 𝑡. (3.4)

𝑢̂𝑖𝑗(𝑡) + √
1

2
(𝑙𝑖𝑗

+ (𝑡) − 𝑙𝑖𝑗
− (𝑡)) ln

1

(1 − 𝜀𝑖𝑗(𝑡))
≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

√
1

2
(𝑙𝑘

+ − 𝑙𝑘
−) ln (

1

𝜀𝑘
′ ) + 𝑅̂𝑘 ≤ ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

, ∀𝑘 ∈ 𝐾,

𝑢̂𝑖
𝑘(𝑡) + √

1

2
(𝑙𝑖

𝑘+(𝑡) − 𝑙𝑖
𝑘−(𝑡)) ln

1

(1 − 𝜀𝑖,𝑘
′′ (𝑡))

≥ ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

, ∀𝑖 ∈ 𝑁 − {𝑠𝑘
+, 𝑠𝑘

−}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

𝑓(𝑝𝛼) ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0, … , 𝑇 − 𝜏𝑝,

 

which is an LP problem.  

 

3.1.3. DRCC in the case of the radially symmetric non-increasing distributions (DRCC (type III)) 

In this section, we analyze an uncertainty model where the random data 𝑢𝑖𝑗(𝑡) have known mean 𝑢̂𝑖𝑗(𝑡), 

and the individual elements are only known to belong to 𝐸𝑢𝑖𝑗(𝑡) = {𝑢𝑖𝑗(𝑡)|𝑢𝑖𝑗(𝑡) = 𝑢̂𝑖𝑗(𝑡) +

𝑞𝑖𝑗(𝑡)𝑤𝑖𝑗(𝑡), |𝑤𝑖𝑗(𝑡)| ≤ 1} for all (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, where 𝑞𝑖𝑗(𝑡) is a scalar and 𝑤𝑖𝑗(𝑡) is a random variable 

with the probability density as follows: 

𝑓𝑖𝑗,𝑡(𝑤𝑖𝑗(𝑡)) = {
𝑔𝑖𝑗,𝑡

1 (|𝑤𝑖𝑗(𝑡)|) |𝑤𝑖𝑗(𝑡)| ≤ 1

0 𝑜. 𝑤.
 

Similarly, suppose that the random data 𝑅𝑘 have known mean 𝑅̂𝑘 and the individual elements are only 

known to belong to 𝐸𝑅𝑘
= {𝑅𝑘|𝑅𝑘 = 𝑅̂𝑘 + 𝑝𝑘𝑠𝑘 , |𝑠𝑘| ≤ 1} for all 𝑘 ∈ 𝐾, where 𝑝𝑘 is a scalar and 𝑠𝑘 is a 

random variable with the probability density as follows: 

𝑓𝑘(𝑠𝑘) = {
ℎ(|𝑠𝑘|) |𝑠𝑘| ≤ 1,
0 𝑜. 𝑤.

 

Also, suppose that the random data 𝑢𝑖
𝑘(𝑡) have known mean 𝑢̂𝑖

𝑘(𝑡) and the individual elements are only 

known to belong to 𝐸
𝑢𝑖

𝑘(𝑡)
= {𝑢𝑖

𝑘(𝑡)|𝑢𝑖
𝑘(𝑡) = 𝑢̂𝑖

𝑘(𝑡) + 𝑞𝑖
𝑘(𝑡)𝑤𝑖

𝑘(𝑡), |𝑤𝑖
𝑘(𝑡)| ≤ 1} for all 𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯, 𝑘 ∈

𝐾, where 𝑞𝑖
𝑘(𝑡) is a scalar and 𝑤𝑖

𝑘(𝑡) is a random variable with the probability density as follows: 
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𝑓𝑖,𝑘,𝑡(𝑤𝑖
𝑘(𝑡)) = {

𝑔𝑖,𝑘,𝑡
2 (|𝑤𝑖

𝑘(𝑡)|) |𝑤𝑖
𝑘(𝑡)| ≤ 1,

0 𝑜. 𝑤.
 

where 𝑔𝑖𝑗,𝑡
1 (∙), 𝑔𝑖,𝑘,𝑡

2 (∙), and ℎ𝑘(∙) are nonincreasing functions. Let us denote 𝑈𝐸𝑖𝑗(𝑡), 𝑈𝐸𝑅𝑘
, and 𝑈

𝐸𝑖
𝑘(𝑡)

 are 

the families of the probability distributions on 𝑢𝑖𝑗(𝑡), 𝑅𝑘 , and 𝑢𝑖
𝑘(𝑡), for all (𝑖, 𝑗) ∈ 𝐴, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯, and 𝑘 ∈

𝐾, respectively. 

Theorem 4. Suppose that 𝑢𝑖𝑗(𝑡), 𝑅𝑘, and 𝑢𝑖
𝑘(𝑡) are random variables in the ellipsoids, 𝐸𝑢𝑖𝑗(𝑡), 𝐸𝑅𝑘

, and 

𝐸
𝑢𝑖

𝑘(𝑡)
, respectively. For any 𝜀𝑖𝑗(𝑡), 𝜀𝑘

′ , 𝜀𝑖,𝑘
′′ (𝑡) ∈ (0, 0.5], the uniform distribution is the worst-case 

distribution. This means that  

inf
𝑢𝑖𝑗(𝑡)~𝑈𝐸𝑖𝑗(𝑡)

Pr (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗(𝑡)) ≥ 1 − 𝜀𝑖𝑗(𝑡), 

is equivalent to the chance-constrained 

Pr (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗(𝑡)) ≥ 1 − 𝜀𝑖𝑗(𝑡), 

where 𝑢𝑖𝑗(𝑡) has the uniform distribution. Also,  

inf
𝑅𝑘~𝑈𝐸𝑅𝑘

Pr ( ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑅𝑘) ≥ 1 − 𝜀𝑘
′ , 

is equivalent to the chance constraint 

Pr ( ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑅𝑘) ≥ 1 − 𝜀𝑘
′ , 

where 𝑅𝑘 has the uniform distribution and  

inf
𝑢𝑖

𝑘(𝑡)~𝑈
𝐸𝑖

𝑘(𝑡)

Pr ( ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡)) ≥ 1 − 𝜀𝑖,𝑘

′′ (𝑡), 

is equivalent to the chance constraint Pr (∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 ≤ 𝑢𝑖
𝑘(𝑡)) ≥ 1 − 𝜀𝑖,𝑘

′′ (𝑡), where 

𝑢𝑖
𝑘(𝑡) has the uniform distribution. 

Proof. Regarding Theorem 6.3 in Barmish et al. [4], it suffices to show that the following sets are star-

shaped. 

Ω𝑖𝑗,𝑡
1 = {𝑤𝑖𝑗(𝑡): 𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡)𝑤𝑖𝑗(𝑡) ≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

} ,

Ω𝑖,𝑘,𝑡
2 = {𝑤𝑖

𝑘(𝑡): 𝑢̂𝑖
𝑘(𝑡) + 𝑞𝑖

𝑘(𝑡)𝑤𝑖
𝑘(𝑡) ≥ ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

} ,

Ω𝑘
3 = {𝑠𝑘: 𝑅̂𝑘 + 𝑝𝑘𝑠𝑘 ≤ ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

} .
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Given that 𝑢𝑖𝑗(𝑡) has a symmetric distribution, therefore, we can obtain:  

Pr (𝑢𝑖𝑗(𝑡) ≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

) ≥ 0.5 ↔ 𝑢̂𝑖𝑗(𝑡) ≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

. 

Therefore, 𝜀𝑖𝑗(𝑡) ∈ (0, 0.5) requires that 𝑢̂𝑖𝑗(𝑡) ≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1 .  Hence, 0 ∈ Ω𝑖𝑗,𝑡

1 , if 

𝑤 ∈ Ω𝑖𝑗,𝑡
1  and 𝜌 ∈ [0,1], then, we have 

𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡)𝑤𝑖𝑗(𝑡) ≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

→ 𝜌𝑞𝑖𝑗(𝑡)𝑤𝑖𝑗(𝑡) ≥ 𝜌 (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

− 𝑢̂𝑖𝑗(𝑡))

≥ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

− 𝑢̂𝑖𝑗(𝑡).

 

Therefore, Ω𝑖𝑗,𝑡
1  is star-shaped. By a similar argument as that above, Ω𝑖,𝑘,𝑡

2  and Ω𝑘
3  are star-shaped, and the 

proof is completed.  

Theorem 4 demonstrates the equivalence between the DRCC model, considering the family of probability 

distributions discussed in this section, and the chance-constrained model under uniform distributions. The 

following theorem presents a certain equivalent model for the chance-constrained model when the uniform 

distributions are considered. 

Theorem 5. Suppose that 𝑢𝑖𝑗(𝑡) − 𝑢̂𝑖𝑗(𝑡), 𝑢𝑖
𝑘(𝑡) − 𝑢̂𝑖

𝑘(𝑡), and 𝑅𝑘 − 𝑅̂𝑘 , for all (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, and 𝑘 ∈ 𝐾, 

be uniformly distributed in the ellipsoids, 𝐸𝑢𝑖𝑗(𝑡), 𝐸
𝑢𝑖

𝑘(𝑡)
, and 𝐸𝑅𝑘

, respectively. Then, The DRCC (type III) 

model is equivalent to: 

min ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

𝑠. 𝑡. (3.5)

∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢𝑖𝑗
3 (𝑡), ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑅𝑘
3, ∀𝑘 ∈ 𝐾,

 

∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
3𝑘(𝑡), ∀𝑖 ∈ 𝑁 − {𝑠𝑘

+, 𝑠𝑘
−}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

𝑓(𝑝𝛼) ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0,1, … , 𝑇 − 𝜏𝑝.

 

where 𝑢𝑖𝑗
3 (𝑡) = 𝑢̂𝑖𝑗(𝑡) − 𝑞𝑖𝑗(𝑡) (1 − 2𝜀𝑖𝑗(𝑡)) , 𝑅𝑘

3 = 𝑝𝑘(1 − 2𝜀𝑘
′ ) + 𝑅̂𝑘 and 𝑢𝑖

3𝑘(𝑡) = 𝑢𝑖
𝑘(𝑡) −

𝑞𝑖
𝑘(𝑡) (1 − 2𝜀𝑖,𝑘

′′ (𝑡)).  

Proof. Suppose that 𝑢𝑖𝑗(𝑡) − 𝑢̂𝑖𝑗(𝑡), 𝑢𝑖
𝑘(𝑡) − 𝑢̂𝑖

𝑘(𝑡), and 𝑅𝑘 − 𝑅̂𝑘 , for all (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, and 𝑘 ∈ 𝐾, be 

uniformly distributed in the following ellipsoids: 
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𝐸𝑢𝑖𝑗(𝑡) = {𝑢𝑖𝑗(𝑡)|𝑢𝑖𝑗(𝑡) = 𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡)𝑤𝑖𝑗(𝑡), |𝑤𝑖𝑗(𝑡)| ≤ 1},

𝐸
𝑢𝑖

𝑘(𝑡)
= {𝑢𝑖

𝑘(𝑡)|𝑢𝑖
𝑘(𝑡) = 𝑢̂𝑖

𝑘(𝑡) + 𝑞𝑖
𝑘(𝑡)𝑤𝑖

𝑘(𝑡), |𝑤𝑖
𝑘(𝑡)| ≤ 1},

𝐸𝑅𝑘
= {𝑅𝑘|𝑅𝑘 = 𝑅̂𝑘 + 𝑝𝑘𝑠𝑘 , |𝑠𝑘| ≤ 1},

 

where 𝑤𝑖𝑗(𝑡), 𝑤𝑖
𝑘(𝑡), and 𝑠𝑘 are the random variables with the probability density as follows: 

𝑓𝑖𝑗,𝑡(𝑤𝑖𝑗(𝑡)) = {
𝑔𝑖𝑗,𝑡

1 (|𝑤𝑖𝑗(𝑡)|) |𝑤𝑖𝑗(𝑡)| ≤ 1,

0 𝑜. 𝑤.
 

 

𝑓𝑖,𝑘,𝑡(𝑤𝑖
𝑘(𝑡)) = {

𝑔𝑖,𝑘,𝑡
2 (|𝑤𝑖

𝑘(𝑡)|) |𝑤𝑖
𝑘(𝑡)| ≤ 1,

0 𝑜. 𝑤.
 

 

𝑓𝑘(𝑠𝑘) = {
ℎ(|𝑠𝑘|) |𝑠𝑘| ≤ 1,
0 𝑜. 𝑤.

 

  

Without loss of generality, suppose that 𝑞𝑖𝑗(𝑡) ≥ 0, therefore, we have: 

 

𝑢̂𝑖𝑗(𝑡) − 𝑞𝑖𝑗(𝑡) ≤ 𝑢𝑖𝑗(𝑡) ≤ 𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡) ↔ −𝑢̂𝑖𝑗(𝑡) − 𝑞𝑖𝑗(𝑡) ≤ −𝑢𝑖𝑗(𝑡) ≤ −𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡). 

 

Given that 𝑢𝑖𝑗(𝑡) is uniformly distributed, therefore −𝑢𝑖𝑗(𝑡) is uniformly distributed in [−𝑢̂𝑖𝑗(𝑡) −

𝑞𝑖𝑗(𝑡), −𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡)], hence 

𝐹−𝑢𝑖𝑗(𝑡)
−1 (1 − 𝜀𝑖𝑗(𝑡)) = {−𝑢𝑖𝑗(𝑡): 

−𝑢𝑖𝑗(𝑡) + 𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡)

2𝑞𝑖𝑗(𝑡)
= 1 − 𝜀𝑖𝑗(𝑡)} →

−𝑢𝑖𝑗(𝑡) = 2𝑞𝑖𝑗(𝑡)(1 − 𝜀𝑖𝑗(𝑡)) − 𝑢̂𝑖𝑗(𝑡) − 𝑞𝑖𝑗(𝑡) = 𝑞𝑖𝑗(𝑡)(1 − 2𝜀𝑖𝑗(𝑡)) − 𝑢̂𝑖𝑗(𝑡) →

𝐹−𝑢𝑖𝑗(𝑡)
−1 (1 − 𝜀𝑖𝑗(𝑡)) = 𝑞𝑖𝑗(𝑡) (1 − 2𝜀𝑖𝑗(𝑡)) − 𝑢̂𝑖𝑗(𝑡).

 

Therefore, 

− ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≥ 𝐹−𝑢𝑖𝑗(𝑡)
−1 (1 − 𝜀𝑖𝑗(𝑡)) ↔ ∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢̂𝑖𝑗(𝑡) − 𝑞𝑖𝑗(𝑡) (1 − 2𝜀𝑖𝑗(𝑡)). 

By a similar argument as that above, the following equivalence relations are held: 

∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝐹𝑅𝑘

−1(1 − 𝜀𝑘
′ ) ↔ ∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝑡𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑝𝑘(1 − 2𝜀𝑘
′ ) + 𝑅̂𝑘 , 

and 

− ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝐹
−𝑢𝑖

𝑘(𝑡)
−1 (1 − 𝜀𝑖,𝑘

′′ ) ↔ ∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡) − 𝑞𝑖

𝑘(𝑡)(1 − 2𝜀𝑖,𝑘
′′ ). 

Therefore, the chance-constrained problem under the uniform distributions on the random variables is as 

follows: 
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min ∑ ∑ ∑ 𝑐𝑘(𝑝𝛼)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

(3.6)

𝑠. 𝑡.

∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

ℎ

𝑘=1

≤ 𝑢̂𝑖𝑗(𝑡) − 𝑞𝑖𝑗(𝑡) (1 − 2𝜀𝑖𝑗(𝑡)) , ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯,

∑ ∑ 𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≥ 𝑝𝑘(1 − 2𝜀𝑘
′ ) + 𝑅̂𝑘 , ∀𝑘 ∈ 𝐾,

∑ ∑ 𝛾𝑖(𝑝𝛼 , 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘

≤ 𝑢𝑖
𝑘(𝑡) − 𝑞𝑖

𝑘(𝑡)(1 − 2𝜀𝑖,𝑘
′′ ), ∀𝑖 ∈ 𝑁 − {𝑠𝑘

+, 𝑠𝑘
−}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝒯,

𝑓(𝑝𝛼) ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0,1, … , 𝑇 − 𝜏𝑝.

 

 

4. Solution method 

As mentioned earlier, the proposed models in this paper are often too large to be explicitly solved. 

Therefore, finding an optimal solution without enumerating all the dynamic paths poses a significant 

challenge. To address this, we have developed a method based on the column-generation approach, inspired 

by the revised simplex method, as described in Section 4.2. Our focus is on the desired model (3.6). 

In each step of the revised simplex method, a basis is determined and a vector of dual variables is determined 

by this basis for the constraints of the primal model. Suppose that the dual variables corresponding to the 

constraints 1𝑡ℎ, 2𝑡ℎ, and 3𝑡ℎ of the model (3.6) are 𝑤𝑖𝑗(𝑡), 𝜎𝑘 , and 𝑣𝑖
𝑘(𝑡), respectively. Regarding the dual 

variables, the reduced cost, denoted by 𝐶𝑝𝛼
𝑤,𝜎,𝑣 , for the 𝑘𝑡ℎ commodity and the dynamic path 𝑝𝛼 ,  

𝑝𝛼: (𝑠𝑘
+, 𝛼) = (𝑖1, 𝑡1), (𝑖2, 𝑡2), … , (𝑖𝑟 , 𝑡𝑟) = (𝑠𝑘

−, 𝛽), 

from 𝑁𝑇𝑃 (𝑠𝑘
+, 𝛼) to 𝑁𝑇𝑃 (𝑠𝑘

−, 𝛽) is as follows: 

𝐶𝑝𝛼
𝑤,𝜎,𝑣 = ∑ (𝑤𝑖𝑟,𝑖𝑟+1 

(𝑡𝑟) + 𝑐𝑖𝑟,𝑖𝑟+1 

𝑘 (𝑡𝑟)) +
(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟≠𝑖𝑟+1  

∑ (𝑣𝑘
𝑖𝑟

(𝑡𝑟) + 𝑐𝑖𝑟

𝑘 (𝑡𝑟))
(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟=𝑖𝑟+1  

− 𝜎𝑘 . 

It should be noted that, for a dynamic path 𝑝 ∈ 𝑃𝑘 , with the departure time 𝛼, the reduced cost 𝐶𝑝𝛼
𝑤,𝜎,𝑣

 is the 

cost of the dynamic path with the modified costs 𝑤𝑖𝑟,𝑖𝑟+1 
(𝑡𝑟) + 𝑐𝑖𝑟,𝑖𝑟+1 

𝑘 (𝑡𝑟) + 𝑣𝑖𝑟
(𝑡𝑟) + 𝑐𝑖𝑟

𝑘 (𝑡𝑟) minus the 

commodity cost 𝜎𝑘 .  

According to the complementary slackness conditions, the dynamic path flows 𝑓(𝑝𝛼) in model (3.6) are 

optimal if and only if the following conditions are held: 

(1) 𝑤𝑖𝑗(𝑡) (∑ ∑ ∑ 𝛿𝑖𝑗(𝑝𝛼, 𝑡)𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘
ℎ
𝑘=1 − 𝑢̂𝑖𝑗(𝑡) + 𝑞𝑖𝑗(𝑡) (1 − 2𝜀𝑖𝑗(𝑡))) = 0, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, 

(2) 𝑣𝑖
𝑘(𝑡) (∑ ∑ 𝛾𝑖(𝑝𝛼, 𝑡)𝑓(𝑝𝛼)

𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 − 𝑢𝑖
𝑘(𝑡) + 𝑞𝑖

𝑘(𝑡)(1 − 2𝜀𝑖,𝑘
′′ )) = 0, ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 − {𝑠𝑘

+, 𝑠𝑘
−}, 𝑡 ∈ 𝒯, 

(3) (∑ ∑ 𝑓(𝑝𝛼)
𝑇−𝜏𝑝

𝛼=0𝑝∈𝑃𝑘 − 𝑝𝑘(1 − 2𝜀𝑘
′ ) − 𝑅̂𝑘) 𝜎𝑘 = 0, 

(4) 𝐶𝑝𝛼
𝑤,𝜎,𝑣 ≥ 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘, 𝛼 = 0,1, … , 𝑇 − 𝜏𝑝, 

(5) 𝑓(𝑝𝛼)𝐶𝑝𝛼
𝑤,𝜎,𝑣 = 0, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘, 𝛼 = 0,1, … , 𝑇 − 𝜏𝑝. 

The fourth condition corresponds to 
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∑ (𝑤𝑖𝑟,𝑖𝑟+1 
(𝑡𝑟) + 𝑐𝑖𝑟,𝑖𝑟+1 

𝑘 (𝑡𝑟)) +(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟≠𝑖𝑟+1  
∑ (𝑣𝑖𝑟

(𝑡𝑟) + 𝑐𝑖𝑟

𝑘 (𝑡𝑟))(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟=𝑖𝑟+1  ≥ 𝜎𝑘 .  The 

fifth condition shows that the reduced cost 𝐶𝑝𝛼
𝑤,𝜎,𝑣

 should be zero for each dynamic path 𝑝𝛼 with 𝑓(𝑝𝛼) >

0. So, the following Theorem is obtained by conditions (4) and (5).  

Theorem 6. At the optimality of model (3.6),  for the 𝑘𝑡ℎ commodity, the dynamic path 𝑝𝛼 

𝑝𝛼: (𝑠𝑘
+, 𝛼) = (𝑖1, 𝑡1), (𝑖2, 𝑡2), … , (𝑖𝑟 , 𝑡𝑟) = (𝑠𝑘

−, 𝛽), 

from 𝑁𝑇𝑃 (𝑠𝑘
+, 𝛼) to 𝑁𝑇𝑃 (𝑠𝑘

−, 𝛽) with 𝑓(𝑝𝛼) > 0 is a dynamic shortest path concerning the modified costs 

𝑤𝑖𝑟,𝑖𝑟+1 
(𝑡𝑟) + 𝑐𝑖𝑟,𝑖𝑟+1 

𝑘 (𝑡𝑟) + 𝑣𝑖𝑟
(𝑡𝑟) + 𝑐𝑖𝑟

𝑘 (𝑡𝑟). Also, the length of this dynamic shortest path is equal to 

commodity cost 𝜎𝑘 . 

Proof. This is straightforward from the conditions (1)-(5). 

 

4.1. Column generation procedure 

This section proposes a method based on the column-generation approach for solving model (3.6) using 

Theorem 6 and the revised simplex method.  

As we have noted, in each step of the revised simplex method, a basis is determined. Given that the reduced 

cost of each variable on this basis is zero, we can compute the arc prices 𝑤𝑖𝑗(𝑡), commodity prices  𝜎𝑘, and 

node-commodity prices 𝑣𝑖
𝑘(𝑡). In other words, if the dynamic path 𝑝𝛼  from 𝑁𝑇𝑃 (𝑠𝑘

+, 𝛼) to 𝑁𝑇𝑃 (𝑠𝑘
−, 𝛽) 

for commodity 𝑘 is a basic variable, then 𝐶𝑝𝛼
𝑤,𝜎,𝑣 = 0.  

As is well known, in the revised simplex method, some basis always satisfies the conditions (1), (2), (3), 

and (5). Hence, a basis is optimal if the fourth condition is satisfied. In other words , it is enough to check 

the dual feasibility condition. In the following, the pseudocode of the column generation approach to solve 

(3.6) is summarized in Algorithm 1. 

 

5. Computational Results 

This section presents the computational results to demonstrate the proposed distributionally robust chance-

constrained models to solve the DDMF problem in the presence of uncertain parameters. To test the 

performance of the proposed methods, we consider two case studies: (i) a general illustrative network and 

(ii) the different classes of randomly generated instances. All the test instances are carried out on a core i5-

4670 and 3.40 GHz computer with 8.00 GB RAM. The proposed algorithm and models are coded in GAMS 

24.1, and CPLEX is used as the optimization solver for solving subproblems in Algorithm 1, respectively. 

The default setting is used in our runs. It is worth noting that the reported CPU times for all examples are 

based on Algorithm 1, except for the CPU times of the fifth column in Table 4. 
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Algorithm 1: Column generation approach 

Step 0: (Initialization) 

Start with a basic feasible solution and find the arc prices 𝑤𝑖𝑗(𝑡), commodity prices  𝜎𝑘 , and node-

commodity prices 𝑣𝑖
𝑘(𝑡) by the equations 

∑ (𝑤𝑖𝑟,𝑖𝑟+1 
(𝑡𝑟) + 𝑐𝑖𝑟,𝑖𝑟+1 

𝑘 (𝑡𝑟)) +(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟≠𝑖𝑟+1  
∑ (𝑣𝑘

𝑖𝑟
(𝑡𝑟) + 𝑐𝑖𝑟

𝑘 (𝑡𝑟))(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟=𝑖𝑟+1  = 𝜎𝑘, for 

every dynamic path 𝑝𝛼 in the basis. 

 

Step 1: (Test of optimality) 

Solve |𝐾|subproblems 

𝑍𝑘 = min ∑ (𝑤𝑖𝑟,𝑖𝑟+1 
(𝑡𝑟) + 𝑐𝑖𝑟,𝑖𝑟+1 

𝑘 (𝑡𝑟)) +
(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟≠𝑖𝑟+1  

∑ (𝑣𝑘
𝑖𝑟

(𝑡𝑟) + 𝑐𝑖𝑟

𝑘 (𝑡𝑟))
(𝑖𝑟,𝑖𝑟+1 )∈𝑃𝛼,𝑖𝑟=𝑖𝑟+1  

𝑠. 𝑡.
𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃𝑘 , 𝛼 = 0,1, … , 𝑇 − 𝜏𝑝.

 

 

If  𝑍𝑘 ≥  𝜎𝑘 , ∀𝑘 ∈ 𝐾 then  

The complementary slackness condition (4) is satisfied. So, the current basis is optimal. 

Else if 

There is some commodity 𝑘, and nonbasic dynamic shortest path 𝑄 (with the departure time µ) 

with  𝑍𝑘 < 𝜎𝑘 , then, 𝐶𝑄µ
𝑤,𝜎,𝑣 < 0. Generate a column corresponding to the dynamic path 𝑄 with the 

departure time µ to the revised simplex method. 

End. 

 

Step 2: (Minimum ratio test) 

Run minimum ratio test for selecting one dynamic path to remove from the basis. 

Step 3: (Pivoting)  

After pivoting, transfer a new set of arc prices 𝑤𝑖𝑗(𝑡), commodity prices  𝜎𝑘 , and node-commodity prices 

𝑣𝑖
𝑘(𝑡), into Step 1. Repeat from Step 1. 

 

 

5.1. The general illustrative network   

 

Figure 1. The network in Example 1. 

Example 1. We consider a network with 8 nodes and 14 arcs, shown in Figure 1. Suppose that, there are 

two commodities that should be transmitted over the network. Also, assume that 𝑇 = 20 is the time horizon 

and 𝒯 = {1, … ,20} and nodes 1 and 7 are the source and the sink nodes for commodity 1, and nodes 2 and 
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8 are the source and sink nodes for commodity 2, respectively. Also, nominal data are generated randomly 

using the uniform distribution specified as follows: 

1. The cost 𝑐𝑖𝑗
𝑘 (𝑡) for all (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, and 𝑡 ∈ 𝒯, is generated by uniform distribution in the 

interval [1, 10], and the cost 𝑐𝑖
𝑘(𝑡) for all 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 and 𝑡 ∈ 𝒯, is generated by uniform 

distribution in the interval [1, 5]. 

2. The nominal value for 𝑢𝑖𝑗(𝑡), (𝑖, 𝑗) ∈ 𝐴, and 𝑡 ∈ 𝒯, is generated by uniform distribution in the 

interval [5, 15], and the perturbation value 𝑢̂𝑖𝑗(𝑡), (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, is generated by uniform 

distribution in the interval [0, 𝑢𝑖𝑗(𝑡)].  

3. The nominal value for 𝑢𝑖
𝑘(𝑡), 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, and 𝑡 ∈ 𝒯, is generated by uniform distribution in the 

interval [1, 12], and the  perturbation value  𝑢̂𝑖
𝑘(𝑡), 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, and 𝑡 ∈ 𝒯, is generated by uniform 

distribution in the interval [0, 𝑢𝑖
𝑘(𝑡)]. 

4. The nominal value for 𝑅1 is generated by uniform distribution in the interval [1, 5], and the nominal 

value for 𝑅2 is generated by uniform distribution in the interval [1, 7]. 

5. The perturbation value for  𝑅̂1 is generated by uniform distribution in the interval [1, 𝑅1], and the 

perturbation value for 𝑅̂2 is generated by uniform distribution in the interval [1, 𝑅2], 

6. The travel time 𝜏𝑖𝑗 , for all (𝑖, 𝑗) ∈ 𝐴, is generated by uniform distribution in the interval [1, 3]. 

Table 2. Computational results for SO and DRCC (type II) methods for Example 1. 

Method 𝛼 Objective value CPU time (sec.) 

Algorithm 1 

SO - 20.1665 614 

DRCC (type II) 0.05 20.9732 84 

DRCC (type II) 0.10 20.9394 89 

DRCC (type II) 0.15 20.8913 94 

DRCC (type II) 0.20 20.6291 99 

DRCC (type II) 0.25 20.5743 103 

DRCC (type II) 0.30 20.4129 115 

SO: Stochastic Optimization; DRCC (type II): Distributionally Robust Chance-Constrained in the case of 

the random data in independent intervals. 

 

Now, we sample 100 scenarios from the independent random variables, and we apply the here-and-now 

approach in the stochastic optimization techniques. After that, we use model (3.4) for the different values 

of the confidence parameters to obtain the objective value of the DRCC model. It should be noted that, in 

this example, the random variables are distributed in the symmetric intervals. For this reason, we can 

consider the DRCC problem in the case of the independent intervals, denoted by DRCC (type II). The 

results of this model are summarized in rows 3-8 of Table 2. This table shows that the stochastic 

optimization technique determines the lowest objective value with the highest CPU time. After that, the 

DRCC (type II) shows the larger objective values, but its CPU time is much smaller than the SO method. 

This is the main advantage of the distributionally robust chance-constrained optimization techniques. Figure 

2 shows the line graph for the objective values determined by SO and DRCC (type II) (for the different 
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confidence parameters) over the network in Figure 1. This figure shows that, the objective value increases 

if the confidence parameter in DRCC (type II) increases.  

 

 
Figure 2. Line graph for SO and DRCC (type II) methods for Example 1. 

 

5.2. Large-scale networks 

This section considers two classes of instances with 50 and 100 nodes. For each class, 100 instances were 

generated (i.e., a total of 200 instances) according to the methodology proposed by Barabasi-Albert [3]. 

Example 2. This example reports the results obtained by the proposed methods for the network with 50 

nodes (see Figure 3). Suppose that 4 commodities should be transmitted over the network. Assume that 

𝑇 = 20 is the time horizon and 𝒯 = {1, … ,20} and nodes 1 and 50 are the source and the sink nodes for 

commodity 1, nodes 2 and 49 are the source and sink nodes for commodity 2, nodes 3 and 48 are the source 

and sink nodes for commodity 3, nodes 4 and 47 are the source and sink nodes for commodity 4, 

respectively. 

 

Figure 3. A network instance with 50 nodes is generated by the Barabasi-Albert method. 
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Table 3. Computational results of SO and DRCC (type II) models for Example 2. 

Method 𝛼 Objective value CPU time (sec.) 

Algorithm 1 

SO - 78.2615 993 

DRCC (type II) 0.05 79.0428 94 

DRCC (type II) 0.10 79.0115 147 

DRCC (type II) 0.15 78.8918 196 

DRCC (type II) 0.20 78.7283 259 

DRCC (type II) 0.25 78.5016 273 

DRCC (type II)` 0.30 78.4270 328 

 

in Example 1, we use 100 scenarios from the independent random variables and apply the here-and-now 

approach and report the average objective value and CPU times (on 100 instances) in the second row of 

Table 3. Then, rows 3-8 of Table 3 report the average objective value and CPU times of the distributionally 

robust chance-constrained problem (DRCC (type II)), i.e., model (3.4), for the different confidence 

parameters 𝛼 = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. Table 3 also shows that the stochastic optimization 

technique determines the lower average objective value with the highest average CPU time than the DRCC 

(type II). In summary, although DRCC (type II) shows the larger average objective values, but its average 

CPU time is much smaller than the SO model. This is the main advantage of the distributionally robust 

chance-constrained optimization technique.  

 

 

Figure 4. Box-plot for SO and DRCC (type II) method for Example 2. 

Figure 4 shows the box-plot for the average objective values, determined by the different methods, i.e., SO 

and DRCC (type II) (for the different confidence parameters) models, over the network in Figure 3. As we 

see, SO shows a lower average objective value than the DRCC (type II) method, but Table 3 shows that the 

average CPU time (100 instances) of the SO method is at least 4.5 times that of the DRCC (type II) which 

shows the larger objective value than the SO method, in each case of the different confidence parameters. 
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Figure 5. A network instance with 100 nodes is generated by the Barabasi-Albert  method. 

Example 3. This example reports the results obtained by the proposed methods for the networks with 100 

nodes (see Figure 5). Suppose that 4 commodities should be transmitted over the network. Assume that 

𝑇 = 20 is the time horizon and 𝒯 = {1, … ,20} and nodes 1 and 100 are the source and sink nodes for 

commodity 1, nodes 2 and 99 are the source and sink nodes for commodity 2, nodes 3 and 98 are the source 

and sink nodes for commodity 3, nodes 4 and 97 are the source and sink nodes for commodity 4, 

respectively. Also, assume that the input parameters are uniformly random generated as follows: 

1. The cost 𝑐𝑖𝑗
𝑘 (𝑡) for all (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, and 𝑡 ∈ 𝒯, is generated by uniform distribution in the 

interval [1,10], and the cost 𝑐𝑖
𝑘(𝑡) for all 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, and 𝑡 ∈ 𝒯, is generated by uniform 

distribution in the interval [1, 5]. 

2. The mean value for 𝑢̂𝑖𝑗(𝑡), (𝑖, 𝑗) ∈ 𝐴, and 𝑡 ∈ 𝒯, is generated by uniform distribution in the interval 

[5, 15], and the variance value 𝜎𝑢𝑖𝑗(𝑡)
2 , (𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝒯, is generated by uniform distribution in the 

interval [0,1].  

3. The mean value for 𝑢̂𝑖
𝑘(𝑡), 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, and 𝑡 ∈ 𝒯, is generated by uniform distribution in the 

interval [1, 12], and the variance value 𝜎
𝑢𝑖

𝑘(𝑡)
2 , 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, and 𝑡 ∈ 𝒯, is generated by uniform 

distribution in the interval [0, 1]. 

4. The mean value for 𝑅̂1 is generated by uniform distribution in the interval [1, 5], the mean value 

for 𝑅̂2is generated by uniform distribution in the interval [1, 7], the variance value 𝜎𝑅1

2  is generated 

by uniform distribution in the interval [0, 1], and the variance value 𝜎𝑅2

2  is generated by uniform 

distribution in the interval [0, 1]. 

5. The travel time 𝜏𝑖𝑗 , for all (𝑖, 𝑗) ∈ 𝐴, is generated by uniform distribution in the interval [1, 3]. 

As the previous examples, we use 100 scenarios from the independent random variables and apply the here-

and-now approach and report the average objective value and CPU time (on 200 instances)  in the second 

row of Table 4. This example considers the uncertainty set of each parameter as an ellipsoidal, and so, we 

can apply the DRCC (type I), and DRCC (type III) to determine the average objective value of the minimum 

cost multicommodity network flow problem. For this purpose, model (3.3) is solved, and the results for the 

different values of the confidence parameters are summarized in rows 3-8 of Table 4. Then, model (3.6) is 

used to determine the average objective value of the minimum cost multicommodity network flow, for the 

different values of the confidence parameters, and the results are reported in rows 9-14 of Table 4. This 
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table shows that the SO method obtains a lower average objective value than the other methods, but the 

average CPU time of this model is considerable. As we see, the distributionally robust chance-constrained 

models report the larger average  objective values than the stochastic optimization method, but their average 

CPU time is at least 0.16 of the CPU time of the SO method. Hence, the distributionally robust chance-

constrained models are much faster than the stochastic optimization model, and this is the main advantage 

of the proposed models. 

To evaluate the effectiveness of Algorithm 1 for solving the different classes of DRCC and the here-and-

now problems, its average computational time has been compared with the average computational time of 

the LP solver in CPLEX. From Table 4,  Algorithm 1 performs  faster than the LP solver in CPLEX. In the 

last column and four rows of Table 4, abbreviation “NI” explains that none of the instances of this class 

were solved within the time limit of 2000 seconds. It is worth noting that we report the average 

computational time of LP solver CPLEX just for the instances that were solved up to optimality within the 

time limit. Also, column 6 calculates the percentage of instances for each class (on 100 instances) that 

passed the time limit of 2000 seconds for the LP solver CPLEX (“Timeout (%)” in Table 4). The average 

percentage of unsolved instances, the total of 1300 instances,  by LP solver CPLEX is 58.80%. 

 

 

Table 4. Computational results for SO, DRCC (type I), and DRCC (type III) models for Example 3. 

Method 𝛼 Objective 

value 

CPU time 

(sec.) 

Algorithm 1 

CPU time (sec.) 

LP solver 

(CPLEX) 

Timeout (%) 

LP solver 

(CPLEX) 

SO - 55.3114 1866 NI 100 

DRCC (type I) 0.05 55.9963 108 826 16 

DRCC (type I) 0.10 55.9814 154 1285 54.50 

DRCC (type I) 0.15 55.9523 351 1752 62.66 

DRCC (type I) 0.20 55.8916 396 1632 58.66 

DRCC (type I) 0.25 55.7129 425 NI 100 

DRCC (type I) 0.30 55.6463 433 NI 100 

DRCC (type III) 0.05 56.4578 92 521 0 

DRCC (type III) 0.10 56.3333 118 689 12 

DRCC (type III) 0.15 56.2441 342 1478 39.33 

DRCC (type III) 0.20 56.1800 387 1298 42 

DRCC (type III) 0.25 56.0014 413 NI 100 

DRCC (type III) 0.30 55.9975 421 1803 79.33 

DRCC (type I): Distributionally Robust Chance-Constrained in the presence of the family of distributions with known 

mean and variance; DRCC (type III): Distributionally Robust Chance-Constrained in the case of the radially 

symmetric nonincreasing distributions; NI: None of the instances of this class were solved within the time limit 2000 

seconds by the CPLEX. 
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Table 5. Computational results for DRCC (type I) and DRCC (type III) models for the network in 

Example 3 after increasing the radius of each ellipsoidal. 

Method Percentage increase Objective value 

DRCC (type I) 10% 55.9989 

DRCC (type I) 20% 56.0010 

DRCC (type I) 30% 56.0048 

DRCC (type I) 40% 56.0093 

DRCC (type I) 50% 56.0128 

DRCC (type III) 10% 56.4813 

DRCC (type III) 20% 56.5062 

DRCC (type III) 30% 56.5241 

DRCC (type III) 40% 56.5319 

DRCC (type III) 50% 56.5347 

 

Now, we try to construct a larger uncertainty set for each parameter by increasing the radius of each 

ellipsoidal. For this purpose, we increase the radius of each ellipsoidal by 10%, 20%, 30%, 40%, and 50% 

of the initial radius and DRCC (type I), i.e., model (3.3) and DRCC (type III), i.e., model (3.4), are solved, 

and the results are summarized in Table 5 and Figure 5.  

 

 
Figure 5. The objective value for DRCC (type I) and DRCC (type III) models after increasing the radius of 

the ellipsoidal. 

 

6. Conclusions  

This study focused on one of the main problems in network literature, namely the multicommodity network 

flow problem. We investigated the discrete dynamic multicommodity flow (DDMF) for the minimum cost 

network flow problem with storage at intermediate nodes in the presence of parameter uncertainty. To 

address parameter uncertainty in the DDMF problem, this paper suggested a new perspective on dealing 

with the chance constraints in situations where the distribution of random variables is uncertain. We 
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formulated the corresponding distributionally robust chance-constrained (DRCC) optimization model and 

presented the deterministic restrictions to guarantee the fulfilment of probability constraints. The potential 

application of the proposed DRCC was illustrated with a numerical example and several experimental tests. 

The computational results demonstrated that the proposed DRCC requires significantly fewer CPU times 

than the SO model to solve the uncertain DDMF problem for large-scale networks. Considering that the 

probability distribution of random variables cannot be precisely determined in many real-world situations, 

a possible extension of this research would be to explore a different perspective from the robust chance-

constrained viewpoint to address optimization problems with randomly distributed uncertain variables. 

Finally, we compared the average computational times of the proposed algorithm and the LP solver CPLEX. 

The proposed method outperforms the LP solver CPLEX, especially for large-scale instances. 
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