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In this article, we provide an overview on how the maximum weighted stable set problem can
be solved exactly with Branch & Cut techniques. In addition, we provide selected references to
other exact methods. We start with a brief introduction of the stable set problem and a few basic
definitions but assuming that the reader is already familiar with the basic concepts. The main
stress of this article lies in the review of polyhedral results for the stable set polytope in Section
2.1 and the discussion of separation procedures, Section 2.2. An efficient Branch & Cut algorithm
needs, in addition to strong separation routines, also a good branching strategy. This is discussed
in Section 2.3. At the end, some implementation aspects are considered.

1 Introduction

Let G = (V, E) be an undirected graph consisting of a nonempty finite set V', the node set; and a
finite set F, the edge set, of unordered pairs of distinct elements of V. A stable set of graph G is
defined as a set of nodes S with the property that the nodes of S are pairwise non adjacent; two
nodes are called adjacent if there is an edge in E connecting them. In the literature, stable set is
also called independent set, vertex packing, co-clique or anticlique. If each node v; of a graph G is
assigned a weight c;, then the graph is called weighted. In this case, the maximum weighted stable
set problem looks for a stable set S which maximizes the sum of the weights corresponding to the
nodes in S, Evi cs Ci- In the case when G is not weighted, or all ¢; = 1, we are interested in a stable
set with the maximum number of nodes, which is called maximum cardinality stable set. The size
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of a maximum cardinality stable set is called the stability number of graph G and is denoted by
a(G). Throughout this article, references to the maximum stable set problem, or just stable set
problem, consider the weighted case unless otherwise noted.

According to its definition, the stable set problem has many applications in various fields,
[ ]. Especially when “conflicts” between some objects occur, it is an indicator that the
stable set problem is applicable. Next to the Traveling Salesman Problem, it is one of the most
important combinatorial optimization problems. It is well known that it is N'P- hard to determine
a maximum stable set in an arbitrary graph, [ |. This holds true for the cardinality case.
Furthermore, it is also hard to approximate the stable set number: It can be shown that for any
fixed € > 0 there is no polynomial time algorithm for approximating the stability number within a
factor of |V'|%, under the assumption that P # NP, | ; ]

Let us briefly and informally introduce some polyhedral terminologies. In our case it is suffi-
cient to define a polyhedron as the solution set of a system of linear inequalities. If the solution set
is bounded, it is called a polytope. Graphically speaking, a polytope in R™ is of full-dimension if
it contains an n-dimensional sphere completely; in 2-dimensions it is therefore forbidden that the
polytope is empty, one point or a line segment. A linear inequality 8"z < by is valid with respect
to a polyhedron P, if P is a subset of {z|372 < by}. We call a set F C P a facet of P if there
is a valid inequality 3Tx < by for P such that F = {x € P|B"z = by}, and the inequality is not
dominated by any other valid inequality. This inequality is called a facet-defining inequality for P.
In the case when v is a point in the polyhedron P and F' = {v}, we call v a vertex of polyhedron
P. Now, let P be a polytope and x* be a given point. The task to decide if this point lies in P
or if not to find a valid inequality 3"z < by for P which is violated by z*, is called the separation
problem for polytope P. The convex hull of points y1, ..., y, € R% is the set of points x satisfying
x =" Ny with Y A =1 and \; > 0 Vi. It is denoted by conv{yi,...,y,}. More precise
formulations can be found for instance in [ , , ].

We introduce now, in addition to the ones above, several graph theoretic definitions and nota-
tions needed throughout this article. A node v is incident to an edge e, if e = uv. The two nodes
incident to an edge are its endnodes. A node is isolated if it has no neighbor in the graph, which
means that it is not an endnode of any edge of the graph. The neighborhood of a node v is the
collection of all its neighbor ans is abbreviated with I'(v). If a graph has no isolated nodes, it is
called connected. A graph is said to be complete if it contains an edge connecting each pair of its
nodes. A clique is the node set of a complete subgraph. If a clique has three nodes it is also called
a triangle. The cardinality of a graph G is abbreviated by |G| and denotes the number of nodes in
the graph. The complement graph G of the graph G has the same node set as G and contains an
edge between two nodes, iff no edge is contained in G. We call a graph G bipartite if its node set V
can be partitioned into two disjoint sets Vi, Vo with V' = V; U V4 such that neither two nodes of set
V1 nor two nodes of set V5 are neighbors. We call H = (W, F') a subgraph of G, and write H C G,
when W C V and F' C F is the set of edges of graph G with both endnodes in W. Two graphs
G = (V,E) and H = (W, F) are called isomorphic, if there is a bijection ¢: V' — W such that
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w € E & ¢(u)p(v) € F. A matching is a collection of pairwise disjoint edges. If in a matching M
every node of GG is incident with exactly one edge M, then it is a perfect matching. More about
graph theory can be found in [ , ]

We do not describe the Branch & Cut algorithm in general here, as we assume the reader is
familiar with its basic ideas. For more information we refer to | , , , ].

Before we discuss some aspects of a Branch & Cut algorithm to solve the maximum stable set
problem, we provide a list of some other exact solution methods. Clearly, this list does not claim
to be complete. A more detailed list of exact methods can be found in | , |. In this
context, we want to mention that the stable set problem is equivalent to the maximum clique prob-
lem in the complement graph. Hence, each method solving the maximum clique problem can also
be used to solve the stable set problem. For polynomial time algorithms for some special classes of
graphs, see [ , , , ) , , , , , , ]
and Section 2.1. Algorithms finding all maximum stable sets in a graph are considered in | ,

, , , |. In the literature, many variants of Branch & Bound algorithms have
been discussed, | , , , , , , , , |. Other methods
using, for instance, continuous formulations, column generation or constraint programming can be
found in | , , , , , , , , ) ].

Benchmark instances are provided by the second DIMACS Challenge, [dim], from 1992/1993
and by the BHOS library from 2000, | |. Note that some of these stable set instances are still
unsolved. A test case generator was introduced by HASSELBERG et al., [ ].

2 Method

Let us now formulate the maximum stable set problem as a linear program. Therefore, one choice
could be to introduce variables x; for each node v; € V, which have value one, if node v; is in a
stable set, say S, and otherwise zero. Such a vector is called an incidence vector. Obviously, for
each edge, only one endnode can be in a stable set and hence, we get the so called edge-inequalities

r+r; <1 VijeE. (1)

It is easy to see, that if vector z has a positive integer domain (or more precisely, binary domain),
each vector satisfying inequalities (1) induces a stable set and vice versa. Hence, if ¢ denotes the
(positive) weight vector of the nodes, one gets the following integer program

max CT.Z'

T

s.t. T+ 2 <1 Vije k (2)
z e {0, 1}
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which solves the maximum weighted stable set problem. We recognize, that this formulation has
only |E| constraints and |V| variables. So the formulation is quite compact. Unfortunately, the
binary constraints on x make it hard to solve this linear program. We will discuss some relaxations
of this problem in the next section which is mainly based on | ) ) ) ) ]

2.1 Stable Set Polytope

The stable set polytope of graph G = (V| E) is defined as the convex hull of the incidence vectors
of all stable sets in G. It is denoted by

Psrap(@) := conv{x® | S C V stable set},

where x° is the incidence vector of set S. From the integer program formulation (2) we see that
Psrap(G) is a polyhedron. As it is bounded by the |V|-dimensional unit cube, it is indeed a poly-
tope. The definition of a stable set implies that the unit vectors are always stable sets. Trivially,
the zero vector is a stable set, the empty set, therefore, the stable set polytope is full-dimensional.
This implies that all facets of Pspap(G) are inequalities, and hence, we do not have to consider
equalities, | , ].

Let us now discuss some relaxations of the integer program formulation (2) which will also give
us relaxations of the stable set polytope. The obvious idea is to relax the binary condition on =,
and instead make them continuous which leads to

The integer problem reduces to a linear program which can be solved in polynomial time. This
relaxation leads to the so called stable set polytope relaxation

Prsrap(G) ={z e R"|z;+z; <1,0<x <1 Vije€ E}. (4)

From its construction, we get that Ps7ap(G) C Prsrap(G). For a complete graph with cardinality
> 3, the = vector with value 1/2 in each component is a vertex of Prsrap(G), but it cannot be
contained in Psrap(G) as a maximum cardinality stable set in a complete graph has cardinality
one. This example shows that the relaxation above is very weak. Note, the vector whose entries
are all 1/2 is always contained in Prgrap(G) — independent of the structure of the graph G. The
following corollary generalizes this observation. It was first indicated by BALINSKI | ].

Corollary 2.1. The vertices of Prsrap(G) are (0, 3,1)-valued.

We saw that for a complete graph G with cardinality > 3, Psp4p(G) C Prsrap(G). The next
theorem states that this holds except for connected bipartite graphs. In this case the stable set
polytope and the stable set polytope relaxation are equal, that is Pspap(G) = Prsrap(G).

Theorem 2.2. [ | The non-negativity inequalities, x; > 0 Yv; € V, together with the edge
inequalities (1) are sufficient to describe Pspap(G), iff G is bipartite and has no isolated nodes.
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Theorem 2.2 has the following important implication: It states that the maximum stable set
problem for bipartite graphs can be solved in polynomial time by solving the stable set problem
over (4). As a consequence, a Branch & Cut algorithm using the stable set polytope relaxation (4),
will terminate for bipartite graphs in the root node of the branching tree after solving one linear
program. However, we already have indicated that the stable set polytope relaxation is very week
and hence not a good choice in a Branch & Cut framework for general graphs. Obviously, it can
be checked in linear time whether a graph is bipartite or not. Exact polynomial time algorithms
for bipartite graphs can be found in | ) ]
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Figure 1: Odd cycle with five nodes

As the restriction to bipartite graphs is very tough, we want to find some ways to strengthen
the stable set polytope relaxation. One idea is to add additional valid inequalities to Prsrap(G).
Therefore, let us consider the Figure 1. It shows a graph with the five nodes v1, vg, ...,v5. Such a
graph is called odd-cycle. In general, whenever a (sub-)graph H has an odd number of nodes, say n,
and there are n adjacent edges in the edge set such that each node is incident to exactly two nodes,
then we call H an odd cycle. Notice that an odd cycle can have more than n edges. In this case,
any additional edge is called chord. For the graph of the Figure 1, the stable set polytope relaxation
allows the fractional solution with all entries of 1/2, as illustrated. This solution is optimal, and
for the cardinality stable set problem, the objective function value is 5/2, which is greater than any
optimal stable set which has cardinality two. Now, summing up all edge inequalities corresponding
to the five edges in the graph, one gets

211 + 229 + 223 + 224 + 225 < 5.

In this case each node is incident to exactly two edges, giving the coefficients for the variables, and
there are five edge inequalities, providing the right-hand side. This inequality can be divided by
two and as all variables are binary, one gets

5}
1+ a2+ 23+ 24+ 25 < \‘gJ

This inequality can be generalized to the so called odd-cycle inequalities

Ccl-1 ~ -

Z x; < | ’2 for each odd cycle C = (V,E) C G. (5)
Uq,'E‘N/

From the construction above, it is obvious that the odd-cycle inequalities are valid for the stable

set polytope. If, in addition, the stable set polytope relaxation satisfies all odd-cycle inequalities

of G, then it is called a cycle-constraint stable set polytope and is denoted by

Pesrap(G) :={z € RIV!| & satisfies (1), (3) and (5)}.
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If you consider, again, a complete graph, you see that there is no constant which relates the optimal
solution over Posrap(G) to an optimal stable set. However, the graphs for which Pograp(G) =
Ps745(G) are called t-perfect!. Two examples for t-perfect graphs are bipartite graphs and almost
bipartite? graphs. The problem of checking whether a graph is t-perfect or not belongs to co- N'P.
The special structure of t-perfect graphs helps to find a maximum stable set. This is stated by the
next corollary.

Corollary 2.3. The mazximum stable set problem in a t-perfect graph can be solved in polynomial
time.

We will see in Section 2.2 that the odd-cycle inequalities can be separated in polynomial time.
This proves together with the Equivalence of Optimization and Separation the Corollary 2.3. Poly-
nomial time algorithms for the class of t-perfect graphs can be found in | , ].

We are mainly interested in facets of Pspap(G) since they are not dominated by any valid
inequality of Pspap(G). The odd-cycle inequalities can only be facet-defining if their odd cycles
are chordless. If there is a chord, one gets a smaller odd cycle and an even cycle. The smaller
odd-cycle inequality together with the edge inequalities dominate the odd-cycle inequality which
shows that it cannot be facet-defining. A graph which is a chordless cycle is called a hole. If an odd
cycle induces an odd hole, the corresponding odd-cycle inequality is called an odd-hole inequality.
Consider the following

Corollary 2.4. [ | Let G be an odd hole. Then Zvie\/ x < |V|2_1 is facet-defining for
Pstap(G).

Figure 2: Odd antihole

A counterpart of the odd-cycle inequalities are the antihole inequalities. They are valid for
antiholes, which is the complement graph of an odd hole with at least five nodes. From the Figure
2, we recognize that each stable set of an antihole with n nodes can contain at most two nodes as
each node is adjacent to exactly n — 2 nodes. Therefore, the following inequalities hold

Z 2; <2  for each antihole A = (V,E) C G. (6)
vief/

'The “t” stands for “trou”, which is the French word for “hole”.
2A graph G is called almost bipartite if there is a node v such that graph G without v is bipartite.
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Note that an antihole with 5 nodes is isomorphic' to an odd hole with 5 nodes. The separation
problem for the antihole inequalities is not known whether it belongs to P or not.

Figure 3: Complete graph with four nodes: clique

Another group of inequalities for the stable set polytope builds the clique inequalities. From
the Figure 3 we get

Z x; <1  for each clique Q. (7)
v, €EQ

In 1979, PADBERG showed the following important

Theorem 2.5. | | Let G be a graph with node set V and Q C V. Inequality (7) is valid for
Pstap(G). An inequality ZUJEQ x; < 11is a facet of Pstap, iff Q is a mazimal clique in G.

Theorem 2.5 shows that the edge inequalities (1) are only facet-defining for Pspap(G), if they
build a maximal clique. Hence, they are dominated by the clique inequalities. We will use this
observation later in Section 2.4. Note that for triangles, the clique inequality and the odd-cycle
inequality are the same. We define the so called clique-constraint stable set polytope as

Posrap(G) :={z € RIV!| 2 satisfies (1), (3) and (7)}.

A graph G is called perfect? if Postap(G) = Psrap(G). The maximum clique and the stable set
problem are very closely related. Therefore, it is not surprising that it is N'P- hard to separate the
clique inequalities in an arbitrary graph. With this fact, it is quite remarkable that the following
theorem holds.

Theorem 2.6. [ | The mazximum stable set problem for perfect graphs can be solved in poly-
nomial time.

We do not go into the details of the proof here, but nevertheless, we give a rough explanation.
It is possible to generalize the clique inequalities to a class of so called orthonormal representation
constraints which are polynomially separable. The convex set of all vectors satisfying them and the
non-negativity inequalities build the so called theta body, | , ]. In the case for perfect
graphs, this theta body is a polytope which equals Psr4p(G). This implies Theorem 2.6. However,
it is even N'P-hard to determine an optimal solution over Posrap(G), in general. More about
perfect graphs can be found, for instance, in | , , ].

!'Two graphs G = (V,E) and H = (W, F) are called isomorphic, if there is a bijection ¢: V — W such that
w € E & ¢p(u)p(v) € F.

2Originally, in 1961 BERGE called a graph perfect if the coloring number is equal to the clique number. This
definition is equivalent to the polyhedral one given above.
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Figure 4: Odd wheel

If we consider the Figure 4, we recognize an odd hole with cardinality seven with the additional
node v; which is adjacent to all other nodes. Such a graph is called wheel and node vy is its hub.
We see that if node v is contained in a stable set, no other node of the wheel can be contained in
it. Hence, we get the following odd-wheel inequalities

Z x; + MT_lxu < MT_l for each odd wheel C' = (V, E) C G with hub w. (8)
vi€‘7

From its construction, inequality (8) is valid for Pspap(G). It defines a facet if G is isomorphic to
an odd wheel. Recognize that the wheel inequality dominates the odd-hole inequality. Generaliza-
tions of the wheel inequalities can be found in | ].

(a) (7,3)-web (b) (7,3)-antiweb
Figure 5: Web and antiweb

Another class of inequalities are the web and antiweb inequalities. Let p and ¢ be integers
satisfying p > 2g+ 1 and ¢ > 1. A graph G is called a web if G is isomorphic to the graph
consisting of the nodes {v1,...,v,} with an edge v;v;, iff i — j| = r < ¢ modulo (n —2). A
web is abbreviated with W (p, ¢). A graph is called antiweb, denoted by AW (p, q), ifft AW (p,q) is
isomorphic to W (p,q). Examples can be seen in the Figures 5 (a) and 5 (b), respectively. The
following inequalities

Z i < g, 9)

v €W (p,q)

Yo < LgJ (10)

v, €AW (p,q)

are called web inequalities and antiweb inequalities, respectively. Both types of inequalities are
valid for Ps745(G). The web inequalities (9) define facets if p and ¢ are relatively prime' and

!Two natural numbers are called relatively prime if their greatest common divisor is 1, or in formula: ged(p,q)=1.
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G = W(p, q); while the antiweb inequalities (10) are facet-defining for Pspap(AW (p,q)) if there is
no k € N with p = k- ¢. More details can be found, for instance, in | , ].

Now, consider the following class of inequalities for a graph G = (V, E) and W C V

(W)= > x; < a(G[W)). (11)
v, €W

They are called rank inequalities. From their construction, inequalities (11) are valid for Psrap(G).
The edge, odd-cycle, clique, antihole, web and antiweb inequalities belong to this class. Therefore,
these inequalities are not facet-defining for Psp4p(G) in general. For instance, an odd-wheel with
5 or more nodes does not lead to a rank inequality. Let us now have a closer look at the separation
of the discussed inequalities.

2.2 Separation

In order to separate the odd-cycle inequalities (5) for a graph G and a vector x*, one has to find an
odd cycle for which z* violates the corresponding inequality, or one has to prove that such cycles
do not exist. In other words, we have to find a minimum-weight odd cycle in a graph, with an
appropriate weighting function. If this cycle satisfies the corresponding inequality (5), it is proven
that all odd-cycle inequalities are satisfied. Otherwise, one has found a maximal violated odd-cycle
inequality. Therefore, we first recognize

Proposition 2.7. A minimum-weight odd cycle in a graph G with edge weights can be computed
in O(|V|-|E]|-log(V)).

The idea is to construct an auxiliary bipartite graph H. This node set of H consists of two
copies of the node set of the original graph G, and there is an edge between two nodes of H if the
corresponding original nodes in GG are adjacent. The edge weights are copied with the edges. From
the construction of H, a minimum odd-cycle with respect to the edge weighting in G corresponds
to a shortest path in H and vice versa. Hence, calculation of a shortest path for each node of the
original graph G to its copy, gives a minimum weight odd cycle in G. Computing the shortest paths
with Dijkstra’s algorithm yields to the running time of Proposition 2.7. Now, define the following
edge weighting of graph G depending on z* as
%

-] —a}
_ 12
: (12

With this weighting, it can be shown that an odd-cycle inequality in G is violated by vector z*, if
and only if

c(vivy) ==

3C = (V,E) C G with C odd cycle and Z c(vivg) <

vivjEE'

N —

This yields directly to the following theorem.
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Theorem 2.8. The separation problem for the class of odd-cycle inequalities can be solved in
O([V]-|E] - log(|V])).

One has to mention that x* has to satisfy all inequalities (3) before the odd-cycle inequalities
can be separated with the above procedure. Otherwise, the weights defined in (12) can become
negative, and the shortest path cannot be calculated with Dijkstra’s algorithm anymore. More
details and the description of the algorithms can be found in | ) ) |. Tt is interesting
to realize that, in general, there are exponentially many odd cycles in a graph, but on the contrary,
the separation of them is polynomial. We want to mention that GROTSCHEL and PULLEYBLANK
introduced in 1981 another method to separate the odd-cycle inequalities with the use of perfect
matchings! resulting in a running time of O(|E|*), [ ]

Finding a maximum clique is N"P- hard, while computing an arbitrary maximal? clique as well
as an arbitrary maximal stable set can be done in linear time. The separation problem for the
clique inequalities asks to find a violated clique inequality in a particular graph G with a given
linear program solution or to state that all clique inequalities are satisfied. This is equivalent to
finding a maximum clique in G with the linear program solution as node-weighting c¢. Hence,
the separation problem for the clique inequalities is N'P-hard. Computational tests show that
the clique inequalities are very important for polyhedral approaches to the stable set problem, cf.
[ |. As an exact separation cannot be considered, one idea could be to fix the size of the cliques
to be separated, as then the problem becomes polynomially solvable. Another observation is that
it is enough to consider maximal cliques. The reason is that the resulting clique inequality domi-
nates all clique inequalities corresponding to contained cliques. Practically, it is more successful to
separate over larger classes of inequalities containing the clique inequalities. We discuss that later
for the case of rank inequalities. However, the best computational results, so far, are achieved with
heuristic separation methods.

A separation algorithm for the wheel inequalities is given by CHENG and CUNNINGHAM, | ].
The appealing idea is to treat each node of the graph as a possible hub of an odd wheel and define
appropriate weights for all nodes which are adjacent to this hub. Then, on the new graph, the
odd-cycle inequalities can be separated. Hence, this algorithm results in a total running time of
O(|V|?-|E| -1og(|V])) or O(|[V[*), dependent on the shortest path algorithm. For practical Branch
& Cut algorithms, this complexity is already too high compared to the number of violated in-
equalities one can expect. Even more sophisticated are the separation routines for the web and
antiweb inequalities. They are discussed by CHENG and VRIES, | ]. Although they can also
be separated in polynomial time, the complexity of the separation algorithms are again too large
for practical use. In addition, these type of inequalities usually occur in graphs with high density?,
e.g. greater than 0.7, which makes its separation doubtful for graphs with low density.

1A matching is a collection of pairwise disjoint edges. If in a matching M every node of G is incident with exactly
one edge M, then it is a perfect matching.

ZWe distinguish between maximum and maximal. Maximal means that there is no better solution containing the
particular one. So maximal can be seen as locally best while maximum is global.

3The density of graph G = (V, E) is defined as %
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Next to the special type of inequalities for the stable set polytope discussed in the Section 2.1,
one can use general classes of inequalities. In this context, we want to mention two of such a type.
The first are the so called mod-k cuts which belong to the CHVATAL-GOMORY cuts with rank 1.
The appealing idea of the mod-k cuts is to find a multiplier u, such that a particular inequality
system Ax < b multiplied with this vector 4 can be strengthened by dividing it by a positive integer
k. Therefore, let k > 1 be integral, and suppose that we have given a system of linear inequalities
Az < b with integral coefficients. Let u be a vector with positive integer entries and appropriate
dimension such that

pTA = 0 (mod k),
p'b = k—1 (mod k).

From this, one can obtain the mod-k inequalities

1+ 1, T
—pu Ax < = —(k—1)).
ph Ar < 2(pb—(k—1))
Examples for the case of k = 2 are the odd-cycle inequalities or the wheel inequalities. The sepa-

ration of the mod-k inequalities and more details can be found in [ , ]

The second class of general inequalities that we discuss here in brief are the so called local
cuts. The principal idea was introduced by APPLEGATE et al. in 2001 for the Traveling Salesman
Problem, | ]. Suppose we have given the set of all m feasible solutions to the stable set
problem, for instance of a subgraph with n nodes. The idea is to check if a given (solution) vector
lies in its convex hull or if it lies outside, to compute a facet which separates this point from the
convex hull. This can be achieved by solving a linear program with m variables and n constraints.
Its optimal objective function value provides the information if the point lies inside the polytope,
and the optimal dual variables give the coefficients of the separation inequality, called local cut.
Obviously, this method has some weaknesses. One first has to find a ’good’ subgraph and then
enumerate all stable sets. In addition, the linear program to be solved can be large, as the number
of stable sets in a graph can be exponential. Nevertheless, the resulting cuts can be quite strong,
especially if all other separation procedures do not bring new cuts. More details and computational
results can be found in | ]

At the end of this subsection, we introduce the idea of separating rank inequalities. We do not
go into full detail here but instead focus on the discussion of the principle ideas of the beautiful
results of MANNINO and SASSANO, | |. The appealing idea is to reduce the size of the graph
and to make it denser at the same time. In general, any node of the graph can be selected and
its two endnodes will be removed from the graph. In addition, new so called false edges are added
to the graph and some other nodes may also be removed. Therefore, this procedure is called
edge projection. Now, after a few iterations of this procedure, when the graph is small enough,
one can separate any type of rank inequality, for instance, the clique inequalities or the odd-cycle
inequalities. If a violated inequality has been found, it must be projected to be valid for the
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polytope of the original graph. This process is called anti-projection. We have to mention that it
is possible that a projected inequality is no longer violated by a solution vector, even if it was in
the projected graph. The edge-projection and the anti-projection can be done in linear time which
makes this method very fast. Let us now consider a small example indicated in the Figure 6. In
part (a) you see a small graph with six nodes. It is an odd hole with the additional node v4. If we
select edge e = v3vs to project on, then in this case, nodes vs, v5 and, in addition!, v4 are removed
from the graph; as well as all edges incident with any of these nodes. The false edge? vovg is added,
and one gets the triangle shown in part (b) of the Figure 6. We recognize that the resulting graph
is smaller and, indeed, more dense. We realize that the triangle inequality

1 +x2+ a6 <1

is valid for Ps74p(G) but not for Psp4p(G). In most cases, the anti-projection adds the deleted
nodes to the inequality and increases the right hand side by value one. In this case we get

1+ T2+ 23+ T4+ 25 + 26 < 2,

which is a valid inequality for Psr4p(G). We recognize that it is a lifted® odd-hole inequality,
which is facet-defining for Psp4p(G). In general, it turns out that facet-defining inequalities for
the polytope of the projected graph might not be facet-defining for the polytope of the original
graph and vice versa. The method was successfully developed and implemented by Rossi and

SMRIGLIO, | |. More details and polyhedral results can be found in | ]
V2
b. V4 — V1 1
proj. !
V6
(a) Graph G (b) Graph G after
edge-projection of

edge v3vs

Figure 6: Edge projection

2.3 Branching

The branching strategy in a Branch & Cut algorithm influences the overall performance of the al-
gorithm very much. In general, it is very difficult to find a good strategy. Various techniques have
been explored and none of them can always outperform the others. But for special problems, there
are different strategies that help to reduce the size of the Branch & Bound tree and speedup the
algorithm. We start this section with a motivation for the need of special techniques and present

I'The reason therefore is that v4 is the common neighbor of nodes vz and vs.

False edges are added between the set of nodes which are only neighbors of v3 and not of vs and the set of nodes
which are only neighbors of vs and not of vs.

3The extension of a valid inequality for P to a valid inequality for a higher dimensional polytope P D P is called
lifting.
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the branching idea of BALAS and YU from 1986, | ]. Tt still remains the most successful strat-
egy in practice.

One standard branching idea for a problem with binary variables is to generate two subprob-
lems. One variable is set to value one in one subproblem and to value zero in the other one.
However, this branching strategy leads to a very unbalanced Branch & Bound tree for the maxi-
mum stable set problem. This can be seen by the following argument. Setting a variable to value
one sets all nodes of its neighborhood to value zero. In contrast, setting a variable to value zero
has no consequence for all other variables of the graph. To avoid this drawback, one could think
to set in each subproblem of the tree at least one variable to value one. Basically, this is the key
property of the branching strategy by BALAS and YU.

Let G' = (V' E') be the subgraph induced by the set of nodes which are not fixed in a current
subproblem. In each subproblem, the goal is to find a maximum stable set in the particular
subgraph given by the tree, or to prove that a(G’) < LB, with the lower bound LB. Let W C V',
and assume that we can show that o(G[W]) < LB. Clearly, if W = V', the subproblem can be
fathomed; otherwise, if «(G’') > LB any maximum stable set must contain at least one node of
set Z := V'\W = {v1,...,v,}. Based on this observation, BALAS and YU showed that every
maximum-cardinality stable set with greater weight than the lower bound must be contained in
one of the sets

VI ={v;} UV'\ (T(v;) U{vit1,...,0p}) fori=1,...,p.

Note, that this strategy is also true for the weighted case with ¢ # 1. This branching leads to p
new subproblems in one branching step. In each subproblem, node v; is set to value one, and all
nodes of I'(v;) U {vi+1,...,vp} are set to value zero.

Let us now discuss some properties of this strategy. The size of W and the ordering of the
nodes in Z can affect the total number of subproblems to be solved. Of course, the larger W is,
the fewer subproblems will be generated in that state. The size of W is strongly effected by the
quality of the computed lower bound. Determining W is quite crucial and can be done for the
cardinality stable set problem, for instance, with a clique covering, cf. | , |. Also other
methods such as matchings or holes | | have been considered. In addition, the choice of the
branching variable also has a great impact on the number of subproblems being solved. The size of
the tree can be reduced by branching on nodes with a high degree, which was empirically shown by
CARRAGHAN and PARDALOS | |. The reason is the previously mentioned observation that with
the branching node its neighborhood is also set. To sort the nodes in each subproblem in ascending
order of degree seems to be computationally expensive as the degree of all nodes has to be calculated
in each branching step prior to sorting. However, SEWELL [ | showed experimentally that for
sparse graphs this is still convenient.
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2.4 Implementation aspects

In general, when implementing a solver for the stable set problem, the following two things are
crucial. First, one has to obtain a good lower bound, which means in the case of maximization, a
feasible solution. One should use one of the many suggested heuristics in literature. We refer to the
article “Heuristics for maximum clique and independent set” (in Encyclopedia of Optimization).
Second, it is recommended to have a strong preprocessing. This becomes even more important
when the graphs result from applications. Many contributions have been made for this purpose.
Among them are, for instance, fixing of nodes, fixing of cliques and treating connected components
separately, | , , ].

For the case of a Branch & Cut algorithm in particular, one first needs a formulation of the
stable set problem. We discussed some of the relaxations in Section 2.1. For practical efficiency,
it is not recommended to start with the optimization over Prsrap(G). The reasons are that this
relaxation is very weak and contains relatively many constraints. A better idea is to start with
maximal cliques which contain all edges. Such a covering can be found in linear time. The resulting
relaxation is stronger, as each maximal clique is facet-defining and dominates all the edge inequal-
ities contained. Recognize that for bipartite graphs the relaxations is the same for both methods.

If one decides to separate several classes of inequalities within a Branch & Cut framework, one
needs an order in which the separation routines are called. It is recommended to first call the
polynomial separation routines, then the ones which take higher computational effort. However,
practical tests show that the clique inequalities are very important. Therefore, a Branch & Cut
solver should focus on fast heuristic separation of the clique inequalities combined with the very
powerful tool of edge-projection. This leads to the best computational results so far.

Moreover, it is recommended to focus on facet-defining inequalities. Therefore, each clique
should be lifted to a maximal clique before its inequality is added to the formulation. Accordingly,
each odd-cycle should be checked not to contain any chords, and if so, the smaller odd-cycle would
be added instead. These transformations can be done in linear time.

More details regarding implementation and Branch & Cut modules for the stable set problem
can be found, for instance, in | , , , ]
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3 Conclusion

Many contributions have been made to solve the stable set problem exactly. One of the exact
algorithms is based on the Branch & Cut method. However, the stable set polytope is not yet fully
understood, and the known inequalities are either easy to separate with little impact, or they can
only be separated with a large amount of computational effort and are very crucial for polyhedral
approaches to the stable set problem. Therefore, it is not a surprise that there are some stable set
instances with less than 1000 nodes which cannot be solved exactly with current methods.

4 Crossreferences

Y-function (Lovész number); Graph Coloring: Exact algorithms and integer programming; Integer
programming; Integer programming: Branch and bound methods; Integer programming: Branch
and cut algorithms, branch and cut; Integer programming: Cutting plane algorithms; Heuristics
for maximum clique and independent set
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