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a b s t r a c t

Cloud computing is a hybrid paradigm which makes use of utility computing, high performance cluster
computing and grid computing and it offers various benefits such as flexibility, expandability, little or
almost no capital investment, disaster recovery, moveable work space and much more. However, due
to constantly increasing number of data centers worldwide, the issue of energy consumption by these
data centers has attracted attention of researchers. Resource allocation and resource utilization are the
major criterion in which the problem of energy efficiency can be addressed. In this research, we aim to
provide energy-efficient resource allocation using Multi-Objective Optimization (MOO) method.
Further, We propose MOO-based virtual machine (VM) allocation policy and implement it in CloudSim
environment. The results are compared with existing policies. The results depict that MOO-based policy
leads to saving in energy due to efficient resource allocation, without compromising performance of data
center operations.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hasty revolution in virtualization technologies make Cloud
computing one of the most popular domains in the era of high per-
formance and distributed computing. It has come up as a large pool
of resources that provides different services like platform, software
and infrastructure (Mell and Grance, 2009). Platform as a service
(PaaS) provides platform to the end users to develop,execute and
manage the applications without worrying about internal infras-
tructure. Software as a Service (SaaS) provides software deployed
over the internet on end user’s request and Infrastructure as a Ser-
vice (IaaS) provides physical resources on user’s demand. Out of
these three services offered, the Infrastructure as a Service (IaaS)
is further categorized into three layers, viz. physical resource layer,
virtual resource layer, and management tool layer (Sosinsky,
2010). The physical resource layer consists of traditional data cen-
ter and contains thousands of servers, network devices, disks and
non-IT components like cooling equipment, lightening, air condi-
tioner, etc. These different services are available to end users
through virtualization. Virtualization is a process of generating vir-
tual computing resources from available physical resources. User’s
requests are assigned on one or more of these virtual computing
resources based on availability and configuration. Creation and
management of virtual resources in form of virtual machines
(VMs) are carried out using a component known as Virtual
Machine Monitor (VMM) or hypervisor. VMM is a part of virtual
resource layer which contains a pool of computing or storage
resources which are virtualized from the physical resource using
virtualization techniques. Some examples of VMM are KVM
(Kivity et al., 2007), Xen (Barham et al., 2003), VMWare (http://
www.vmware.com) and Hyper-V (http://www.microsoft.com/
hyper-v-server/en/us/default.aspx). The management tool layer is
responsible for virtual resource management, accounting and
monitoring. OpenNebula (Borja et al., 2009) and Eucalyptus
(Nurmi et al., 2009) are the examples of this layer. The quality of
service(QoS) in Cloud environment depends upon the performance
of physical host/server in data center. Cloud infrastructure that
contains a large number of processing elements, auxiliary storage,
memory, network bandwidth etc. which make it possible to handle
millions of requests from users around the globe. However, the
consumers need to pay for usage to the service providers. On the
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service provider’s side, maintenance and management of this
large-scale data centers need to be emphasized for revenue gener-
ation. Due to enormous computing requirement worldwide, during
last decades, number of data centers has increased considerably.
This has led to an issue of energy consumption by these data cen-
ters and subsequently affecting environment and financial
impacts. For instance, in Amazon’s data centers, it is identified
and reported (Hamilton et al., 2009) that i) Expenses related to
the cost and operation of the servers is 53% of total budget. ii)
Energy-related costs is about to 42% of total budget that includes
both direct energy consumption of 19% by servers and Power used
in cooling the infrastructure about 23%. Gartner Report 2007 states
that 2% of total CO2 emissions in environment is contributed by IT
industry. U.S.EPA report in 2007 also mentioned that 1.5% of total
U.S power consumption is used by data centers and costs $ 4.5 bil-
lion. Thus, it is utmost significant for service providers to think
upon these two major affecting factors viz. performance and power
consumption in Cloud. An efficient resource allocation policies
could be used to address these factors. The policy should take into
account the process of appropriately mapping the job on virtual
resource and mapping virtual resource on physical server.
Energy-efficient resource allocation while maintaining perfor-
mance is a challenging issue. Performance and energy based VM
allocation can be viewed as the NP-Complete problem as our aim
is to reduce energy consumption and to increase performance
(Mann et al., 2015; Ghribi et al., 2013; Dabbagh et al., 2015;
Masdari et al., 2016; Jing et al., 2013; Raycroft et al., 2014; Panda
and Jana, 2015; Xiong and Perros, 2009). One of the challenges of
energy-efficient and performance oriented scheduling algorithm
is the trade-off between energy consumption and performance.
In this paper, we address this issue by a method of the multi-
objective optimization and propose a novel algorithm called Pareto
optimal Multi-Objective Optimization based Allocation (MOOA) for
Cloud environment. Multi-objective optimization is a mathemati-
cal method of systematic and simultaneous optimization of objec-
tives’ set. Unlike the single objective optimization, multi-objective
optimization has a set of non-dominated solutions considering all
objectives known as a pareto optimal solutions (Zitzler and
Thiele, 1998). This pareto optimal outcome is called pareto front
(Zitzler and Thiele, 1998). A simple single-objective optimization
Fig. 1. Different methods of Multi-objective
problem can be formulated as min f(x), where x 2 S, where S is a
set of constraints. Whereas, multi-objective optimization problem
can be formulated as: min f1(x),f2(x),f3(x),. . .,fn(x) where x 2 S.
There are four categories of methods in multi-objective optimiza-
tion (Marler and Arora, 2004).

� Methods with apriori articulation of preferences: Preferences
are articulated by Decision Maker (DM) or user for different
objective functions. This technique is used when the priority
of objectives is articulated. The user needs to give the prefer-
ence priory to obtain the desirable solution.
� Methods with a posteriori articulation of preferences: User
selects the efficient solution from set of solutions and accord-
ingly the preference of the objectives are finalized. This method
is used when the user is aware of set of non-dominated
solutions.
� Methods with no articulation of preferences: The DM cannot
concretely define the preferences all the time. No preference is
required in this method. It is a simplification of the apriori artic-
ulation of preference method. It performs operations directly on
objectives.
� Progressive articulation of preferences or Interactive
method: The DM needs to give the preferences at every fixed
iteration. DM needs to be careful with the preference of objec-
tive to obtain an optimal solution.

Hierarchy shown in Fig. 1 summarizes the different method of
Multi-objective optimization. Selection of the method depends
on the type of problem. Their comparisons are shown in Table 1.
Based on this comparison, a method of priory articulation of pref-
erence is identified as suitable for our work. This is because of the
fact that the user is not aware about the possible solution/result,
but can predict/give preferences to non dominated objectives to
generate pareto front. To do so, we prefer to use a priory articula-
tion of preferences. Further, comparison on different methods of
priory articulation of preference are shown in Table 2. Based on
this comparison, we found weighted sum method of apriori artic-
ulation of preferences suitable for our problem, as accuracy in
weight selection generates pareto optimal set. In this method, prior
weightages are given to different objectives. This weightages are
optimization (Marler and Arora, 2004).



Table 1
Comparisons of method of multi-objective optimization (Marler and Arora, 2004).

Method Name Key characteristic Preference of
objective

Solution Identified/
Goal specified

A priori articulation of
preferences

User indicates the relative importance of the objective functions or desired goals before
running the optimization algorithm.

prior required No

A posteriori articulation of
preferences

Which entails electing single solution from a set of mathematically equivalent solutions Not required Yes

Progressive articulation of
preferences

Decision-maker needs to continuously provide input during the running of the algorithm Required
continuously

Yes

No Articulation of
Preferences

No preferences required Not required No

Table 2
Comparison of different methods of apriori articulation of preferences.

Method Name Key characteristic Preference
articulation

Advantages Disadvantages Code
complexity

Weighted Global
Criterion

All objective functions are combined
to form a single function

Method parameters
are used to define
preferences

It can give optimal
pareto set in accurately
defined preferences.

The fixed value of power will
limit prediction of the
calculation on weight/
preference.

Simple

Weighted Sum All objective are combined to form a
single function with weight attached
with each objective.

A very less preference
information required.
User does not provide
extensive input.

Easy and simple to
implement. Accuracy in
weight selection will
give pareto optimal set.

Weights of objective function
needs to be identified accurately
otherwise pareto optimal points
and set cannot be obtained.

Simple

Lexicographic Objective functions are arranged in
order of importance and after wards
the objectives are minimized.

Clear. Straight forward
method

computational expense increase
as multiple problems solve
individually.

Average

Weighted Min–Max The method is about to minimization
and maximization of the objectives
by introducing constraint.

Weightage is assigned
to overall function. It
is predefined.

It provides the
complete Pareto
optimal set by variation
in the weights.

Number of constrain can
increase the number of
complexity.

Average

Exponential Weighted Exponential is introduced in
weighted sum method.

Predefined Give pareto optimal set. Large values of parameters used
in method may lead to numerical
overflow.

Complex

Weighted Product Weight is apply as a power of
objective function.

Unclear A functions with
different significance
are handled.

As the characteristics of the
weights are unclear cannot
obtain efficient pareto optial set.

Average

Goal Programming Goals are specified for each
objectives.

Goals are clear. It has wide range of
application as it
achieves/optimize goals
one by one.

There is no guarantee of a Pareto
optimal solution.Cannot handle
larger objectives.

Average

Bounded Objective
Function

Minimizes the single most important
objective function, all other
objectives are used to create
additional constraints for objective
function.

Not required, rather it
sets limit on the
objectives.

Consistent variation in

D
ndash

Ď parameters, may
obtain the complete
Pareto optimal set.

Selection of parameter to get
feasible region is complex.

Average

Physical Programming It creates utility function based on
objective functions, constraints, and
goals

Clear. Customize a more
complex and accurate
individual utility
function for each
objective.

Significant knowledge of
objectives, constraint and goals
required.

Complicated
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actually a service providers’ priority to objectives as mention in
Table 2.

Multi-objective optimization approach is also used for task level
scheduling for heterogeneous Cloud in Panda and Jana (2015) as
discussed in related work. For resource level scheduling, researches
(Beloglazov and Buyya, 2010a,b, 2012; Dong et al., 2013; Buyya
et al., 2010; Piao and Yan, 2010; Zamanifar et al., 2012) have
focused on VM allocation policies. These allocation policies are fur-
ther categorized based on different parameters like performance,
energy, network,data awareness and SLA (Shrimali and Patel,
2015). Also, other researchers (Van et al., 2010; Xiao et al., 2013)
have focused on VM allocation policies that consider both i.e per-
formance and energy as important parameters. However, it also
shows a noticeable tradeoff between both of the parameters. The
rest of the paper is organized as follows. Section 2 describes related
work associated with this domain. Section 3 illustrates analytical
model and problem statement of multi-objective optimization
allocation policy, followed by proposed algorithm shown in Sec-
tion 4. Conclusion and future work are depicted in Section 5. The
references used in the paper are listed in Section 6.
2. Related work

In this section, we have reviewed recent research on resource
provisioning in virtualized computing environments. Quang-
Hung et al. (2014) have presented energy-efficient scheduling of
VMs by using Energy-aware Performance-per-watt Oriented
Best-Fit heuristics algorithms in which energy consumption is han-
dled efficiently but execution time of the application is consider-
able. Calheiros et al. (2011) have introduced VM based energy
efficient data center architecture, which performs the energy effi-
cient allocation and live migration of virtual machines along with
server consolidation.Their research claims to achieve energy-
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saving goals with little performance overheads. Van et al. (2010)
have proposed a resource management framework combining a
utility-based dynamic virtual machine provisioning manager and
a dynamic VM placement manager. Problems of power consump-
tion and performance are modeled as constraint satisfaction prob-
lems in their work. Lee and Zomaya (2012) proposed two energy-
conscious task consolidation heuristics on which the energy con-
sumption for executing the task is explicitly or implicitly mini-
mized without performance degradation of that task. They
claimed to have promising energy-saving capabilities with little
performance overhead. Xiao et al. (2013) have introduced heuris-
tics algorithm to prevent overload in the system effectively with
energy saving. They have also focused on both the parameters
and their results of experiments show its high effectiveness in pre-
venting server overload proactively. Lin et al. (2011) proposed a
threshold-based dynamic resource allocation scheme that allocate
the virtual resources dynamically among the Cloud computing
applications based on their load. Their scheme monitors and pre-
dicts the resource requirement of the Cloud applications and adjust
the virtual resources accordingly. However, they have not consid-
ered energy efficiency. In our previous work (Shrimali and Patel,
2015), we have carried out a comparative study of different VM
allocation techniques based on a performance and energy that also
depicts a noticeable trade-off between the two factors. A survey
and experiments carried out in Jansen and Brenner (2011) com-
pared different techniques of energy efficient VM allocation tech-
niques. Their comparisons show that while managing energy,
CPU load is increased. Kusic et al. (2009) handle power and perfor-
mance using multi-objective optimization approach under Limited
Lookahead Control(LLC). We consider their method with LLC as a
base method for comparison with our work. In Hameed et al.
(2016), Abdul et al. have identified few open challenges related
with energy efficient resource allocation and presented research
taxonomy on existing techniques (classified as hardware and soft-
ware based) along with various dimensions such as resource adop-
tion policy, objective function, allocation method, allocation
operation and interoperability. Further, authors have highlighted
several open issues and proposed various prospective research
directions. Ghribi et al. (2013) have presented two scheduling algo-
rithms (allocation and migration) for energy efficient VM schedul-
ing based on VMmigration on service departures with an objective
to minimize power consumption. The problem has been consid-
ered as NP-hard bin packing problem. With experimentation,
authors have claimed significant energy saving depending on sys-
tem loads. Masdari et al. (2016) have defined the problem of
resource allocation as finding an optimal pair(s) of a virtual
machine and a physical machine. The optimal pair is believed to
be effecting the performance, resource utilization and power con-
sumption. Authors have surveyed various existing VM placement
mechanisms and assessed their capabilities and objectives.
Panigrahia et al. (2015) have recognized the tradeoff between max-
imizing resource utilization and minimizing energy consumption
and proposed two algorithms (SLA-based task consolidation STC
and Threshold-based task consolidation DTTC) to reduce energy
consumption. With experimentation, authors have claimed the
algorithms to outperform in comparisons FCFS in terms of energy
consumption and number of task completion. With the help of
fog computing, Shojafar et al. (2016a) have attempted to address
the issue of delay and delay-jitter in real time Cloud services to
vehicular clients. Authors have proposed an energy-efficient adap-
tive resource scheduler (NetFCs) with an aim to maximize the
overall communication and computing energy efficiency while
meeting QoS requirements (reducing transmission rates, improv-
ing delays and delay-jitters). The performance of the proposed
scheduler is numerically tested against some state-of-art sched-
ulers with real-world datasets. Authors have proposed to consider
closed networked multi-tier computing infrastructures and live
VM migration for forecasting as part of future work. Shojafar
et al. (2016b) have addressed the issue of energy efficiency in
Cloud data centers by considering the traffic engineering to
dynamically adapt the number of active servers to the current
workload. Authors have proposed an optimization framework
known as MMGreen for compute intensive tasks such as multime-
dia data processing with huge amount of data. Through experi-
mentation, authors have claimed to achieve saving in energy
along with maintaining SLA. Zhao et al. (2015) have presented an
on-going funded project titled Software Workbench for Interactive,
Time Critical and Highly self-adaptive Cloud applications
(SWITCH) for developing software methods and tools for the entire
life cycle that addressed the issue for time critical applications
such as customized development of dedicated infrastructure and
maintenance of system performance in dynamic infrastructure.
Authors have developed a concept known as application-
infrastructure co-programming and control model with the func-
tions of programmability and controllability. Kimovski et al.
(2016) have recognized the issue of portability and vendor lock-
in in federated Cloud and presented a concept known as ENTICE
for VM repository and operational environment. To improve the
loading time, delivery time and the execution time along with
enhancement in QoS, ENTICE optimizes the VM images for specific
Cloud infrastructure based on various factors through efficient
development and management of VM images. Authors have pro-
posed to work on developing new knowledge based model incor-
porating multi-objective optimization framework. In addition, a
weighted sum method of multi-objective optimization is proposed
in Panda and Jana (2015) for task level scheduling in heteroge-
neous multi-Cloud environment. It’s aim is to minimize makespan
and total cost of services for end users. However, in this research
we have used multi-objective optimization approach for resource
level scheduling in homogeneous single Cloud environment. More-
over, our aim is to minimize power consumption and SLA viola-
tions as compared to Panda and Jana (2015).

So, in this research, by considering energy and performance, we
introduce a MOO-based technique for efficient resource allocation.
3. System model and problem formulation

In this section, we describe Cloud’s Performance and Energy
(PE) model. We also describe the virtual machine allocation prob-
lem targeted in our work. The details presented in the model are
from the perspective of different service providers.

Consider a Cloud comprises of a large scale data center of homo-
geneous physical nodes. Fig. 2 depicts the overall organization of
the Cloud which we consider for our experimental setup. The Cloud
service provider has multiple datacenters situated at various geo-
graphical locations. Every data center is independent on other as
far as functionality is concerned. Each datacenter is comprised of
multiple clusters which are essentially nothing but group of nodes.
Every cluster maintains a cluster controller (CC) which is a central-
ized component to monitor the status of each node’s utilization
under it. Every physical node is comprised of multiple virtual
machines (VMs) which are provided as part of virtual resources
to users upon their requests. The overall utilization of a physical
node is directly proportional to the sum of utilization of virtual
machine under the same.

Hereafter, the names, host, node and server, are used inter-
changeably. We have assumed the node to be in two modes viz
(i) active and (ii) idle. In active mode, a node processes the requests
whereas it does not processes any request in idle mode. Requests
from different users are mapped to the different nodes based on
the resource availability. Many criterion such as utilization,



Fig. 2. Organizational Architecture of Cloud.
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resource availability, priority from user, predicted workload of host
etc are used to map request on a host. For our model, we have
taken utilization factor for selection of the host. Further, we con-
sider the issue of VM allocation in the terminology of request allo-
cation to a specific host.

Before we study the performance and energy model, we would
like to represent the architectural features of physical servers.
Every server is comprised of n cores each having m Millions
Instructions Per Second (MIPS) capacity, resulting into total n ⁄ m
MIPS capacity per server. We further assume that the required
MIPS by any VM is less than available host capacity at the time
of VM to host allocation.

3.1. Performance and energy (PE) model

A linear relation (Lin et al., 2015) between processor utilization
and energy consumption is considered for selecting a server in cur-
rent Cloud model. Beloglazov and Buyya (2012) have analyzed the
power consumption of the selected server at different load level
which claims that there is a small variance in a power consumption
by ideal and active nodes. The power consumption by the selected
servers are shown in Table 3. As can seen from table, an idle node
consumes about 73.50% power consumption of its peak capacity.
Hence, it is recommended to turn off these idle nodes for saving
energy consumption.
Table 3
Power consumption (KwH) of selected server under different load in % Beloglazov and Bu

Server (%) 0% 10% 20% 30% 40

HP ProLiant G4(KwH) 86 89.4 92.6 96 99
HP ProLiant G5(KwH) 93.7 97 101 105 11
Further, based on utilization of node, the new incoming job
requests may be assigned to appropriate node. For this, we bifur-
cate the nodes among three categories viz. (i) under-utilized (ii)
over-utilized (iii) moderately utilized.

It is apparent that assigning new request to already over uti-
lized host could result into performance degradation and SLA vio-
lation, whereas, assigning these requests to underutilized hosts
would block the hosts from turning off in future. So, we see that
moderately utilized host are most suitable for energy efficient
and performance aware allocation. Hence, utilization of node is
considered for proper node selection.

For our model, we assume that resource demand by application
is static and hence, our second parameter viz. performance of the
system is determined by the performance of application deployed
on a system. It can be determined by the characteristics like min-
imum throughput, maximum response time and maximum execu-
tion time. As these characteristics can vary for different workload,
to evaluate performance independent metric, SLA is considered to
evaluate performance (Beloglazov and Buyya, 2012). Performance
of application is affected by fluctuation in CPU demands of host.
If VM request of CPU demand exceeds to CPU capacity of host, it
results into performance degradation and hence, violations of
SLA. When CPU demand is higher than CPU capacity, VM will be
migrated to new host to improve performance. When performance
of application degrades, it affects to SLA. To evaluate SLA Violations
(SLAV), we have considered SLA violation Time per Active Node
(SLATAN) and the overall performance degradation due to VM
migration(PDM). We are interested in selecting a host with less
SLAV (Beloglazov and Buyya, 2012). Two measurement metrics
are used to calculate SLAV:

1. SLA violation time per active node(SLATAN) (Beloglazov and
Buyya, 2012) (where node experience maximum utilization)
(Eq. (1))

2. Performance degradation due to migration(PDM) (Beloglazov
and Buyya, 2012) of virtual machine (Eq. (2)).

SLATAN ¼ 1
N

XN
i¼1

Tsi

Tai
ð1Þ

PDM ¼ 1
M

XM
j¼1

Cdj

Crj
ð2Þ

where,

� N: Total No. of nodes.
� Tsi: Total time, node i experiencing full utilization.
� Tai: Total time, node i in active state.
� M: Total No. of VMs.
� Cdj: Estimation of performance degradation of VM j due to
migration.
� Crj: CPU capacity requested by VM j during its lifetime.

From both of the above, SLAV (Beloglazov and Buyya, 2012) is
defined by Eq. (3):

SLAV ¼ SLATAN � PDM ð3Þ
yya (2012).

% 50% 60% 70% 80% 90% 100%

.5 102 106 108 112 114 117
0 116 121 125 129 133 135
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Host Utilization UH (Beloglazov and Buyya, 2012) is defined as

UH ¼
Pn

i¼1 Uvmi � Cvmið Þ
CH

ð4Þ

where,

� n: Total No. of VM on a host.
� CH: Host capacity in MIPS, which is defined as Eq. (5)
� Uvmi: VM utilization
� Cvmi: Total VM capacity in MIPS.

CH ¼ Number of Core � Indiv idual Core Capacity ð5Þ
Energy Consumption by host EH (Lee and Zomaya, 2012) is

defined as

EH ¼ Pmax � Pminð Þ � UH þ Pmin ð6Þ

where, Pmax = Power consumption at peak load,
Pmin = Minimum Power consumption of active mode (having

utilization equal to lower threshold e.g. utilization = 30%),
UH is taken from (4).

3.2. VM allocation problem

Problem Statement: Given a set of host H and set of request R,
it is required to allocate a request Ri to host Hj such that energy
consumption is reduced and SLA violations are minimized.
4. Proposed algorithm

The functional block diagram of overall system is as shown in
Fig. 3. Requests submitted by end users are sent to Cloud data cen-
ters. Numerous nodes make data center. Every node has either
Fig. 3. System a
Node Controller (NC) or Cluster Controller (CC) fit into it. Working
of NC and CC is mentioned beneath:

4.1. Node controller

The role of node controller is to monitor and control utilization
of hosts. It is responsible for setting up dynamic threshold values
which are used to identify the over-utilized or under-utilized hosts
based on utilization values. It has two components: viz. (i) Moni-
toring component (MC) and (ii) Decision Maker (DM).

4.1.1. Monitoring component (MC)
The role of MC is to continuously calculate and monitor the uti-

lization of host ðUHÞ using Eq. (4). Utilization of node at every hour
is calculated for 24 h. As we recommended the host with moderate
utilization for VM allocation, it is required to bifurcate all the hosts
in data center into those three categories. For the same, two
dynamic threshold values (i) Upper threshold ðUthÞ (ii) Lower
threshold ðLthÞ are generated by NC. Unlike static threshold values,
dynamic threshold values are suitable for heterogeneous Cloud
environment. An upper utilization threshold value is calculated
using the technique proposed in Beloglazov and Buyya (2012) as
shown in Eq. (7) and (8).

MAD ¼ medianiðjXi �medianjðXjÞjÞ; ð7Þ

Uth ¼ 1� S�MAD ð8Þ
where S 2 R+ (R is a set of positive real numbers), S is a safety
parameter which allows the adjustment for efficiency of method.

Based on this upper threshold value, lower utilization threshold
value is calculated as shown in Eq. (9).

Łth ¼
Uth � S�MAD if MAD 6 20

Uth
MAD otherwise

(
ð9Þ
rchitecture.
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4.1.2. Decision maker (DM)
The role of DM is to analyze the node regularly and pass the sta-

tus to CC. DM sends the status of stable nodes to CC. Every time
when resources are allocated or released and utilization of node
is changed, it sends message/performance of node to CC.

4.2. Cluster controller

Cluster Controller (CC) is a part of host which creates cluster of a
moderate hosts. The role of cluster controller is as under:

1. Creation of virtual cluster: The aim is to create a virtual cluster
where the hosts are arranged in decreasing order of their uti-
lization, to satisfy the requirement of energy efficiency.

2. Selection of a node: It selects the host using multi-objective
optimization technique so that allocation becomes energy and
performance efficient.

CC repeats the process continuously.

4.3. Multi-objective optimization based allocation

Considering the performance and energy efficiency as main cri-
terion for allocation, many algorithms have been introduced, ana-
lyzed and compared in Shrimali and Patel (2015). Its experimental
result shows that there is major trade-off between performance
and energy. To reduce the trade-off, the multi-objective optimiza-
tion based allocation policy is introduced in our work. It optimally
selects the pair of Request- Host based on the proposed algorithm.
The problem can be formulated as follows:

Minimize :
Xn
i¼1

PfiðR;HÞ ð10Þ

subject to : p1;p2; ::pn 2 P j
Xn

j¼1
Pj ¼ 1 ð11Þ

where, P is the preference of objective.
Proposed Method: Here, we have used the weighted sum

method, a type of apriori articulation of preferences method of
multi-objective optimization, in which the weights of the objective
functions are decided in advance by the user. The basic idea of the
proposed method is as follows.

Let f 1(x) be the function of performance and f 2(x) be the func-
tion of energy efficiency. Since our objective is to minimize perfor-
mance overhead by controlling SLA violations and power
consumption, we need to minimize their linear combination F(x)
is defined as follows.

FðxÞ ¼ k� f 1ðxÞ þ ð1� kÞ � f 2ðxÞ ð12Þ
where, k is a weightage value set by Cloud service provider,0 6 k 6
1 and x is a decision variable. Here, request ðRiÞ and host ðHjÞ are the
decision variables on which the functions are evaluated. Hence, the
function can be rewritten as:

Calðr; hÞ ¼ k� f energyðRi;HjÞ þ ð1� kÞ � f perfoðRi;HjÞ ð13Þ
where, f energyðRi; HjÞ is defined by Lee and Zomaya (2012);

f energyðRi;HjÞ ¼ ðPmax � PminÞ � UH þ Pmin ð14Þ
and referring to Eqs. (2) and (1), f perfo ðRi; HjÞ is defined by
Beloglazov and Buyya (2012);

f perfoðRi;HjÞ ¼ SLAV ¼ SLATAN � PDM ð15Þ
The algorithm has two phases. In the first phase, the algorithm

goes through the process of checking request queue and set of
stable hosts(H). It further applies the energy and performance
function on the selected request and server pair. New matrix cal
is generated by multiplying preference value k to both function.
Note that the value of k depends on the Cloud service provider
which lies between 0 and 1. Identify the minimum value frommet-
ric Cal, which will be efficient request-host pair. Algorithm Selec-
tion of request-server pair using MOOA finds out the value based
on request and host pair ðRi; HjÞ is as follows: Firstly, it checks
the availability of request in request queue and accordingly it
checks each (request,host) pair.

Algorithm 1 Selection of request, host pair using MOOA
(request R, Host H)

1: if moderateHostList is NOT NULL then
2: min MIN
3: for each R in requestQueue do
4: for each H in moderateHostList do

Calðreq; sÞ ¼ k� f energyðRi;HjÞ þ ð1� kÞ
�f perfoðRi;HjÞ(13)

5: if (cal(R,H)<min) then
6: Min cal(i,j)
7: req i
8: host j
9: end if
10: end for
11: end for
12: return(req, host)
13: else
14: for each H in hostList do do
15: if H.getUtil lies within UpperThreshold and

LowerThreshold then
16: moderateHostList.add(H)
17: end if
18: end for
19: arrange the moderateHostList in decreasing

order of their utilization
20: end if
4.4. Multi-objective allocation: Analysis

Initially, when the request is available on request queue, it
checks the availability of average host. In the first case when aver-
age host is available, the total number of iterations will be
lambda� n2 � nvmþ ð1� kÞ � n2 � nvm� nh.

Hence, here kis constant, it takes Oðn2 � nvmÞ þ Oðn2�
nvm� nhÞ time. In the second case, when hostList is empty, it will
check the utilization of each node and hence, the total number of
iterations will be nh:IttakesOðnhÞ time.

5. Experimental evaluation

In this section, initially we start with sample evaluation, which
describes the evaluation scenario with the request and host pair.
Further, we demonstrate the simulation scenario with the help of
experimental results.

5.1. Sample evaluation

To perform sample evaluation on VM request allocation, we
consider 3 requests and 3 hosts with configurations as mentioned
in Table 4 and Table 5 respectively. Table 6 depicts evaluation of
different functions used in our proposed algorithm for all possible
combinations of given request and host pairs. As shown in Table 6,
tuple 3 for R1 and tuple 5 and 9 for R2 and R3 respectively, depict
that it chooses the request-host pair having the minimum energy



Table 4
Request configuration.

Request
Id

No of
cores

RAM
(MB)

Cd (estimated perfo.
Degradation)

CPU
(MIPS)

Uti

R1 1 1740 0.26 2500 20
R2 2 1740 0.5 2000 30
R3 4 512 0.67 2000 50

Table 5
Host configuration.

HostId No of
cores

RAM
(MB)

Pmax
(watts)

Pmin
(watts)

Tsi Tai Uti CPU
capacity

H1 2 4096 170 105 30 24 60 1000
H2 4 4996 169 130 20 40 40 1500
H3 4 4996 120 100 40 8 80 2500
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consumption and less SLA violations. Hence, their linear combina-
tion presented by function Cal, gives minimum value. So, for the
considered host-request pair, R1 and R2 are allocated to H3 and
R3 is allocated to H2. We can analyze from the Table 6 that it opti-
mizes the resource allocation by selecting the host with the mini-
mum value of both the parameters.

5.2. Simulation scenario

We simulated our algorithm for performance and energy-
efficient resource allocation. Simulation approach is used to repeat
the experiments under an analogous environment. Thus, the com-
parison of different scheduling strategies is possible. The CloudSim
(Calheiros et al., 2011) has been chosen as a simulation platform
since it allows the demonstration of virtualized environments with
on-demand resource provisioning and management. In our simula-
tion, we have used 800 power host of two types namely HpProLi-
ant G4 and HpProLiant G5. Also, to use workload traces collected
from a real system, PlanetLab (Chun et al., 2003) workload is used,
that consist different readings of CPU utilization collected at inter-
val of 5 min of VMs of different host scattered around the world.
We have considered random total 288 readings of different VMs
for 24 h of different host. PlanetLab (Chun et al., 2003) workload
covered readings of around 5000 virtual machines. In our experi-
ments, we consider physical machine with multi-core having same
core capacity for each core. VMs considered to be a resource
request type, and the request characteristics are consider as the
attributes of VM, which include the.
Table 6
Evaluation Metric.

Tuple# Request
R

Host
H

k fenergy
(R,H)

fperfo
(R,H)

k⁄ fener
(R,H)

1 R1 H1 0.5 3355 0.000014 16.5
2 R1 H2 0.5 1170 0.000006 585
3 R1 H3 0.5 300 0.000058 150
4 R2 H1 0.5 3795 0.000035 1897.5
5 R2 H2 0.5 1430 0.000014 715
6 R2 H3 0.5 380 0.00013 190
7 R3 H1 0.5 6395 0.000047 3197.5
8 R3 H2 0.5 700 0.00018 350
9 R3 H3 0.5 2470 0.000186 1235

Table 7
Physical node configuration.

Host types HOST MIPS HOST PES

PowerModelSpecPowerHpProLiantMl110G4Xeon3040 1860 2
PowerModelSpecPowerHpProLiantMl110G5Xeon3075 2660 2
1. Processing capacity of computing node in Millions of Instruc-
tions Per Second (MIPS).

2. Main memory(RAM) in Mega Bytes (MBs).
3. Secondary storage in Mega Bytes (MBs)/ Giga bytes(GB)/Tera

bytes(TB).

The configuration of physical machine/node and VMs are as
shown in Table 7 and Table 8 respectively. Workload data charac-
teristics is shown in Table 9.
5.3. Experimental comparisons

We have compared our multi-objective optimization technique
against five other existing techniques namely Round Robin
(Sempolinski and Thain, 2010),Watts Per Core(WPC) (Raycroft
et al., 2014), Limited look ahead control (LLC) (Kusic et al., 2009),
Non-Power Aware policy (NPA) (Beloglazov and Buyya, 2010b) and
Dynamic Voltage and Frequency Scaling (DVFS) (Guérout et al.,
2013). Description of these techniques are as follows:

1. Round Robin (Sempolinski and Thain, 2010): Round Robin is
selected for the experiments as it is the default scheduling pol-
icy in the Eucalyptus (Sempolinski and Thain, 2010). Resource
requests are assigned to host in a sequence based on the free
resource availability of host. For every resource request, the pol-
icy iterates through the hosts sequentially, starting from where
it is left, and again chooses the first host that can serve the vir-
tual machine.

2. WPC: Watts per core is identified as a most energy efficient
technique in the previous available literature (Raycroft et al.,
2014). Hence, it is included in our experiments. In this strategy,
the host using the least additional wattage per CPU core to per-
form task based on each host’s power supply is selected for VM
request.

3. LLC (Kusic et al., 2009): The Limited Look Ahead Control (LLC)
based framework is considered as base method and it is
included here as it allows for multi-objective optimization
under explicit operating constraints and is applicable to com-
puting systems with non-linear dynamics where control inputs
must be chosen from a finite set.

4. NPA (Beloglazov and Buyya, 2010b) and DVFS (Guérout et al.,
2013): Two standard policies, NPA and DVFS is considered as
these techniques adjusts the voltage and frequency of CPU
according to current utilization.
gy (1 � k)⁄ fperfor
(R,H)

Cal (R,H) Uti SLATAN PDM

0.000007 1677.50 50 0.41 0.000035
0.000003 585.00 33.33 0.16 0.000035
0.000029 150 20 1.6 0.000035
0.000017 1897.5 60 0.41 0.000083
0.000007 715.0 40 0.16 0.000083
0.000069 190.0 24 1.6 0.000083
0.000023 3197.5 100 0.41 0.00011
0.000009 350.0 40 1.66 0.000111
9.0.000093 1235.0 66.6 0.16 0.0001

(No) HOST RAM (MBs) HOST BW (bps) HOST STORAGE (MB/GB/TB)

4096 1000000 1000000
4096 1000000 1000000



Fig. 4. Comparisons of different policies based on power consumption.

Table 8
VM configuration.

VM
Types

VM
MIPS

VM PES
(No)

VM RAM
(MBs)

VM BW
(bps)

VM STORAGE
(MB/GB/TB)

1 2500 1 870 1000000 2500
2 2000 1 1740 1000000 2500
3 1500 1 1740 1000000 2500
4 500 1 613 1000000 2500

Table 9
Workload data characteristics (CPU utilization).

Workload No of host Average host shutdown

Random 50 20
PlanetLab 800 212
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5.4. Analysis of result

Although several experiments are performed by varying the val-
ues of user’s preference k in Eq. (12), in this section, we discuss the
only key results having the k values showing the equal priority (k =
0.5) to each objective. Experiments are run for multiple times and
average values of result are considered as final results as shown in
Tables 10. The comparisons of results are summarized in graph (4)
and (5). Further, we generate random values of k, to assign random
priority to objectives.
Fig. 5. Comparisons of different policies based on SLA violations (%).
5.4.1. Effect on data center energy consumption
Since one of our objectives is to minimize the power consump-

tion of data center, we compare the utilization of 5 hosts included
in the experiment and select the host with the average utilization.
To identify the average utilized host, utilization is calculated for
the period of 24 h. The simulation results presented in Table 10
show that selection of average utilized host brings higher energy
saving compared with other allocation policies. It can be noticed
that while applying MOOA policy for selection of (request, host)
pair, it predicts the possible power consumption of host and
accordingly selects the most appropriate host. Energy consumption
is measured in average value of KW/hr over the simulation period
of 24 h. From the Table 10, we can notice that using MOOA policy,
power consumption is about 30.2 Kw/hr, the values are nearer to
best energy efficient technique WPC. This clearly shows the impor-
tance of selection of appropriate host, which can result in efficient
power consumption in data center. Fig. 4 depicts the comparisons
of energy consumption between different policies. Fig. 5 depicts
the energy consumption (in Kilo Watt per Hour) for various poli-
cies considered for our experimentation. It is concluded for the fig-
ure that though WPC performs 3.27% better than MOOA, it
outperforms with other techniques by 0.43%, 15.76%, 398.94%
and 1939.07% in RR, LLC, NPA and DVFS respectively. It is worth
to note here that NPA and DVFS are non-power aware policies,
but we have considered here to have exhaustive list in our bench-
Table 10
Simulation results of the different techniques.

Policy SLA violations (Percent) Energy Consumption (

MOOA 5.41 30.2
Watts per core 10.78 29.8
LLC 6.32 34.96
Round robin 11.10 30.33
NPA – 150.68
DVFS – 615.8
mark policies. Further, LLC is a multi-objective optimization tech-
nique and hence it is worth comparing MOOA with LLC.
5.4.2. Effect on performance
Another objective is to improve performance of the system by

minimizing the SLA violations, which calculated by the number
of SLA violation on active node and performance degradation.
The performance of the MOOA policy quantifies by the number
of SLA violations which results into the 5.41 percent. The compar-
isons are shown in Table 10. It depicts that MOOA based technique
outperforms compare to other existing ones. The comparisons of
policies are shown in Fig. 5.
6. Conclusion

We have implemented and validated a multi-objective opti-
mization based allocation policy (MOOA) for performance and
energy-efficient resource allocation in a virtualized computing
Kw/hr) SLATAH PDM (Percent) VM migration

9.81 0.26 4778
– – –
7.30 0.47 3345
– – –
– – -
– – –
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environment. The problem formulation includes power consump-
tion and SLA violations in the optimization problem. Experiment
evaluation using Cloudsim environment shows that an allocation
using MOOA consumes, on average, 32% power and 5.41% SLA vio-
lations over a 24-h period with maintaining QoS requirements.
Also, MOOA depicts 51% improvement in SLAV as compared to
RR and shows 13% reduction in power consumption as compared
to LLC. The policy is compared against three other techniques
and proved better compared to them.

Future work may involve developing a fuzzy logic to generate a
random decision variable for the same technique to study more
effect on performance metrics, as well as a multi-objective opti-
mization based more general VM consolidation technique.
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