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ABSTRACT

This paper develops a rotation-invariant needlet convolution for rotation group
SO(3) to distill multiscale information of spherical signals. The spherical needlet
transform is generalized from S? onto the SO(3) group, which decomposes a
spherical signal to approximate and detailed spectral coefficients by a set of tight
framelet operators. The spherical signal during the decomposition and recon-
struction achieves rotation invariance. Based on needlet transforms, we form a
Needlet approximate Equivariance Spherical CNN (NES) with multiple SO(3)
needlet convolutional layers. The network establishes a powerful tool to extract
geometric-invariant features of spherical signals. The model allows sufficient net-
work scalability with multi-resolution representation. A robust signal embedding
is learned with wavelet shrinkage activation function, which filters out redun-
dant high-pass representation while maintaining approximate rotation invariance.
The NES achieves state-of-the-art performance for quantum chemistry regres-
sion and Cosmic Microwave Background (CMB) delensing reconstruction, which
shows great potential for solving scientific challenges with high-resolution and
multi-scale spherical signal representation. The official code implementation is

1 INTRODUCTION

Many data types in the real world can be modeled as spherical data, such as omnidirectional images
Coors et al| (2018)), molecules Boomsma & Frellsen| (2017), and cosmic microwave background
Akrami et al.|(2020). Such spherical signals contain abundant topological features. Unfortunately,
existing research |Caldeira et al.| (2019);Yi et al.| (2020) usually maps spherical signals to R? for
convenient modeling with convolutional neural networks (CNNs), which results in distorted signals
and ineffective shift equivariance [Marinucci et al.| (2008)).
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Figure 1: This figure shows the framework of our NES. As the left column shows, we first carry on a
non-equispaced fast Fourier transform (NFFT) with predefined weights on the spherical signal. The
following are an S?-Needlet Convolution and SO(3)-Needlet Convolutions, which can be used to
decompose the signal in multi scales. Then, we use the inverse NFFT (iNFFT) over the output of the
SO(3)-Needlet Convolution and feed the reconstructed signal into the downstream predictor.

Alternatively, geometric deep learning |Bronstein et al.[(2017;/2021) provides a universal blueprint for
learning stable representation of high-dimensional data in different domains to build equivariant or
invariant neural network layers that respect exact or approximate data symmetries, such as translation,
rotation, and permutation. As a fundamental requirement for many applications, it has been proven
critical to preserving the symmetry property in deep learning algorithm design [Baek et al.[(2021);
Davies et al.| (2021)); Méndez-Lucio et al.| (2021).

Equivariance is a significant property of geometric deep learning models as required by many
physical sciences, such as chemistry |Atz et al.|(2021) and biology [Townshend et al.| (2021)). This
paper develops a scalable geometric deep learning model for spherical signal processing and learning
with theoretically guaranteed rotation equivariance. Our model is based on needlet convolution on S?
and rotation group SO(3). The former describes the data representation on spherical point locations,
while the latter records three-dimensional rotation angles of the signal. The input data features are

embedded in each spherical point.

The main convolution computational unit is based on spherical needlets, which define a wavelet-like
system on the two-dimensional sphere S? that forms a tight frame on the sphere Narcowich et al.
(2006aib); [Wang et al.| (2017). A needlet is characterized by a highly-localized spherical radial
polynomial, which covers a large scale but captures detailed features in local regions.

The needlet convolution on SO(3) decomposes spherical signals into low-pass and high-pass needlet
coefficients. By separately storing and processing approximate and detailed information of the
input, the network establishes hidden embeddings with enhanced scalability. In addition, the wavelet
shrinkage operation [Donoho, (1995); [Baldi et al.| (2009) gains robust representations by filtering
out redundant high-pass information in the framelet domain. The exact multiscale embeddings by
SO(3)-needlet convolutions are invariant to rotation. Such convolutions can construct a deep neural
network that distills the geometric invariant features of a spherical signal. We name it Needlet
approximate Equivariance Spherical CNN (NES). Inside the network, we utilize the convolution over
the rotation group in multi scales to guarantee rotation equivariance.

The NES with shrinkage activation gains provably approximate equivariance, where the equivariance
error diminishes at sufficiently high scales. Moreover, the needlet convolution is implemented
efficiently with fast Fourier transforms (FFTs) on the sphere and rotation group. We validate the
proposed NES on different real-world scientific problems with high-resolution and multi-scale
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spherical signal inputs including regressing quantum chemistry molecules and reconstructing lensing
Cosmic Microwave Background, for which our method achieves state-of-the-art performance.

2  SPHERICAL NEEDLET FRAMEWORK

Needlets are a type of framelets Wang & Zhuang (2020); |Han|(2017) that enjoys good localization
properties in both spatial and harmonic spaces. We formulate a spherical needlet transform, which
projects the given spherical signal to a set of multi-scale needlet representations in the framelet
domain. The new representations can be uniquely decomposed. They are easy to compute, and divide
approximate and detailed information into different scale levels, as traditional wavelets.

2.1 CHARACTERIZATION OF MULTI-SCALE SPHERICAL NEEDLETS

Needlets are defined on a Riemannian manifold M. This paper considers a special case of M,
ie., on S? or SO(3). We define the spherical needlets with a filter bank n := {a;b*,...,b"} C
1(Z) == {h = {hi}ez, C C: > pey lhi| < oo} and a set of associated generating functions ¥ =
{a; BY,-++, 8"} C L1(R). We name filter a the low-pass filter, and filters {b', - - - , b"} the high-pass
filters. The former distills approximate information from the input signal, and the latter reserves more
detailed information and together with noise. The associated generating functions and filter bank
satisfy the relationship

ae) =a©)a(s), Br2e) =mEa), (1)
wheren =1,...,r,and £ € R.

To discretize the continuous needlets with zero numerical error, we utilize Polynomial-exact Quadra-
ture Rule|Wang et al.[(2017) that are generated by the tensor product of the Gauss-Legendre nodes on
the interval [—1, 1] and equi-spaced nodes in the dimension with non-equal weights, such as longitude
on sphere. Let v; ;, represent low-pass coefficients, and w” ok represent high-pass coefficients of the
signal function f, where k = 0, ..., N;4q and j > J, N; is the number of sampling points at scale j.
The low-pass (or high-pass) coefﬁ01ents are defined by the inner products of low-pass (or high-pass)
needlets and f. In practice, we calculate the coefficients in the Fourier domain for fast computation

by S —
A on =~ [ A
wifeoé<2j) w;_ 1/*]065" <23_1

) . )

We denote ﬁ as the generalized Fourier coefficients of f at degree £. More details about the filter
bank and construction of needlets on S? and SO(3) are given in Appendix ??.

2.2  SPHERICAL NEEDLET CONVOLUTION

The spherical needlet convolution on M is defined by
05 1)B) = (Lnof) = | o(B~"2)f(@)da G)

where f is a signal, ¢ is a learnable locally supported filter, Lz$(x) = ¢(R~'x), and M represents
S? or SO(3). The constructed needlet convolution is rotation equivariant. Formally, a neural network
(i.e., a function on M) ® is said rotation equivariant if for an arbitrary rotation operator L, there
exists an operator T’r such that $o L = Tro®. A rotation equivariant neural network provides more
efficient and accurate prediction with theoretical support, which properties are desired for rotatable

signals. It is provable that the convolution in (3)) satisfies the Fourier theorem, i.e., [¢ * f]¢ = fg . @,
where T denotes the conjugate transpose and ¢ is the degree parameter. The operation - is matrix
multiplication for SO(3) and outer product for S?.

The formulation in has been adopted by Spherical CNN (Cohen et al., 2018]), which induces
convolution on Fourier coefficients. We define the convolution using needlet coefficients of a spherical
signal. We construct the needlet coefﬁcients with the needlet system defined in Section 2.1 We

take n = 2 and get {71, g}z 7, {w; e}e and {@7 e}e for a low-pass and two high-pass needlet
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coefficients, where A; denotes sequence length of Fourier series of quadrature rule sampling points

at scale 7, and Jy, J; are the scale of low pass and high pass respectively.

These needlet coefficients can be used to reconstruct the Fourier coefficients f of signal f of degree /.
. . o o 1T 2 .

We denote this relation as [ULg, w}’ 0 wf [] = fi, where < means formal equivalence. We hereby

establish formally an equivalent expression of [¢ x f], with multi-scale information and rotation
equivariance:

?Ee O fex ?ge © lfif = | P2y - feﬁl(ﬁ = |[¢d2 *fh% = [¢* f]e.
¢3y ®34 Wy g ¢A53,e B2 (2/\740) 5o Tl 5 (;TZO)

Here 52 ¢ (i = 1,2,3) are three learnable filters defined in the frequency domain and @ is the
Hadamard product.

2.3 ROTATION EQUIVARIANCE ERROR

Shrinkage Function One potential drawback of the spherical CNNs comes from the non-linear
activation in each layer. The Fourier transforms introduce redundancy to feature representation
in the frequency domain, which results in a heavy computational cost. To best preserve rotation
equivariance at a reduced computational complexity, we employ a non-linear activation directly in the
frequency domain with a small rotation equivariance error. Similar to UFGConv (Zheng et al.| [2021)),
we cut off the high-pass coefficients x in the frequency domain by a shrinkage thresholding, i.e.,

Shrinkage(x) = sgn(z)(|z] — A)4,Vz € R,

with the threshold value A\ = o1/2log(N)/+/N for N coefficients. The hyperparameter o is an
analogue to the noise level of the denoising model. Note that we do not cut off the low-pass framelet
coefficients, as they distill important approximate information of input data. It is critical to offering an
approximate rotation equivariance for the shrinkaged needlet convolution, as we discuss as follows.

Theorem 2.1. Let W5 (S?) with s > 2/p and 1 < p < oo be a Sobelev space embedded in 1L,,(S?).

For f € Wy (S?), ¢ is a filter; then the rotation equivariance error due to using the shrinkage function
is defined as the maximum of the following over all R € SO(3),

B 2
E(f) = max

)

str(Laf o)) = D' (B)sae(F ;")

3
) =0

where B is the bandwidth for spherical signal embedding depending on the specific quadrature rule
used, Shr(-) represents shrinkage function, superscript (H) indicates the high-pass coefficients. Then,
the approximate equivariance error for f is

E(f) < Camtore,

where Jy is the scale of the low pass, C' is a constant depending only on s, ¢ and the Sobolev norm

of f.

The shrinkage mechanism thus introduces a stable rotation equivariance error. The condition in
Theorem 5 > 2/p indicates that each function of WZ(SQ) has a representation in the continuous

function space on S. Then, the numerical computation for f makes sense.

Pooling Operator We also establish a spectral pooling in the frequency domain to circumvent
repeated Fourier transforms. A spectral pooling removes coefficients with degree larger than £/2

for the spectral representation f = fo, fl, ceey fg]. We prove that the spectral pooling operator is
rotation equivariant

Network Architecture The framework is scalable to any application scenarios that can be repre-
sented by spherical signals. We illustrate the overall workflow of our proposed Needlet Spherical
CNNss in Figure [1| with application scenario for bio-molecular prediction, where the input is a set
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Figure 2: Illustration of a projected MNIST digit onto the sphere with 3 different downscale ratios
(10%, 50%, 90%, left to right). The higher downscale indicates that the size of the digit is smaller
on the sphere, which increases the difficulty of the model feature extraction where more detailed
information needs captured.

Downscale Ratio\ 10% 30% 50% 70% 90%

Spherical CNN | 94.99 92.17 86.92 83.73 78.71
NES 97.84 97.30 96.74 95.21 92.66

Table 1: Test accuracy on spherical MNIST with varying scales.

of spherical signals centered at atoms of a molecule. The spherical data is sampled on the points of
a polynomial-exact quadrature rule. Based on the rule, we implement non-equispaced fast Fourier
transforms (NFFTs) with predefined weights. The Fourier representations are sent through an S2-
needlet convolution to SO(3). A number of rotation equivariant SO(3)-needlet convolutions are
repeatedly conducted. Inside each needlet convolution, we use a wavelet shrinkage to threshold small
high-pass coefficients, following a pooling operator to downsize the representation. The final output
of SO(3)-needlet convolution is handled by the inverse NFFT (iNFFT) to feed into a downstream
predictor.

3 EXPERIMENTS

The main advantage of our model is the property of equivariance to SO(3) transforms with multi-
scale representation for complicated real-world application. This section validates the model with
three experiments. Our models are trained on 24G NVIDIA GeForce RTX 3090 Ti GPUs. The
hyperparameters are obtained by grid search. Adam |Kingma & Ba|(2014) is used as our optimizer.

3.1 LocAL MNIST CLASSIFICATION

Dataset The first experiment evaluates the effectiveness of the needlet convolution neural network
in capturing high-frequency information. We follow |Cohen et al.|(2018) and use a modified spherical
MNIST classification dataset, where the images are projected onto a sphere to establish rotated
training and test sets. Here the samples of the training set are all rotated by the same rotation while
those in the test set are rotated by another rotation. We downscale the original MNIST images into
five different resolutions and then project them onto a scalable area of the sphere.

Setup Our model is compared with Spherical CNN |Cohen et al.| (2018). We adopt the same
architecture S?conv-ReLU-SO(3)conv-ReLU-FC-softmax, with bandwidth L = 30, 10, 6 and k = 20,
40, 10 channels: when it comes to our model, we replace S?conv and SO(3)conv with S?-needlet
convolution and SO(3)-needlet convolution, bandwidth L = 30, 10, 6 and k = 20, 40, 10 channels.
We select the batch size of 64 and learning rate 0.001.

Results The test accuracy for spherical MNIST is presented in Table [T} To test the rotation
equivariance of the models, we rotate the training dataset and test dataset with two different rotations.
That is, the input training data are all rotated with a same rotation in SO(3), and all test data are
rotated by another rotation. We also test on downscaled datasets with various scales: the higher the
scale, the less size of the spherical digit is on the sphere, and the signal is more localized. Table|T]
indicates that both models keep high test accuracy with both training and test data rotated. We can
observe that our model consistently achieves high accuracy on datasets for different downscale ratios.
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Figure 3: An illustration for computing the spherical signal of a molecule. We aggregate the
information of each atom in the molecule with relative distance, polar angle and azimuthal angle.

Method RMSE Params
MLP/SORTED CM 16.06 -
MLP/RANDOM CM 5.96 -
GCN 7.32 +£0.23 0.8M
SPHERICAL CNNT 8.47 1.4M
CLEBSCH-GORDANT 7.97 >1.1M
NEST (Ours) 7.21+046 0.9M

Table 2: Test RMSE of atomic energy on QMY7. t indicates the method is rotation equivariant.

Especially for the high ratio, the digit is concentrated at a small region, and the model is required
to capture more details of the spherical data. In contrast, Spherical CNN has poorer performance
with higher downscale. It demonstrates a reliable performance of our model in effectively distilling
detailed and local features while maintaining rotation equivariance of the needlet convolutional layer.

3.2 MOLECULAR PROPERTY PREDICTION

Molecule sGDML SchNet DimeNet SphereNet NES
Aspirin 29.5 58.5 21.6 18.6 15.2
Ethanol 14.3 16.9 10.0 9.0 9.2
Malonaldehyde 17.8 28.6 16.6 14.7 13.6
Naphthalene 4.8 25.2 9.3 7.7 3.5
Salicylic 12.1 36.9 16.2 15.6 14.2
Toluene 6.1 24.7 9.4 6.7 6.1
Uracil 104 24.3 13.1 11.6 10.8

Table 3: Test MAE of forces in meV /A on MD17.

Datasets The second experiment predicts molecular property over two widely used datasets (QM7
and MD17 Chmiela et al.| (2017) ) to evaluate the model’s expressivity to bio-molecular simulation.
QM7 contains 7,165 molecules. Each molecule contains at most N = 23 atoms of 7' = 5 types
(H, C, N, O, S), which is to regress over the atomic energy of molecules given the corresponding
position p; and charges z; of each atom ¢. MD17 predicts the energies and forces at the atomic level
for several organic molecules with up to 21 atoms and four chemical elements, using the molecular
dynamics trajectories.

We follow Rupp et al.|(2012) to generate spherical signals for every molecule. We define a sphere
S; centered at p; for each atom i and define the potential functions as U (z) = >, . _, Tl

where z is the charge of the atom, and  is taken from S2. For every molecule, N spherical signals
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are produced in 7" channels. We use the Gauss-Legendre rule to discretize the continuous functions
on the sphere with L = 20 and create a sparse N x T x (2L + 1) x (L + 1) tensor as the input
signal representation. For QM7, we generalize the Coulomb matrix (C € RV*N) and obtain 23
spherical signals for every molecule. For MD17, we create N spherical signals that are centered at
the positions of each atom for every sample, where [V is the number of atoms in the molecule. For
the atom 4, we define a corresponding spherical signal U; (), where z is taken from the sphere by
the Gauss-Legendre sampling method. The relative position of each atom to z is calculated with the
absolute Cartesian coordinates of atoms provided by MD17. The spherical signal U; is defined as
Ui(x) = Zivzl N(dj,0;,¢;), where (d;,0;, ¢;) is the position of atom j relative to . The d;, 6,,
and @ denote the radial distance, polar angle, and the azimuthal angle respectively (see Figure B).
Different with QM7, MD17 does not have a Coulomb matrix. The number of spherical signals N can
thus be taken from a neural network or a mathematical operator to extract effective features with the
relative positions. Here we choose the first approach of neural networks to adaptively learn feature.
We fine-tune the hyperparameters individually for every type of molecules on the validation sets with
1,000 samples for each type.

Setup The bandwidth L is from 20, 20, 10, 10, 5 to 5 in the final block and the feature dimension is
from 5,5, 8, 16, 32 to 64. The hyperparameter o is taken as 0.001 for shrinkage. We run 10 epochs
for QM7 with a batch size of 32 and a learning rate of 5e — 4. For MD17, we choose a batch size of
32 and a learning rate of 2e — 4. We run the model for 1, 000 epochs.

Results We report the experimental results of QM7 and MD17 respectively in Tables For
QM7, we compare the root mean square error (RMSE) of our proposed NES with MLP/Random
CM, MLP/Sorted CM Montavon et al.| (2012)), GCN |Kipf & Welling| (2017), Spherical CNN and
Clebsch-Gordan Net [Kondor et al.|(2018)). The scores are averaged over 10 trials with standard
deviation. Our model uses approximately 0.9 million parameters to achieve the lowest RMSE at
7.21 40.46 among all rotation equivariant models. Our model enjoys the advantages of both a smaller
number of parameters and a lower prediction error, owing to the incorporation of efficient computation
and multiscale analysis architecture. In MID17 task, we focus on atomic forces and measure the
mean absolute error (MAE) averaged over all samples and atoms. SchNet Schiitt et al.[(2017)) and
DimeNet Chmiela et al.|(2018)) are 3D graph models that incorporate relative distance information.
SphereNet |Liu et al.|(2021) is a 3D graph model with physically-based representations of geometric
information. Most of previous state-of-the-art models are graph-based models with hand-engineered
features or expert knowledge. Instead, our model utilizes the adaptive learning of input features
and incorporates multiscale analysis to improve the representation ability. Results show that the
proposed model outperforms baseline models with strong performance and better generalization in
molecular simulation, due to the rotation equivariance. NES achieves better performance on four
types of molecules. Compared to NES, sGDML Chmiela et al.|(2018]) is a kind of kernel method,
which relies on human expertise and extra annotation, thus suffering from poor generalization to a
new type of molecule.

3.3 DELENSING COSMIC MICROWAVE BACKGROUND

The existence of a stochastic Primordial Gravitational Wave Background (PGWB) is a common
prediction in the majority of inflationary models. It is formed when microscopic quantum fluctuations
of the metric were stretched up to super-horizon scales by the sudden expansion of space-time
that occurred during inflation |Caprini & Figueroal (2018). Since it has been able to free-stream
from time as early as (possibly) the Planck time, PGWB has the potential of becoming one of
the most powerful cosmological probes. The information about phase transitions and particle
creation/annihilation may have taken place in the early universe, which allows new independent
measurements of cosmological parameters. In order to discover PGWB, we need to constrain some
parameters, such as the ratio between tensor and scalar perturbations r = P;(k)/Ps(k). Such a
parameter relies on a high signal-to-noise ratio (SNR) reconstruction of the lensing potential, i.e., the
projected weighted gravitational potential along the line-of-sight between us and the CMB. Photons
in the CMB are deflected by the intervening mass distributions when they travel to us. The lensing
effect distorts the recombination of the CMB and interferes with our ability to constrain early universe
physics. Therefore, removing the lensing effect from observed data is critical to decoding early-
universe physics. In this experiment, we use NES convolution to reconstruct the unlensed B-mode
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Figure 4: B-CMB multipoles unlensed map with Figure 5: The power spectrum of unlensed B-map

tensor-to-scalar ratio = 0.2, which is one of predicted by NES compared with Spherical CNNs
the main constraints in detecting the Primordial and the ground truth.

Gravitational Wave Background. We color the
map with the intensity values to predict.

(Figure ) component of the CMB polarization from the lensed @, U maps that are orthonormal bases
corresponding to Stokes parameters.

Dataset Spherical CNN and NES are used to reconstruct the unlensed B map from the lensed
@, U maps. We simulate 10,000 lensed @), U maps and B-CMB multipoles unlensed map with
Ngide = 64. Then, transforming the original sample rules from HEALPix to Gauss-Legendre tensor
product rules with the bandwidth L = 128 by taking the average of the four nearest HEALPix points
in Gauss-Legendre coordinates. We split the whole dataset into 80% training, 10% validation, and
10% test sets.

Setup We follow the U-Net architecture from |Caldeira et al.|(2019) and replace the standard image
convolution with Spherical CNN and NES. In the encoder, the bandwidth is 128, 64, 32,16 and
the feature dimensions are 2, 16, 32, 64 respectively in each block. In the decoder, the bandwidth
increases from 16, 32, 64 to 128. The encoder layers are skip-connected to decoder layers, which is
consistent with the standard architecture of U-Net. We sum the mean squared error (MSE) in the
pixel domain and in power spectrum as the loss function. We use a batch size of 16, a learning rate of
5e — 5, and weight decay of 3e — 4 to train the model.

Result Figure [5| compares the power spectrum of two models’ predicted B-unlensed map with
ground truth. We can see Spherical CNNs always underestimates the ground truth when degree [
is larger than 20. NES can capture more high-frequency information of data in each block during
training. The estimated power spectrum of the model is consistent with the ground truth even at a
large degree of [ > 100.

4 CONCLUSION

We develop a Needlet approximate Equivariance Spherical CNN using multiscale representation
systems on the sphere and rotation group. The needlet convolution inherits the multiresolution
analysis ability from needlet transforms and allows rotation invariance in network propagation.
Wavelet shrinkage is used as a network activation to filter out the high-pass redundancy, which helps
improve the robustness of the network. The shrinkage brings controllable equivariance error for the
needlet CNN, which is small when the scale is high. Empirical study shows the proposed model can
achieve excellent performance on real scientific problems.
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