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Abstract In this paper, we give an overview of combinatorial group testing and
algebra. Our survey focuses on the constructions with algebraic methods, especially
geometry of classical groups over finite fields.
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1 Introduction

The basic problem of DNA library screening is to determine which clone (a DNA
segment) from the library contains which probe from a given collection of probes in
an efficient fashion. A clone is said to be positive for a probe if it contains the probe,
and negative otherwise.

This problem is just an instance of the general group testing problem, in which a
large population of items containing a small set of defectives are to be tested to identify
the defectives efficiently.

Suppose there are n clones including at most d positive ones (others are negative). A
(group) test is applicable to an arbitrary subset of clones with two possible outcomes: a
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negative outcome indicates all clones in the subset are negative, and a positive outcome
indicates otherwise. A pooling design is a specification of all tests so that they can
be performed simultaneously with the goal being to identify all positive clones with a
small number of tests. A pooling design M can be represented by a binary incidence
matrix where the columns represent clones, the rows represent tests, and mi j = 1 if
and only if clone j is contained in the subset of test i .

Suppose M has t rows. Then the t outcomes can also be represented by a t-vector
V = (v1, . . . , vt )

T , where vi = 1 if and only if the outcome of test i is positive (vi = 0
otherwise). Note that V is the Boolean sum of the set of positive clones. Therefore,
it is convenient to view a column vector C as a subset S of the base set {1, 2, . . . , t},
where i ∈ S if and only if C has an 1 entry in row i . Then, we can say that V is the
union of the set of positive clones. M is called d-disjunct if no union of any d columns
covers another column. A d-disjunct matrix not only identifies the up-to-d positive
clones, but it does so with a simple decoding. Namely, a clone is positive if and only
if it (as a column) is contained by V . This is because a negative clone (column) has at
least one row not covered by the union of the up-to-d positive clones; such a row then
has a negative outcome which identifies the clone as negative.

The notion of d-disjunctness was first raised by Kautz and Singleton [14] in the
study of superimposed codes. It was also studied by Erdös et al. [3] under the name
of d-cover-free family in extremal set theory. The d-disjunct matrices have become
the most important tool in the construction of deterministic pooling designs. Although
many constructions have been proposed, the existence of d-disjunct matrices is still
sparse.

Macula [21] proposed a novel way of constructing d-disjunct matrices which uses
the containment relation in a structure. More specifically, let [m] := {1, 2, . . . ,m} be
the base set. Then each of the n columns is labeled by a (distinct) k subset of [m],
assuming n ≤ (m

k

)
, and each of the

(m
d

)
rows is labeled by a (distinct) d-subset of [m],

where d < k < m; mi j = 1 if and only if the label of row i is contained in the label
of column j . He proved that M is d-disjunct.

Huang andWeng [12] generalized the construction to an arbitrary atomic semilattice
where the elements can be ranked. Again, label the columns by a subset of the rank k
elements, and label the rows by all rank d elements, d < k, and then M is d-disjunct.

Ngo and Du [27] further extended the construction to some geometric structures,
such as simplicial complexes, and some graph properties, such as matchings. It is
safe to say the ‘containment matrix’ method has opened a new door for constructing
d-disjunct matrices from many mathematical structures. However, the basic result in
all these constructions is invariably that, to obtain a d-disjunct matrix, use all rank d
elements for rows.

One practical problem with this type of construction is that a large n forces d to be
large. Then the number of tests could be too large as there are toomany rank d elements.
This led Macula [23] to propose using the rank 2 elements for rows, regardless of the
real d. He showed that while there is no guarantee all positive clones will be identified,
the probability of success is still satisfactory when d does not deviate too much from
2. Ngo and Du made a similar comment.

D’Yachkov et al. [2] showed that the containment matrix which uses rank r of
elements for rows has the degree d of disjunctness, where r can be much less than d.
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In fact, r can be any number from 1 to k−1 (k is the lever for columns), while d ≤ qr

for some constant q. This is the first happy surprise.
Note that geometric lattices are amongpooling spaces.Huanget al. [13] attempted to

draw possible connections fromfinite geometry and distance-regular graphs to pooling
spaces: including the projective spaces, the affine spaces, the attenuated spaces, and a
few families of geometric lattices associated with the orbits of subspaces under finite
classical groups, and associated with d-bounded distance-regular graphs.

Guo et al. [7] introduced the concept of pooling semilattices and proved that a
pooling semilattice is a pooling space and then showed how to construct pooling
designs from a pooling semilattice. Moreover, they gave many examples of pooling
semilattices and thus obtained the corresponding pooling designs.

Guo and Wang [5] gave a new module of pooling design. More specifically, for

positive integers k ≤ n, let

( [n]
k

)
be the set of all k-subsets of [n]. Given integers

1 ≤ d < k < n and 0 ≤ i ≤ d. Let M(i; d, k, n) be the binary matrix with rows

indexed with

( [n]
d

)
and columns indexed with

( [n]
k

)
such that M(A, B) = 1 if and

only if |A ∩ B| = i. It is the first module that is not a containment relation. For more
information on pooling designs see the monograph by Du and Hwang [1].

In this paper, we give an overview of constructions on pooling designwith geometry
of classical groups over finite fields.

The rest of the paper is organized as follows. Section 2 introduces geometry of
classical groups over finite fields. Section 3 gives the constructions of pooling designs
based on geometry of classical groups over finite fields.

2 Preliminary

In this section, we recall the geometry of classical groups over finite fields.
Let Fq be a finite field with q elements, where q is a prime power, F(n)

q be the
n-dimensional row vector space over Fq , and GLn(Fq) be the general linear group

of degree n over Fq . GLn(Fq) acts on F
(n)
q in the following way:

F
(n)
q × GLn(Fq) → F

(n)
q ,

((x1, x2, · · · , xn), T ) �→ (x1, x2, · · · , xn)T . (1)

Let P be an m-dimensional subspace of F(n)
q and v1, v2, · · · , vm be a basis of P , then

⎛

⎜⎜⎜
⎝

v1
v2
...

vm

⎞

⎟⎟⎟
⎠

(2)

is anm×n matrix over Fq of rankm. We call the matrix (2) amatrix representation of
the subspace P and use also the same letter P to denote the matrix (2) if no ambiguity
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arises. The action (1) of GLn(Fq) on F
(n)
q induces an action on the set of subspaces

of F(n)
q such that T ∈ GLn(Fq) carries the subspace P into PT .

Use any one of the other classical groups, such as the singular general linear group
GLn+l,n(Fq), the symplectic group Spn (Fq) (where n = 2ν ), the pseudo-symplectic
group Ps2ν+δ(Fq), the unitary group Un(Fq) (where q is a square), the orthogonal
group On(Fq) (where n = 2ν + δ and δ = 0, 1, or 2) and affine-symplectic group
ASp2ν(Fq) to replace GLn(Fq). Then we can obtain the corresponding geometry.

Now let us introduce the definition of the other classical groups and their corre-
sponding geometries.

• For two nonnegative integers n and l, F(n+l)
q denotes the (n + l)-dimensional row

vector space over Fq . The set of all (n + l) × (n + l) nonsingular matrices over
Fq of the form

(
T11 T12
0 T22

)
,

where T11 and T22 are nonsingular n×n and l×l matrices, respectively, forms a group
under matrix multiplication, called the singular general linear group of degree n + l
over Fq and denoted by GLn+l,n(Fq). If l = 0 (resp. n = 0), GLn,n(Fq) = GLn(Fq)

(resp. GLl,0(Fq) = GLl(Fq)) is the general linear group of degree n (resp. l).

The vector space F(n+l)
q together with the general linear group action is called the

(n + l)-dimensional singular linear space over Fq . For 1 ≤ i ≤ n + l, let ei be the

row vector in F(n+l)
q whose i-th coordinate is 1 and all other coordinates are 0. Denote

by E the l-dimensional subspace of F(n+l)
q generated by en+1, en+2, . . . , en+l . An m-

dimensional subspace P ofF(n+l)
q is called a subspaceof type (m, k) if dim(P∩E) = k.

The collection of all the subspaces of types (m, 0) in F(n+l)
q , where 0 ≤ m ≤ n, is the

attenuated space.
For a fixed subspace P of type (m, k) inF(n+l)

q , letM(m1, k1;m, k; n+l, n) denote
the set of all the subspaces of type (m1, k1) contained in P , and let N (m1, k1;m, k; n+
l, n) = |M(m1, k1;m, k; n + l, n)|. Then from [31],

N (m1, k1;m, k; n + l, n) = q(m1−k1)(k−k1)
[

m − k
m1 − k1

]

q

[
k
k1

]

q
(3)

• Let n = 2ν. It is well known that the cogredience normal form of 2ν × 2ν
nonsingular alternate matrices is

K =
(

0 I (ν)

−I (ν) 0

)
.

Let
Sp2ν (Fq) = {T ∈ GL2ν(Fq)|T KT T = K }.

Then Sp2ν (Fq) is a group with respect to the matrix multiplication, called the sym-
plectic group of degree 2ν over Fq .
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The vector space F
(2ν)
q together with the symplectic group action is called the

2ν-dimensional space over Fq . Let P be an m-dimensional subspace of F(2ν)
q . An

m-dimensional subspace P is said to be of type (m, r), if PK PT is of rank 2r. In
particular, subspaces of type (m, 0) are called m-dimensional totally isotropic sub-
spaces.The subspaces of type (m, r) exist if and only if 2r ≤ m ≤ ν + r. The
subspace of type (m, r), which contains subspaces of type (m1, r), exists if and only
if 2r ≤ m1 ≤ m ≤ ν + r.

Let N (m1, r;m, r; 2ν) denote the number of subspaces of type (m1, r) contained
in a given subspace of type (m, r). It is known that

N (m1, r;m, r; 2ν) = q2r(m−m1)

∏m−2r
i=m−m1+1(q

i − 1)
∏m1−2r

i=1 (qi − 1)
. (4)

• Let Fq be a finite field of characteristic 2, and let

S1 =
⎛

⎝
0 I (ν)

I (ν) 0
1

⎞

⎠ , S2 =

⎛

⎜⎜
⎝

0 I (ν)

I (ν) 0
0 1
1 1

⎞

⎟⎟
⎠ .

The pseudo-symplectic group of degree 2ν + δ(δ = 1, or 2) over Fq , denoted by
Ps2ν+δ(Fq), consists of all (2ν+δ)×(2ν+δ)matrixT overFq satisfyingT SδT T = Sδ.

The vector spaceF(2ν+δ)
q together with the pseudo-symplectic group action is called

the (2ν + δ)-dimensional pseudo-symplectic space over Fq of characteristic 2.

Let P be an m-dimensional subspace of F(2ν+δ)
q . PSδPT is cogredient to one of

the following three forms

M(m, 2r, r) =
⎛

⎝
0 I (r)

I (r) 0
0(m−2r)

⎞

⎠ ,

M(m, 2r + 1, r) =

⎛

⎜⎜
⎝

0 I (r)

I (r) 0
1
0(m−2r−1)

⎞

⎟⎟
⎠ ,

and

M(m, 2r + 2, r) =

⎛

⎜⎜⎜
⎜
⎝

0 I (r)

I (r) 0
0 1
1 1

0(m−2r−2)

⎞

⎟⎟⎟
⎟
⎠

for some r such that 0 ≤ r ≤ �m
2 �.We say that P is a subspace of type (m, 2r+τ, r, ε),

where τ = 0, 1, or 2 and ε = 0, or 1, if
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(i) PSδPT is cogredient to M(m, 2r + τ, r), and
(ii) e2ν+1 /∈ P or e2ν+1 ∈ P according to ε = 0 or 1, respectively.

In particular, subspaces of type (m, 0, 0, 0) and (m, 0, 0, 1) are called m-
dimensional totally isotropic subspaces. The subspaces of type (m, 2r + 1, r, 1) exist
if and only if 2r + 1 ≤ m ≤ ν + r + 1. The subspaces of type (m, 2r + 1, r, 1), which
contain subspaces of type (m1, 2r + 1, r, 1), exist if and only if 2r + 1 ≤ m1 < m ≤
ν + r + 1.

Let N (m1, 0, 0, 0;m, 0, 0, 0; 2ν + δ) denote the number of subspaces of type
(m1, 0, 0, 0) contained in a given subspace of type (m, 0, 0, 0). From [30],

N (m1, 0, 0, 0;m, 0, 0, 0; 2ν + δ) =
∏m

i=m−m1+1(q
i − 1)

∏m1
i=1(q

i − 1)
. (5)

• Let q = q20 , where q0 is a prime power. Fq = Fq20
has an involutive automorphism

− : a → ā,

whose fixed field is Fq0 . Let

Un(Fq) = {T ∈ GLn(Fq)|T T̄ T = I (n)}.

Then Un(Fq) is a group with respect to the matrix multiplication, called the unitary
group of degree n over Fq .

The vector space F
(n)
q together with the unitary group action is called the n-

dimensional unitary space over Fq . An m-dimensional subspace P is said to be of
type (m, r), if PHδ(P̄)T is of rank r. In particular, subspaces of type (m, 0) are called
m-dimensional totally isotropic subspaces.The subspaces of type (m, r) exist if and
only if 2r ≤ 2m ≤ n + r. The subspace of type (m, r), which contains subspaces
of type (m1, r1), exists if and only if 2r ≤ 2m ≤ n + r, 2r1 ≤ 2m1 ≤ n + r1 and
0 ≤ r − r1 ≤ 2(m − m1). Let N (m1, r;m, r; n) denote the number of subspaces of
type (m1, r) contained in a given subspace of type (m, r). From [30]

N (m1, r;m, r; n) = q2r(m−m1)

∏m−r
i=m−m1+1(q

2i − 1)
∏m1−r

i=1 (q2i − 1)
. (6)

• Let Fq be a finite field of odd characteristic. For a fixed non-square element z of
F

∗
q , let

S2r+δ,� =
⎛

⎝
0 I (ν)

I (ν) 0
�

⎞

⎠ , where � =
⎧
⎨

⎩

∅, if δ = 0,
(1) or (z), if δ = 1,
diag(1,−z), if δ = 2.

The orthogonal group of degree 2ν + δ over Fq , denoted by O2ν+δ,�(Fq), consists
of all (2ν + δ) × (2ν + δ) matrix T over Fq satisfying T S2ν+δ,�T T = S2ν+δ,�.
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The vector space F
(2ν+δ)
q together with the orthogonal group action is called the

(2ν + δ)-dimensional orthogonal space over Fq of odd characteristic.

Let P be an m-dimensional subspace of F(2ν+δ)
q . PS2ν+δPT is cogredient to one

of the following four forms

M(m, 2r, r) =
⎛

⎝
0 I (r)

I (r) 0
0(m−2r)

⎞

⎠ ,

M(m, 2r + 1, r, 1) =

⎛

⎜⎜
⎝

0 I (r)

I (r) 0
1
0(m−2r−1)

⎞

⎟⎟
⎠ ,

M(m, 2r + 1, r, z) =

⎛

⎜⎜
⎝

0 I (r)

I (r) 0
z
0(m−2r−1)

⎞

⎟⎟
⎠ ,

M(m, 2r + 2, r) =

⎛

⎜
⎜⎜⎜
⎝

0 I (r)

I (r) 0
1

−z
0(m−2r−2)

⎞

⎟
⎟⎟⎟
⎠

.

We say that P is a subspace of type (m, 2r + γ, r, �), if PS2ν+δPT is cogredient
to M(m, 2r + γ, r, �), where � = ∅, if γ = 0, and � = 0 or (z), if γ = 1, and

� =
(
1

−z

)
, if γ = 2. In particular, subspaces of type (m, 0, 0) are called m-

dimensional totally isotropic subspaces. The subspaces of type (m, 2r + 1, r, 1) exist
if and only if 2r + 1 ≤ m ≤ ν + r + 1. The subspace of type (m, 2r + 1, r, 1), which
contains subspaces of type (m1, 2r + 1, r, 1), exists if and only if 2r + 1 ≤ m1 <

m ≤ ν + r + 1. Let N (m1, 0, 0;m, 0, 0; 2ν + δ,�) denote the number of subspaces
of type (m1, 0, 0) contained in a given subspace of type (m, 0, 0). From [30],

N (m1, 0, 0;m, 0, 0; 2ν + δ,�) =
∏m

i=m−m1+1(q
i − 1)

∏m1
i=1(q

i − 1)
. (7)

• LetFq be a finite field of characteristic 2. Denote byKn the set of all n×n alternate
matrices over Fq . Two n × n matrices A and B over Fq are said to be congruent
mod Kn , denoted A ≡ B (mod Kn), if A − B ∈ Kn . Clearly, ≡ is an equivalence
relation on the set of all n × n matrices. Let [A] denote the equivalence class
containing A. Two matrix classes [A] and [B] are said to be cogredient if there is
a nonsingular n × n matrix Q over Fq such that [QAQT] ≡ [B].
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Let

G2ν+δ,� =
⎛

⎝
0 I (ν)

0
�

⎞

⎠ , where � =

⎧
⎪⎪⎨

⎪⎪⎩

∅, if δ = 0,
(1), if δ = 1,(

α 1
α

)
, if δ = 2,

where α is a fixed element of Fq such that α /∈ {x2 + x |x ∈ Fq}.
The orthogonal group of degree 2ν + δ over Fq with respect to G2ν+δ,�, denoted

by O2ν+δ,�(Fq), consists of all (2ν + δ) × (2ν + δ) matrices T over Fq satisfying
[TG2ν+δ,�T T] ≡ [G2ν+δ,�].

The vector space F
(2ν+δ)
q together with the orthogonal group action is called the

(2ν + δ)-dimensional orthogonal space over Fq of characteristic 2.

Let P be an m-dimensional subspace of F(2ν+δ)
q . PG2ν+δPT is cogredient to one

of the following three forms

M(m, 2r, r) =
⎛

⎝
0 I (r)

0
0(m−2r)

⎞

⎠ ,

M(m, 2r + 1, r) =

⎛

⎜⎜
⎝

0 I (r)

0
0(m−2r−1)

1

⎞

⎟⎟
⎠ ,

and

M(m, 2r + 2, r) =

⎛

⎜
⎜⎜⎜
⎝

0 I (r)

0
α 1

α

0(m−2r−2)

⎞

⎟
⎟⎟⎟
⎠

.

We say that P is a subspace of type (m, 2r + γ, r, �), if PG2ν+δPT is cogredient
to M(m, 2r + γ, r), where � = 1 or 0, if e2ν+1 ∈ P or not , respectively, in case
δ = γ = 1. In particular, subspaces of type (m, 0, 0) are called m-dimensional
totally singular subspaces. The subspaces of type (m, 2r + 1, r, 1) exist if and only
if 2r + 1 ≤ m ≤ ν + r + 1. The subspace of type (m, 2r + 1, r, 1), which contains
subspaces of type (m1, 2r+1, r, 1), exists if and only if 2r+1 ≤ m1 < m ≤ ν+r+1.
Let N (m1, 0, 0;m, 0, 0; 2ν + δ) denote the number of subspaces of type (m1, 0, 0)
contained in a given subspace of type (m, 0, 0). From [30],

N (m1, 0, 0;m, 0, 0; 2ν + δ) =
∏m

i=m−m1+1(q
i − 1)

∏m1
i=1(q

i − 1)
. (8)
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• Suppose P is a subspace of type (m, r) in 2ν dimension symplectic space F(2ν)
q . A

coset ofF(2ν)
q relative to a subspace P of type (m, r) is called a (m, r)-flat. A flat F1

is said to be incident with a flat F2, if F1 contains or is contained in F2. The point
set F(2ν)

q with all the flats and the incidence relation among them defined above is
said to be the 2ν-dimensional affine-symplectic space, denoted by ASG(2ν,Fq).

The set of matrices of the form

(
T 0
v 1

)
,

where T ∈ Sp2ν(Fq) and v ∈ F
(2ν)
q , forms a group under matrix multiplication. This

group is said to be the affine-symplectic group ofASG(2ν,Fq), denoted byASp2ν(Fq).
Define the action of ASp2ν(Fq) on the ASG(2ν,Fq) as follows:

ASG(2ν,Fq) × ASp2ν(Fq) → ASG(2ν,Fq)(
x,

(
T 0
v 1

))
�→ xT + v.

Then affine-symplectic group ASp2ν(Fq) acts transitive on the set of (m, r)-flats in
ASG(2ν,Fq)[30].

For more information about geometry of classical groups over finite fields, see [30]

3 The constructions

3.1 The constructions based on the vector space

3.1.1 Use subspaces of the finite vector space

Consider the m-dimensional space, or simply m-space, of F(n)
q where q is a prime or

a prime power. Let

[
m
k

]

q
denote the number of k-dimensional subspaces, or simply

k-space. It is well known [29] (p. 291) that the following is true.

Lemma 3.1 [
m
k

]

q
= (qm − 1)(qm−1 − 1) · · · (qm−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

and [
m
k

]

q
=

[
m

m − k

]

q
.

Definition 3.2 Fix integers 1 ≤ r < k < m. Let M(m, k, r) be the 01-matrix by
taking all k-spaces (from an underlyingm-space) as columns and all r -spaces as rows.
M(m, k, r) has a 1 in row i and column j if and only if i is contained in j .

123



390 J Algebr Comb (2019) 49:381–400

M(m, k, r) was first studied by Yakir [32] from a linear algebra point of view and
by Ngo and Du [27] from a pooling design point of view. M(m, k, r) is easily checked
to be a ranked atomic semilattice, thus the matrix is r -disjunct and hence (Huang and
Weng [12]) dz-disjunct for some 1 ≤ d ≤ r and

z =
[
k − d
r − d

]

q
.

Note that the construction still requires the row rank r being at least as large as
the upper bound d of the number of positive clones. D’yachkov et al. obtained the
following theorem.

Theorem 3.3 [2] Suppose k − r ≥ 2 and set p := q(qk−1−1)
qk−r−1

. Then M(m, k, r) is

dz-disjunct for 1 ≤ d ≤ p and

z = qk−r
[
k − 1
r − 1

]

q
− (d − 1)qk−r−1

[
k − 2
r − 1

]

q
.

Nan and Guo [25] generalized Ngo and Du’s construction [27] and obtained a family
of pooling designs

Let M(m, n) be the set of all m-dimensional subspaces of F(n)
q .

Definition 3.4 [25] Given integers 1 ≤ r,m ≤ n − 1 and max{0, r + m − n} ≤ j ≤
min{r,m}. LetM(r,m; n)be the binarymatrixwhose rows (resp. columns) are indexed
by M(r, n)(resp. M(m, n)). We also order elements of these sets lexicographically.
M(r,m; n) has a 1 in row i and column l if and only if the i-th subspace of M(r, n)

intersect the l-th subspace of M(m, n) at j-dimensional subspaces of F(n)
q .

Then M(r,m; n) is an
[n
r

]
q × [n

m

]
q matrix, whose constant row (resp. col-

umn) weight is prj, j (r,m; n) = q(r− j)(m− j)
[n−r
m− j

]
q

[r
j

]
q (resp. pmj, j (m, r; n) =

q(r− j)(m− j)
[n−m
r− j

]
q

[m
j

]
q ).

Theorem 3.5 [25] Let 1 ≤ r,m ≤ n − 1 and max{0, r + m − n} ≤ j ≤ min{r,m}.
If 1 ≤ d ≤ �pmj, j (m, r; n)/α� + 1, then M(r,m; n) is de-disjunct, where e =
pmj, j (m, r; n) − dα − 1, α = max{plj, j (m, r; n)| max{0, 2m − n} ≤ l ≤ m − 1}.

The error-tolerance property of M(r,m; n) is not well expressed. Guo and Wang
[6] constructed a family pooling designs whose error-tolerance property is better than
that of [25].

Definition 3.6 [6] For positive integers 1 ≤ d < k < n and max{0, d + k − n} ≤ i ≤
d, let Mq(i; d, k, n) be the binary matrix by taking all k-spaces (from an underlying
n-space) as columns and all d-spaces as rows such that Mq(A, B) = 1 if and only if
dim(A ∩ B) = i .
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Theorem 3.7 [6] Let i, d, k, n be positive integers with �(d + 1)/2� ≤ i ≤ d < k
and n− k− s̄(k+d −2i) ≥ d − i . If k− i ≥ 2 and 1 ≤ s̄ ≤ q(qk−1 −1)/(qk−i −1),
then the following hold:

(i) Mq(i; d, k, n) is an s̄ē2 -disjunct matrix, where

ē2 = q(d−i)(k+s̄(k+d−2i)−i)
[
n − k − s̄(k + d − 2i)

d − i

]

q

×
(

qk−i
[
k − 1
i − 1

]

q
− (s̄ − 1)qk−i−1

[
k − 2
i − 1

]

q

)

− 1;

(ii) for a given k, if i < d, then lim
n→∞

ē2+1
ē1+1 = ∞. where ē1 = z − 1, z is as in

Theorem 3.3.

The error-tolerance property of [6] is much better than that of [27] under some
conditions.

3.1.2 Use subspaces which join a fixed subspace being the F(n)
q

In 2015, Liu and Gao [20] constructed a family pooling designs. Denote the set of all
i-subspaces U of vector space V satisfying U + W = V by M(i; n, b), where W is a
fixed (n − b)-subspace of F(n)

q .

Definition 3.8 [20] Given integers 1 ≤ b < l1 < l2 < n. Let M(l1, l2; n, b) be
the binary matrix whose rows (resp. columns) are indexed by M(l1; n, b) (resp.
M(l2; n, b)). We also order elements of these sets lexicographically. M(l1, l2; n, b)
has a 1 in row i and column j if and only if the i th subspace ofM(l1; n, b) is a subspace
of the j th subspace of M(l2; n, b).

Theorem 3.9 [20]Suppose l1 > b, l2−l1 ≥ 2,and let p =
(

ql2−qb

ql2−l1−1
−1

)(
ql2−b−1−1

)

(
ql2−1−qb

ql2−l1−1−1
−1

)(
ql2−l1−1−1

) .

Then M(l1, l2; n, b) is dz-disjunct for 1 ≤ d ≤ pqb, and z = (
ql2−qb

ql2−l1−1
−

1)qb(l2−l1−1)
[
l2 − b − 1
l1 − b

]

q
− (d − 1)( ql2−1−qb

ql2−l1−1−1
− 1)qb(l2−l1−2)

[
l2 − b − 2
l1 − b

]

q
.

Moreover, if 1 ≤ d ≤ min{pqb, q}, then M(l1, l2; n, b) is full dz -disjunct.

The test efficiency of construction is smaller than that of [2] under some conditions.

3.2 Use subspaces of singular linear space

Liu and Gao [19] construct a family of error-correcting pooling designs with the
incidence matrix of two types of subspaces of singular linear space over finite fields,
and exhibit their disjunct properties.
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Definition 3.10 [19] Given integers 0 ≤ k ≤ l, 0 ≤ m − k ≤ n, 0 ≤ r ≤ m − k − 2,
Let M(r;m, k; n+ l, n) be the binary matrix whose rows (resp. columns) are indexed
by M(r, 0; n + l, n) (resp.M(m, k; n + l, n). We also order elements of these sets
lexicographically. M(r;m, k; n+ l, n) has a 1 in row i and column j if and only if the
i−th subspace ofM(r, 0; n + l, n) is a subspace of the j th subspace ofM(m, k; n +
l, n).

Theorem 3.11 [19] Given integers 0 ≤ k < l, 0 ≤ m − k ≤ n, 0 ≤ r ≤ m − k − 2
and let t = N (r, 0;m, k; n + l, n), u = N (r, 0;m − 1, k; n + l, n)), v = N (r, 0;m −
1, k−1; n+ l, n), x = N (r, 0;m−2, k; n+ l, n), y = N (r, 0;m−2, k−1; n+ l, n),
z = N (r, 0;m−2, k−2; n+l, n) andw = max{u−x, u−y, u−z, v−x, v−y, v−z},
if 1 ≤ d ≤ � t−max{u,v}−1

w
� + 1 then M(r;m, k; n + l, n) is de−disjunct, where e =

t−max{u, v}−(d−1)w−1. In particular, if 1 ≤ d ≤ min{� t−max{u,v}−1
w

�+1, q+1},
then M(r;m, k; n + l, n) is fully de−disjunct, where N (m1, k1;m, k; n + l, n) is
from (3).

3.3 The constructions based on the symplectic space

3.3.1 Use subspaces containing a fixed (m0, 0)-space and contained in its dual space

In 2008, Zhang et al. [33] constructed a family pooling designs based on the symplectic
space.

Definition 3.12 [33] Select integers 0 ≤ m0 < r < m ≤ ν. Assume that P0 is a
fixed (m0, 0)-space of F

(2ν)
q . Let M be the (0, 1)-matrix by taking all (m, 0)-spaces

which are contained in P⊥
0 and contain P0 as columns and all (r, 0)-spaces which are

contained in P⊥
0 and contain P0 as rows. M has a 1 in row i and column j if and only

if i is contained in j .

Theorem 3.13 [33] Suppose m − r ≥ 2 and set b = q(qm−m0−1−1)
qm−r−1 . Then M is

dz-disjunct for 1 ≤ d ≤ b and

z =
[
m − m0
r − m0

]
− d

[
m − m0 − 1
r − m0

]
+ (d − 1)

[
m − m0 − 2
r − m0

]
.

The test efficiency of construction is smaller than that of [2] under some conditions.

3.3.2 Use subspaces containing a fixed (d0, r)-space

In 2010, Li et al. [16] constructed two family pooling designs based on the symplectic
space.

Definition 3.14 [16] For 2r ≤ d0 < d < k ≤ ν + r, assume that P0 is a fixed
(d0, r)-space of F

(2ν)
q . Let M be a binary matrix whose columns (rows) indexed by all

(k, r)-spaces containing P0((d, r)-spaces containing P0) inF
(2ν)
q such thatM(A, B) =

1 if A ⊆ B and 0 otherwise. This matrix is denoted by M1(ν, d, k).
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Theorem 3.15 [16] Suppose 2r ≤ d0 < d < k ≤ ν + r and set b = q(qk−d0−1−1)
qk−d−1

.

Then M1(ν, d, k) is se-disjunct for 1 ≤ d ≤ b and

e = qk−d N (d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + r − d0))

− (s − 1)qk−d−1N (d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + r − d0)),

where N (m1, r;m, r; 2ν) is from (4).

The test efficiency of construction is smaller than that of [2] under some conditions.

Definition 3.16 [16] For 2 ≤ 2r ≤ d < k ≤ ν + r, let M be a binary matrix whose
columns (rows) indexed by all subspaces of type (k, r) ((d, r)) in F

(2ν)
q such that

M(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix is denoted by M2(ν, d, k).

Theorem 3.17 [16] Suppose 4 ≤ 2r + 2 ≤ d < k − 1 ≤ ν + r − 1. If 1 ≤ s ≤ q2r ,
then M2(ν, d, k) is se-disjunct, where e = q(k−d−1)d+2r .

The test efficiency of construction is smaller than that of [2] under some conditions.

3.3.3 Use totally isotropic subspaces and non-totally isotropic subspaces

In 2010, Guo et al. [8] constructed a family of inclusion matrices associated with
subspaces of the symplectic space F(2ν)

q .

Definition 3.18 [8] Given integers 1 ≤ r ≤ m < ν. Let M(r, 2m; 2ν) be the binary
matrix whose rows (resp. columns) are indexed by M(r, 0; 2ν) (resp. M(2m,m; 2ν)).
We also order elements of these sets lexicographically. M(r, 2m; 2ν) has a 1 in row i
and column j if and only if the i-th subspace of M(r, 0; 2ν) is a subspace of the j-th
subspace of M(2m,m; 2ν).

Theorem 3.19 [8] Let 1 ≤ r ≤ m < ν, and let β = N (r, 0; 2m,m; 2ν), γ =
N (r, 0; 2m − 1,m − 1; 2ν), δ = N (r, 0; 2m − 2,m − 1; 2ν), ξ = N (r, 0; 2m −
2,m − 2; 2ν) and α = max{γ − δ, γ − ξ}, where N (m1, r;m, r; 2ν) is from (4).
Then the following (i)–(iii) hold:

(i) For m ≥ 2 and m ≥ r + 1, if 1 ≤ d ≤
⌊

β − γ − 1
α

⌋
+ 1, then M(r, 2m; 2ν)

is de-disjunct, where e = β − γ − (d − 1)α − 1. In particular, if 1 ≤ d ≤
min{

⌊
β − γ − 1

α

⌋
+ 1, q + 1}, then M(r, 2m; 2ν) is fully de-disjunct.

(ii) For m ≥ 2 and m = r , if 1 ≤ d ≤
⌊

β − 1
γ

⌋
, then M(r, 2m; 2ν) is de-disjunct,

where e = β − dγ − 1. In particular, if 1 ≤ d ≤ min{
⌊

β − 1
γ

⌋
, q + 1}, then

M(r, 2m; 2ν) is fully de-disjunct.
(iii) For m = 1, if 1 ≤ d ≤ q, then M(1, 2; 2ν) is fully de-disjunct, where e = q − d.

The test efficiency of construction is smaller than that of [33] under some conditions.
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3.3.4 Use totally isotropic subspaces

In 2014, Guo and Nan [11] generalized [8]. They constructed a new family pooling
designs based on the symplectic space.

Definition 3.20 [11] Given integers 1 ≤ r ≤
⌊
m
2

⌋
, 2s ≤ m ≤ ν + s and s + r ≤

m < 2ν. Let M(r, 0;m, s; 2ν) be the binary matrix whose rows (resp. columns) are
indexed by M(r, 0; 2ν) (resp. M(m, s; 2ν)). M(r, 0;m, s; 2ν) has a 1 in row i and
column j , if and only if the i th subspace of type (r, 0) is contained in the j th subspace
of type (m, s).

Theorem 3.21 [11] Let 1 ≤ r ≤
⌊
m
2

⌋
, s + r ≤ m < 2ν, and let β =

N (r, 0;m, s; 2ν), γ = N (r, 0;m − 1, s; 2ν), ξ = N (r, 0;m − 1, s − 1; 2ν), η =
N (r, 0;m−2, s; 2ν), ζ = N (r, 0;m−2, s−1; 2ν), δ = N (r, 0;m−2, s−2; 2ν), α =
max{γ − η, γ − ζ, γ − δ, ξ − η, ξ − ζ, ξ − δ}, where N (m1, r;m, r; 2ν) is from

(4). If d ≤
⌊

β−max{γ,ξ}−1
α

⌋
+ 1, then M(r, 0;m, s; 2ν) is de-disjunct, where e =

β−max{γ, ξ}−(d−1)α−1. In particular, if 1 ≤ d ≤ min{
⌊

β−max{γ,ξ}−1
α

⌋
+1, q+1},

then M(r, 0;m, s; 2ν) is fully de-disjunct.

The error-tolerance property of [11] is much better than that of [8], if v is big
enough.

3.4 The construction based on the pseudo-symplectic space

In 2010, Li et al. [18] constructed two family pooling designs on pseudo-symplectic
spaces F(2ν+1)

q .

Definition 3.22 [18] For 2r + 1 ≤ d0 < d < k ≤ ν + r + 1, assume that P0 is a
fixed subspace of type (d0, 2r + 1, r, 0) in F

(2ν+1)
q . Let M be a binary matrix whose

columns (rows) are indexed by all subspaces of type (k, 2r + 1, r, 0) containing P0
(subspaces of type (d, 2r + 1, r, 0) containing P0) in F

(2ν+1)
q such that M(A, B) = 1

if A ⊆ B, and 0 otherwise. This matrix is denoted by M1(n, d, k).

Theorem 3.23 [18] Suppose 2r + 1 ≤ d0 < d < k ≤ ν + r + 1 and set b =
q(qk−d0−1−1)

qk−d−1
. Then M1(n, d, k) is se-disjunct for 1 ≤ s ≤ b and

e = qk−d N (d − d0 − 1, 0, 0, 0; k − d0 − 1, 0, 0, 0; 2(ν − r + d0))

−(s − 1)qk−d−1N (d − d0 − 1, 0, 0, 0; k − d0 − 2, 0, 0, 0; 2(ν − r + d0)),

where N (m1, 0, 0, 0;m, 0, 0, 0; 2ν + δ) is from (5).

Definition 3.24 For 3 ≤ 2r +1 ≤ d < k ≤ ν +r +1, let M be a binary matrix whose
columns (rows) are indexed by all subspaces of type (k, 2r +1, r, 1) ((d, 2r +1, r, 1))
in F(2ν+1)

q such that M(A, B) = 1 if A ⊆ B, and 0 otherwise. This matrix is denoted
by M2(n, d, k).
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Theorem 3.25 [18] Suppose 3 ≤ 2r+1 ≤ d−1 < k−2 ≤ ν+r+1. If 1 ≤ s ≤ q2r ,
then M2(n, d, k) is se-disjunct, where e = q(k−d−1)(d−1)+2r .

The test efficiency of construction is smaller than that of [2] under some conditions.

3.5 The constructions based on the unitary space

3.5.1 Use subspaces containing a fixed (m0, 0)-space and contained in its dual space

In 2009, Zhang et al. [34] constructed a family pooling designs based on the unitary
space.

Definition 3.26 [34] Select integers 0 ≤ m0 < r < m ≤ ν. Assume P0 is a fixed
(m0, 0)-space ofF

(n)

q2
. LetM be the (0, 1)-matrix by taking all (m, 0)-spaces which are

contained in P⊥
0 and contain P0 as columns and all (r, 0)-spaces which are contained

in P⊥
0 and contain P0 as rows. M has a 1 in row i and column j if and only if i is

contained in j .

Theorem 3.27 [34] Suppose m−r ≥ 2 and set b = (q2(m−m0−1)−1)(q2(m−m0)−q2(m−r−2))

(q2(m−r−2)−1)(q2(m−m0−1)−1)−1
.

Then M is dz-disjunct for 1 ≤ d ≤ b and

z =
[
m − m0
r − m0

]

q2

[
m − m0 − 1
r − m0

]

q2
+ (d − 1)

[
m − m0 − 2
r − m0

]

q2
.

The test efficiency of construction is smaller than that of [2] under some conditions.

3.5.2 Use subspaces containing a fixed (d0, r)-space

In 2011, Gao et al. [10] presented two new constructions based on the unitary space.

Definition 3.28 [10] For 2r − 2d0 < 2d < 2k ≤ n + r , assume that P0 is a fixed
subspace of type (d0, r) in F

(n)

q2
. Let M be a binary matrix whose columns (rows)

are indexed by all subspaces of type (k, r) containing P0 (subspaces of type (d, r)
containing P0) in F

(n)

q2
such that M(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix

is denoted by M1(n, d, k).

Theorem 3.29 [10] Suppose 2r ≤ 2d0 < 2d < 2k ≤ n + r, r = 2s + δ1, where

δ1 = 0, 1 and set b = q2(q2(k−d0−1)−1)
q2(k−d)−1

. Then M1(n, d, k) is le-disjunct for 1 ≤ l ≤ b

and

e = q2(k−d)N (d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + s − d0))

−(l − 1)q2(k−d−1)N (d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + s − d0)),

where N (m1, r;m, r; n) is from (6).
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Definition 3.30 [10] For 2 ≤ 2r ≤ 2d < 2k ≤ n+r , let M be a binary matrix whose
columns (rows) are indexed by all subspaces of type (k, r) ((d, r)) in F

(n)

q2
such that

M(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix is denoted by M2(n, d, k).

Theorem 3.31 [10] Suppose 0 ≤ 2r −4 ≤ 2d < 2k−2 ≤ n+ r −2. If 1 ≤ s ≤ q2r ,
then M2(n, d, k) is se-disjunct, where e = q2(k−d−1)d+2r .

The test efficiency of construction is smaller than that of [2] under some conditions.

3.5.3 Use totally isotropic subspaces

In 2010, Guo [4] constructed a family of inclusion matrices associated with subspaces
of F(2ν+δ)

q2
, and exhibited its disjunct property.

Definition 3.32 [4] In the unitary space F
(2ν+δ)

q2
, given integers 1 ≤ r ≤ ⌊m

2

⌋
and

m < 2ν + δ. Let M(r,m; 2ν + δ) be the binary matrix whose rows (resp. columns)
are indexed byM(r, 0; 2ν + δ) (resp.M(m,m; 2ν + δ)). We also order elements of
these sets lexicographically. M(r,m; 2ν + δ) has a 1 in row i and column j if and
only if the i-th subspace of M(r, 0; 2ν + δ) is a subspace of the j -th subspace of
M(m,m; 2ν + δ).

Theorem 3.33 [4] Let 1 ≤ r ≤ ⌊m
2

⌋
andm < 2ν+δ, and let β = N (r, 0;m,m; 2ν+

δ), γ = N (r, 0;m − 1,m − 1; 2ν + δ), ξ = N (r, 0;m − 1,m − 2; 2ν + δ), η =
N (r, 0;m − 2,m − 2; 2ν + δ), ζ = N (r, 0;m − 2,m − 3; 2ν + δ), ρ = N (r, 0;m −
2,m − 4; 2ν + δ), α = max{γ − η, γ − ζ, γ − ρ, ξ − η, ξ − ζ, ξ − ρ}, where
N (m1, r;m, r; n) is from (6). Then the following (i)–(iii) hold:

(i) For m ≥ 4. If 1 ≤ d ≤
⌊

β−max{γ,ξ}−1
α

⌋
+ 1, then M(r,m; 2ν + δ) is de-

disjunct, where e = β − max{γ, ξ} − (d − 1)α − 1. In particular, if 1 ≤
d ≤ min{

⌊
β−max{γ,ξ}−1

α

⌋
+ 1, q2 + 1},then exist d + 1 distinct columns of

M(r,m; 2ν + δ), i.e., d + 1 distinct m-dimensional non-isotropic subspaces of
F

(2ν+δ)

q2
, such that the d + 1 subspaces contain same (m − 2)-dimensional sub-

space P and the number of r-dimensional totally isotropic subspaces contained
in P is equal to min{η, ζ, ρ}.

(ii) For m = 3. If 1 ≤ d ≤ q2 − q, then M(r,m; 2ν + δ) is fully de-disjunct, where
e = q3 − d(q + 1).

(iii) For m = 2. If 1 ≤ d ≤ q, then M(1, 2; 2ν + δ) is fully de-disjunct, where
e = q − d.

The test efficiency of construction is smaller than that of [2] under some conditions.

3.6 The constructions based on the orthogonal space

3.6.1 Use subspaces containing a fixed (m0, 0, 0)-space and contained in its dual
space

In 2009, Zhang et al. [35] constructed a family pooling designs.
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Definition 3.34 [35] Select integers 0 ≤ m0 < r < m ≤ ν. Assume P0 is a fixed
(m0, 0, 0)-subspace of F

(2ν+δ)
q . Let M be the (0, 1)-matrix, where the columns (rows)

are labeled by (m, 0, 0)-subspaces ((r, 0, 0)-subspaces), which are contained in P⊥
0

and contain P0. mi j = 1 if and only if the label of row i is contained in the label of
column j .

Theorem 3.35 [35] Suppose m − r ≥ 2 and set b1 = q(qm−m0−1−1)
qm−r−1 . Then M is

dz-disjunct when 1 ≤ d ≤ b1, where

z = N (r − m0, 0, 0;m − m0, 0, 0; 2(ν − m0) + δ,�)

− dN (r − m0, 0, 0;m − m0 − 1, 0, 0; 2(ν − m0) + δ,�)

+ (d − 1)N (r − m0, 0, 0;m − m0 − 2, 0, 0; 2(ν − m0) + δ,�)

where N (m1, 0, 0;m, 0, 0; 2ν + δ,�) is from (7).

The test efficiency of construction is smaller than that of [2] under some conditions.

3.6.2 Use subspaces containing a fixed (d0, 2r + 1, r, 1)-space

In 2010, Li et al. [17] constructed two family pooling designs.

Definition 3.36 [17] For 2r + 1 ≤ d0 < d < k ≤ ν + r + 1, assume that P0 is a
fixed subspace of type (d0, 2r + 1, r, 1) in F

(2ν+1)
q . Let M be a binary matrix whose

columns (rows) are indexed by all subspaces of type (k, 2r+1, r, 1) containing P0( all
subspaces of type (d, 2r + 1, r, 1) containing P0) in F

(2ν+1)
q such that M(A, B) = 1

if A ⊆ B and 0 otherwise. This matrix is denoted by M1(ν, d, k).

Theorem 3.37 [17] Suppose 2r + 1 ≤ d0 < d < k ≤ ν + r + 1 and set b =
q(qk−d0−1−1)

qk−d−1
. Then M1(ν, d, k) is se-disjunct for 1 ≤ s ≤ b and

e = qk−d N (d − d0 − 1, 0, 0; k − d0 − 1, 0, 0; 2(ν + r + 1 − d0))

−(s − 1)qk−d−1N (d − d0 − 1, 0, 0; k − d0 − 2, 0, 0; 2(ν + r + 1 − d0)),

where N (m1, 0, 0;m, 0, 0; 2ν) is from (8).

The test efficiency of construction is smaller than that of [2] under some conditions.

Definition 3.38 For 3 ≤ 2r+1 ≤ d < k ≤ ν+r+1, let M be a binary matrix whose
columns (rows) are indexed by all subspaces of type (k, 2r + 1, r, 1)(all subspaces of
type (d, 2r + 1, r, 1)) in F

(2ν+1)
q such that M(A, B) = 1 if A ⊆ B and 0 otherwise.

This matrix is denoted by M2(ν, d, k).

Theorem 3.39 [17] Suppose 3 ≤ 2r+1 ≤ d−1 < k−2 ≤ ν+r−1. If 1 ≤ s ≤ q2r ,
then M2(ν, d, k) is se-disjunct, where e = q(k−d−1)(d−1)+2r .

The test efficiency of construction is smaller than that of [2] under some conditions.
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3.7 The constructions based on the affine-symplectic space

In 2011, Gao et al. [9] constructed two family pooling designs based on the affine-
symplectic space.

Definition 3.40 [9] For 2r − d0 < d < k ≤ ν + r , assume that y0 + P0 is a fixed
(d0, r)-flat of ASG(2ν,Fq). Let M be a binary matrix whose columns (rows) indexed
by all (k, r)-flats containing y0 + P0((d, r)-flats containing y0 + P0) in ASG(2ν,Fq)

) such that M(x + A, y + B) = 1 if x + A ⊆ y + B and 0 otherwise. This matrix is
denoted by M1(ν, d, k).

Theorem 3.41 [9] Suppose 2r ≤ d0 < d < k ≤ ν + r and set b = q(qk−d0−1−1)
qk−d−1

.

Then M1(ν, d, k) is se-disjunct for 1 ≤ s ≤ b and

e = qk−d N (d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + r − d0))

−(s − 1)qk−d−1N (d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + r − d0)),

where N (m1, r;m, r; 2ν) is from (4).

The test efficiency of construction is smaller than that of [2] under some conditions.

Definition 3.42 For 2 − 2r − d < k ≤ ν + r , let M be a binary matrix whose
columns (rows) indexed by all (k, r)-flats ((d, r)-flats) in ASG(2ν,Fq) such that
M(x + A, y + B) = 1 if x + A ⊆ y + B and 0 otherwise. This matrix is denoted by
M2(ν, d, k).

Theorem 3.43 [9] Suppose 4 ≤ 2r + 2 ≤ d < k − 1 ≤ ν + r − 1. If 1 ≤ s ≤ q2r+1,
then M2(ν, d, k) is se-disjunct, where e = q(k−d−1)(d+1)+2r+1.

The test efficiency of construction is smaller than that of [2] under some conditions.

4 Conclusion

The algebraic construction is motivated from containment design which was initiated
by Macula [21,22]. Ngo and Du [26,27] generalized containment design to a more
general setting. Park et al. [28] employed simplicial complex to perform the idea of
containment design. Huang and Weng [12] gave a very general theorem for contain-
ment design and suggested to use linear spaces as tools, which initiated the algebraic
construction.Note that geometric lattices are among pooling spaces. In [13] the authors
gave some examples of pooling spaces from geometry of classical groups over finite
fields. So, in this sense the construction based on geometry of classical groups over
finite fields was initialed by [13]. This construction opened a new door for studying
pooling designs. Current results in literature (Dyachkov et al. [2]; Lang et al. [15])
have showed that many spaces can be involved in algebraic construction. Therefore,
the idea is powerful. It may be possible to extend to pooling design of other types with
other applications (Lang et al. [15]; Macula et al. [24]).
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