Psychological Methods
2010, Vol. 15, No. 1, 18-37

© 2010 American Psychological Association
1082-989X/10/$12.00 DOI: 10.1037/a0015917

Campbell’s and Rubin’s Perspectives on Causal Inference
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Donald Campbell’s approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T.
Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin’s causal model (P. W.
Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health.
Campbell’s approach focuses on the identification of threats to validity and the inclusion of design features that
may prevent those threats from occurring or render them implausible. Rubin’s approach focuses on the
precise specification of both the possible outcomes for each participant and assumptions that are
mathematically sufficient to estimate the causal effect. In this article, the authors compare the perspec-
tives provided by the 2 approaches on randomized experiments, broken randomized experiments in which
treatment nonadherence or attrition occurs, and observational studies in which participants are assigned
to treatments on an unknown basis. The authors highlight dimensions on which the 2 approaches have
different emphases, including the roles of constructs versus operations, threats to validity versus
assumptions, methods of addressing threats to internal validity and violations of assumptions, direction
versus magnitude of causal effects, role of measurement, and causal generalization. The authors conclude
that investigators can benefit from drawing on the strengths of both approaches in designing research.
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In this article, we provide an introduction to Donald Campbell’s
(Campbell, 1957; Shadish, Cook, & Campbell, 2002) and Donald
Rubin’s (Holland, 1986; Rubin, 1974, 2005) perspectives on
causal inference. Campbell’s perspective has dominated thinking
about causal inference in psychology, education, and some other
behavioral sciences. Rubin’s causal model (a.k.a., the potential
outcomes model; e.g., Rubin, 1974, 1978, 2005, 2006b) has be-
come an important perspective on causal inference in economics,
medicine, public health, and statistics. The two perspectives share
many foundational ideas. Both perspectives attempt to understand
the effect of a treatment of interest relative to a comparison
treatment on an outcome (posttest). Both perspectives have at-
tempted to eliminate the possible effects of other potential influ-
ences on the outcome so that the causal effect of the treatment
could be isolated. Both perspectives have basic philosophical
underpinnings in Hume’s (Hume 1748/2007; Lewis, 1973) coun-
terfactual model." However, in their development, the two per-
spectives have also developed unique and complementary empha-
ses. Campbell’s perspective has emphasized the identification of
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potential threats to the validity of inferences prior to conducting a
study and the addition of features to the basic design that can
prevent those threats from occurring or can rule out those threats
as alternative explanations of the findings. However, the use of
these design elements can sometimes introduce ambiguity about
the magnitude of the causal effect, as we describe below. In these
cases, Campbell’s perspective has historically focused more on
determining the direction of the causal effect, for example, is p, >
WMo Where w, and . are the population means of the treatment
and comparison groups, respectively, after the effect of other
potential influences have been ruled out. In contrast, the emphasis
within Rubin’s perspective has been on estimating the exact mag-
nitude of the causal effect. Rubin’s perspective has emphasized
making specific, ideally verifiable assumptions that are mathemat-
ically sufficient to permit the researcher to make proper analytic
adjustments for common issues that occur in research so that the
causal effect of interest can be precisely estimated. On the other
hand, the precision demanded by Rubin’s perspective may some-
times limit its applicability and the ability of researchers to gen-
eralize their findings.

We begin by briefly reviewing the two perspectives. We restrict
our focus to those ideas that are presented in the major writings of
the two perspectives; we do not consider ideas that may be implicit
but which have not been clearly articulated to date. Throughout the
article we will initially introduce the ideas from each perspective
separately, followed by a comparison. Most researchers in psy-
chology are familiar with Campbell’s perspective (particularly the
early developments portrayed in Campbell & Stanley, 1966). Few

! Although the term counterfactual was used in the early writings about
his approach (e.g., Holland, 1986), Rubin (2005) now prefers the term
potential outcome, which we will follow in this article.
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psychologists have had exposure to Rubin’s causal model. We
introduce several of its central ideas, keeping the presentation at a
nontechnical level. Rubin’s perspective has opened up new ap-
proaches to the analysis of difficult problems of causal inference in
“broken” randomized experiments in which problems, such as
attrition or treatment nonadherence, have occurred. It also provides
a strong mathematical basis for the analysis of studies in which
nonrandomized treatment groups are compared. We compare
Campbell’s and Rubin’s perspectives in terms of their approaches
to randomized experiments, broken randomized experiments, and
nonrandomized studies. The two perspectives have different em-
phases and, hence, are associated with different strengths. We
believe that the strengths of the two perspectives are often com-
plementary. Consideration of both perspectives can inform the
design and analysis of research in the behavioral sciences, partic-
ularly in field settings.

Campbell’s Approach
Overview

Campbell (1957) developed a practical approach to causal in-
ference that follows the approach of a working scientist. Campbell
considered the full range of pre-experimental, quasi-experimental,
and experimental designs used by basic and applied researchers in
the behavioral sciences. Over a 50-year period, Campbell and his
colleagues (Campbell & Stanley, 1966; Cook & Campbell, 1979;
Reichardt, 2006; Shadish et al., 2002) have collected and refined a
list of threats to validity, representing “an accumulation of our
field’s criticisms of each other’s research” (Campbell, 1988, p.
322). A key concept is the idea of plausible threats to validity,
factors that may potentially undermine some aspect of the causal
inference process in the specific research setting:

We took the position that there could be lots of threats to validity that
were logically uncontrolled but that one should not worry about unless
they were plausible. The general spirit was that any interpretation of a
body of data or research should be regarded as innocent until judged
guilty for plausible reasons, as determined through the scientific method
of mutual criticism. (Campbell, 1988, p. 317)

The task for researchers is to identify plausible threats to valid-
ity and then to include design elements, analyses, or other features
in their research that can potentially rule out those specific threats.
Otherwise stated, the specific alternative explanation of the results
would be logically eliminated by the incorporation of the design
element and the obtained pattern of results. No proof exists that the
system of threats to validity is complete, or that methods of
addressing them always work, but the approach has evolved to be
quite thorough and of great practical use in behavioral science
research.

More recent statements of Campbell’s perspective (e.g., Cook
and Campbell, 1979; Shadish et al., 2002) consider four validity
types: statistical conclusion validity, internal validity, construct
validity, and external validity. Given our focus on causal inference,
we have a strong focus on internal validity here. We designate X
as an indicator of treatment (e.g., 1 = Treatment [7]; 0 = Control
[C]) and Y as the outcome (dependent) variable. The central
concern of internal validity is whether the relationship between the

treatment and the outcome is causal in the population under study.
Does the manipulation of X produce change in ¥Y? Or, does some
other influence produce change in Y? Note that internal validity
does not address the specific aspect(s) of the treatment that pro-
duce the change nor the specific aspect(s) of the outcome in which
the change is taking place—nor does it address whether the treat-
ment effect would hold in a different setting, with a different
population, or at a different time. These issues are questions of
construct validity and external validity, respectively.”

Internal Validity

Threats to internal validity. Threats to internal validity iden-
tify specific reasons why we can be partly or completely wrong
when we make a causal inference. The threats to internal validity
that will be plausible in a research context depend on the design
that is chosen, the obtained pattern of results, and prior research
and theory. Campbell and colleagues (e.g., Campbell & Stanley,
1966; Shadish et al., 2002) considered threats to internal validity in
experimental, quasi-experimental, and pre-experimental designs.
We focus here on designs comparing 7 and C groups in which both
baseline and outcome measures are taken. These designs have been
extensively considered from both Campbell’s and Rubin’s per-
spectives, providing a clear basis for comparison. They also pro-
vide a foundation for our later contrasts of the randomized exper-
iment and the observational study,’ designs that have been widely
used in education, psychology, and public health.

Given the assumptions that (a) all participants experience iden-
tical experimental procedures except for the treatment condition
and (b) all participants are assessed at both baseline and outcome,
all of the simple, main effect threats to internal validity—such as
history, maturation, and selection—are ruled out within Camp-
bell’s framework (Campbell & Stanley, 1966; Cook & Campbell,
1979; Shadish et al., 2002). For a threat to be a problem, it must
operate differentially in the 7" and C groups. Of central concern are
four threats that involve interactions of another threat with the
threat of selection, the possibility that participants in the 7" and C
groups already differ at the beginning of the experiment.* We
illustrate these threats in the context of an investigation of the
effects of two teaching methods (computer assisted teaching vs.
standard classroom instruction) on gains in mathematics achieve-
ment. All students complete a baseline measure at the beginning of

2 Some researchers have interpreted internal validity more broadly. To
highlight his original intended meaning of this term, Campbell (1986) once
suggested that the term internal validity be replaced by “local, molar,
causal validity” (p. 69).

3 In statistics, following Cochran (1965, 1983; see also Rosenbaum, 2002),
observational studies have been characterized as investigations in which
causal inference is the goal, but the treatment cannot be imposed or random-
ized by the experimenter. In psychology, the term passive observational study
has sometimes been used to characterize cross-sectional or longitudinal de-
signs without an intervention in which the researcher aspires to make causal
inferences (e.g., the concomitant time series design; Cook, Dintzer, & Mark,
1980).

+Of course, the implementation of identical procedures except for the
treatment, the measurement of all participants at baseline and outcome, or
both, may fail. We return to this issue in our discussion of randomized
experiments.
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the school year and an outcome measure at the end of the school
year, and they experience identical experimental procedures other
than the treatment.

L. Selection X Maturation. Students in the 7 and C groups may
be naturally growing at different rates even in the absence of
treatment. For example, a group of gifted students would be
expected to show more rapid gains in achievement than a group of
average students, even given identical teaching methods.

2. Selection X History. Participants in the 7 and C groups may
experience different historical events (a.k.a., local history). Students in
one group might be given smaller class sizes following a school
district mandate; the other group in a second school district would not
change in class size. The smaller class size might lead to increased
gains in mathematics achievement even if there were no effect of
teaching method.

3. Selection X Instrumentation. Participants in the 7 and C
groups may be administered different outcome measures, or the
outcome measures may have different measurement properties in
the two groups (e.g., ceiling or floor effects; different factor
structures; see Embretson, 2006). One group might be switched to
an easier posttest, producing scores that would appear to be higher,
even in the absence of an effect of the new curriculum.

4. Selection X Statistical Regression. One of the groups may be
selected because it is extreme at baseline, whereas the other is not.
In this case, the amount of regression to the mean may differ
between the two groups and artifactually produce the apparent
treatment effect. A decision may be made to give the computer-
assisted teaching to a group of students who score low on the baseline
measure and to give the standard curriculum to a group of average
students. Particularly when either the internal consistency or the
test—retest reliability of the measure is less than perfect, the low-
scoring group may show more improvement than the control group
because of regression to the mean, even in the absence of any
effect of the teaching method. Campbell and Kenny (1999) have
presented a full discussion of regression artifacts and their sources.

Below, we briefly consider some strategies for addressing each
of these threats. Regardless of the strategy that is chosen, the
plausibility of each threat also depends on the specific research
context and the prior research and theory in that area. The typical
threats to a design may not be plausible in a specific research area.

Addressing threats to internal validity: Design elements.
Once the plausible threats to internal validity have been identified
in the planning of the research, the strong priority within Camp-
bell’s tradition has been on identifying procedures that will min-
imize the likelihood (or extent) of their occurrence and on identi-
fying specific elements that can be added to the design that would
rule out the threat. As described in more detail below, randomiza-
tion of participants to treatment conditions is the most general of
these design elements, but more targeted design elements can be
utilized to demonstrate that the pattern of obtained results is not
consistent with the operation of the threat. To cite two examples,
if maturation is a plausible threat, additional pretests can be added
to estimate the maturational trend in each group prior to treatment.
If history is a plausible threat, using a design in which multiple
cohorts are given their baseline and outcome measures during
nonoverlapping time periods helps address this threat. Because the
time intervals over which each cohort is studied do not overlap, a

common historical event (e.g., introduction of a smaller class size)
can not be adduced that would lead to identical change in each of
the cohorts. This strategy of adding targeted design elements that
permit the pattern of results to rule out specific threats to validity
is a key feature of Campbell’s approach. We present more discus-
sion of targeted design elements below in the context of our
section on observational studies (see also Shadish & Cook, 1999;
Shadish et al., 2002).

Campbell’s approach also considers other less preferred ap-
proaches to reducing threats to internal validity. These approaches
include careful measurement and statistical adjustment for the
threat and appeals to the results of previous research and theory
(Cook & Campbell, 1979; Higginbotham, West, & Forsyth, 1988;
Shadish et al., 2002; West, Biesanz, & Pitts, 2000). Nonetheless,
the priority of design-based approaches over statistical adjustment
and other approaches in Campbell’s tradition is clear: “When it
comes to causal inference from quasi-experiments, design rules,
not statistics” (Shadish & Cook, 1999, p. 300).

Rubin’s Causal Model
Overview

Rubin’s causal model (a.k.a., the potential outcomes model;
Holland, 1986; Little & Rubin, 2000; Neyman, 1923/1990; Rubin,
1974, 1978, 2005, 2006b) brings the strengths of a formal math-
ematical/statistical perspective to causal inference. As a mathemat-
ical approach, it begins with a clear definition of the causal effect
of interest, specifies the precise set of assumptions that are suffi-
cient to make a causal inference for each research design, and uses
a precise notational system that permits unambiguous specification
of the parameters of interest. In addition to the mathematical
precision of Rubin’s causal model, much of the usefulness of the
approach in applications lies in the heuristic value of potential
outcomes, a core concept of the model. This concept has proven
both to be intuitive to substantive researchers and to provide a
remarkably generative way of thinking about how to obtain precise
estimates of the magnitude of the desired causal effects for difficult
research problems.

The Basic Model

To develop a precise definition of the causal effect of interest
(the causal estimand or the magnitude of the difference in Y due
solely to the treatment), we take as our starting point a single
unit measured without error. We emphasize below psycholo-
gy’s typical unit, the single human participant, recognizing that
the unit could also be an animal, group, community, and so
forth. Treatment 7 is given to the participant, and the outcome
variable Y is observed. Ideally, the comparison (control) treat-
ment C is given to the same participant at the same time and in
the same context, and the response is observed. Formally, each
participant’s causal effect, the individual treatment effect, is
defined as Y, (u) — Y(u), where Y,(u) represents the response Y of
unit u to treatment 7, and Y (u) represents the response of unit « to
treatment C. Comparison of these two outcomes provides the ideal
design for causal inference. The model can be easily extended to
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more than two treatments, but we only consider the case of two
treatments here for ease of presentation.

This ideal design provides a theoretically useful definition of
the causal effect and a wonderfully heuristic way to think about
problems of research design. Unfortunately, this design is a
Platonic ideal that can never be achieved in practice. Consider
again our example of the effect of computer-assisted teaching
(T) as compared with standard classroom instruction (C) on
mathematics achievement. We cannot give 7 and observe its
outcome, put the same participant back to the identical time and
place (thereby removing all traces of learning and returning the
participant’s motivation to its original state), and then give C
and now observe its outcome. Consequently, we need to choose
an approximation to the ideal design. Although Holland (1986)
has discussed three approximations to the ideal design,” the
most commonly used one in psychology is the randomized
experiment that yields (given additional assumptions) an unbi-
ased estimate of the average causal effect in the population,
My — W as is discussed in the section on randomized exper-
iments below.

There are three important implications of this definition of a
causal effect:

1. The model makes it clear that we are comparing two treat-
ments, both possibly effective. “... [T]he effect of a cause is
always relative to another cause” (Holland, 1986, p. 946). Al-
though psychologists typically refer to a treatment group and a
control group (as we do here), designating one of the groups as a
“control group” presumes that it is totally benign with respect to its
effect on the outcome, a very special case. Even placebos in
well-designed pharmaceutical trials may lead to pharmaceutical or
cognitive effects that influence the outcome of interest. These
effects must be considered part of the so called “control” treat-
ment.

2. The model requires a precise statement of the two treatments
to be compared. Often, this statement will simply be the specific
operationalization of the two treatments by the researcher. This
specificity contrasts with the preference of many psychologists to
describe treatments on the construct level, particularly in basic
research (e.g., frustration vs. no frustration in classic work on
aggression; see discussion in final section, also in Shadish et al.,
2002; West et al., 2000). In other cases (as we see below), the two
treatments can be compared only for the subset of people who
could potentially receive either treatment. In still other cases (e.g.,
effects of Hurricane Katrina on health outcomes of Gulf coast
residents), the researcher will need to conceptualize carefully the
alternative treatment that the individual could potentially receive
(i.e., compared with what?). Of importance for researchers in
substantive areas of psychology interested in stable individual
differences (e.g., abnormal psychology, personality), this defini-
tion makes it difficult to investigate the causal effects of individual
difference variables because we must be able to at least concep-
tualize the individual difference (e.g., gender) as two alternative
treatments. If we cannot do this, Rubin (1986) considers the
problem ill defined. Much of the research in psychology modeling
cross-sectional or longitudinal data in the absence of a treatment
would fail to meet this criterion.

3. The model makes it clear that we can observe two sets of
participants: (a) Group A given T and (b) Group B given C. A and
B may be actual pre-existing groups (e.g., two communities) or

they may be sets of participants who have selected or have been
assigned to receive the 7 and C conditions, respectively. Of key
importance, we also need to conceptualize the potential outcomes
in two hypothetical groups: (c¢) Group A given C and (d) Group B
given T. Imagine that we would like to compare the mean outcome
of the two treatments. Statistically, in terms of the ideal design
what we would ideally like to have is an estimate of either:

pr(A) = pe(A), or (1A)

pr(B) — pc(B), (1B)

where A and B designate the group to which the treatment was
given. Both Equations 1A and 1B represent average causal effects.
Of importance, note that Equations 1A and 1B may not represent
the same average causal effect; Groups A and B may represent
different populations.® What we have in fact is the estimate of

P«T(A) - P«C(B)~ 2)

These ideas are illustrated in Table 1. In the columns labeled
“Potential outcomes,” we represent the ideal design in which the
responses of each participant are observed at the same time and
setting in both 7" and C. In the columns labeled “Observed out-
comes,” we can only observe the outcomes for 7 in Group A and
C in Group B. For observed outcomes, only half of the data we
would ideally like to have can be observed; the other half of the
data is missing. This insight allows us to conceptualize the poten-
tial outcomes as a missing data problem and focuses attention on
the process of assignment of participants to groups as a key factor
in understanding problems of selection.

Rubin’s conceptual analysis makes it formally clear that we need
additional assumptions if the comparison between the two groups

5 Three approximations to the ideal design include the following: I.
Within-subjects design. In the within-subjects design, the treatment and
control conditions are both given to the same group of participants. The
assumptions are (a) temporal stability, in which the same outcome will be
observed regardless of when the treatment is applied (i.e., no maturation or
history effects), and (b) causal transience, in which the administration of
the first treatment will have no effect on the response the second treatment
when it is administered later (no carryover effects). 2. Unit homogeneity.
With unit homogeneity, the units are created or selected to be identical in
all relevant respects (e.g., identical ball bearings might be the units in an
engineering experiment). Given unit homogeneity, the units are assumed to
be exchangeable so that the responses of Units A and B to a treatment will
be identical. 3. Randomization. In randomization, each participant has an
equal chance of being in treatment condition X;. As we present in detail
later, this procedure equates the participants in different treatment groups,
on average, on all possible background variables in large samples. Al-
though ideas from the first two approximations are sometimes used, the
assumptions underlying these approximations to the ideal design will only
rarely be fully tenable in psychological research contexts.

¢ Equations 1A and 1B will not generally be equivalent in the absence of
randomization. There may be an interaction between treatment and base-
line status, so that the magnitude of the causal effect may differ between
the two groups. To illustrate, suppose Group A consists of college-bound
high school graduates, and Group B consists of non-college-bound high
school graduates, all of whom are eligible for college admission. The
magnitude of the treatment effect (college education) on gains in achieve-
ment would almost certainly differ between the two groups.
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Table 1
Potential and Observed Outcomes
Potential Observed
outcomes outcomes
Participant T C T C
1 10 10 10 [ ]
2 11 13 ] 13
3 11 11 ] 11
4 12 16 u 16
5 12 12 12 [ ]
6 12 15 12 ]
7 12 13 ] 13
8 13 15 13 u
9 13 17 [ ] 17
10 14 18 14 ]
True average Prima facie
treatment average
effect: 2.0 treatment
effect: 1.8

Note. The columns labeled “Potential outcomes” illustrate the true re-
sponses of the 10 participants under the treatment (7) and control (C)
conditions. The columns labeled “Observed outcomes” illustrate the re-
sponses of the same 10 participants in a randomized experiment or an
observational study. A B indicates that the response was not observed. Half
of the potential outcomes are not observed. The prima facie average
treatment effect is the simple (possibly biased) difference between the
observed means in the 7 and C groups.

represented by Equation 2 is to stand in for the ideal comparison
represented by Equation 1A or Equation 1B. In general, Rubin’s
perspective prefers approaches that make the smallest number of
necessary assumptions, make assumptions that are likely to be
consistent with the actual context of the research problem, and
make assumptions that are transparent—they are directly verifiable
or their effects on the outcome can at least be probed. As Little and
Rubin (2000) have noted, “Nothing is wrong with making assump-
tions; they are the strands that join the field of statistics to scientific
disciplines. The quality of these assumptions, not their existence,
is the issue” (p. 123).

Randomized Experiments: Intact and Broken

The randomized experiment is widely viewed by researchers
as the “gold standard” of research designs. Proper randomiza-
tion of participants to treatment conditions leads to the expec-
tation that the assigned treatment condition will be statistically
independent of any covariate at baseline in the population.
Statistical independence means that the distribution of any
measured or unmeasured covariate will, on average, be bal-
anced (i.e., have the same distribution) at baseline in the 7 and
C conditions. Two implications of statistical independence are
that (a) the means of the 7"and C conditions will, on average, be
equal on all possible measured and unmeasured covariates at
baseline, and (b) the covariance of treatment assignment and
any measured or unmeasured baseline covariate will, on aver-
age, be 0. These expectations imply that there are no differences
on any potential covariate between the 7 and C groups at the
beginning of the experiment in the population. These expecta-
tions provide a strong foundation for causal inference. Note

these are expectations that hold exactly only in large samples or
as the mean of a large number of random samples from the same
population. In any single experiment, there is no guarantee that
the mean pretest levels of the two treatment conditions will not
differ on a specific covariate.

Campbell’s Perspective

Given that the procedures other than the manipulation are iden-
tical and there is no attrition, there are four major threats that need
to be ruled out in designs comparing 7 and C groups that include
baseline and posttest outcome measurements on all participants.
These are the four interactions with selection described above.
Random assignment renders selection implausible on all possi-
ble variables, measured and unmeasured, thus simultaneously
ruling out all of the interactions with selection. The generality
of random assignment gives it a special status among all design
elements:

Random assignment facilitates causal inference in many ways—by
equating groups before treatment begins, by making alternative expla-
nations implausible, by creating error terms that are uncorrelated with
treatment variables, and by allowing valid estimates of error terms . . .
[R]andomization is the only design feature that accomplishes all of these
goals at once, and it does so more reliably and with better known
properties than any alternatives. (Shadish et al., 2002, p. 252)

Other threats to internal validity. In the most recent major
statement of Campbell’s perspective, Shadish et al. (2002) have
identified two additional threats to internal validity that are not ruled
out by randomization. These are violations of the two assumptions
noted on p. 19.

1. Nonconstant features of experiments. In some research
situations, other features of the research protocol—such
as the setting, the instructions, the delay between base-
line and outcome measures, or the nature of the test-
ing—may not be kept constant. For example, control
participants may be given a shorter form of the outcome
measure or not be given the baseline measure because
they are expected to be less cooperative than partici-
pants given a desired treatment program.

2. Treatment-related attrition. Attrition refers to any loss
of participants from posttest measurement who were
initially randomized whether because of refusal to an-
swer questionnaire items, failure to show up for the
posttest measurement session, moving away from the
study site, or the like. Particular concerns with respect
to internal validity arise when attrition is related to
treatment assignment. For example, in our earlier ex-
ample of mathematics achievement, students with low
math ability may drop out of the innovative new pro-
gram, whereas students with high math ability may drop
out of the standard program.

Addressing remaining threats. Campbell’s perspective em-
phasizes the prevention of threats to internal validity rather than their
correction. For example, Shadish et al. (2002, chapter 10) have
devoted 10 pages to methods of preventing attrition, such as mini-
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mizing any undesirable features of the treatment conditions and the
measurement process, monitoring attrition throughout the experiment,
and instituting procedures for retention and tracking of participants. In
contrast, only half this space is devoted to statistical analyses that
describe and attempt to correct for attrition once it occurs. Shadish et
al. are clearly willing to incorporate statistical corrections, including
corrections from Rubin’s perspective, but that is not their emphasis.
Similarly, Shadish et al. encourage researchers to prevent potential
problems by reviewing the proposed experimental and measurement
protocol for the possibility of any nonconstant features and monitor-
ing adherence to this protocol throughout the experiment to detect
changes that may creep in.

Rubin’s Perspective

Additional assumptions. Even given randomization, several
assumptions are needed in the context of Rubin’s causal model to
provide a sufficient basis for an unbiased estimate of the magni-
tude of the causal effect. The first three assumptions below are
normally met in the typical 1-hr laboratory experiment in psychol-
ogy in which each participant separately receives a highly stan-
dardized treatment independently from other participants. How-
ever, these assumptions can fail in important applied experiments
in which the treatment is highly valued by participants and in both
basic and applied research in which the treatment, measurement, or
both are extended in time (West et al., 2000, 2008).

1. Full treatment adherence. All randomized participants com-
plete the full treatment protocol (no treatment nonadherence,
a.k.a., treatment noncompliance). Participants must not be able to
drop out of treatment to which they were assigned or reassign
themselves to another treatment condition. As an example of the
failure of this assumption, in randomized trials of the effectiveness
of screening mammography in providing early detection of breast
cancer in women over 50 years of age, Baker (1998) has noted that
about one third of the women assigned to the mammography
condition did not receive screening and that many women in the no
screening control condition obtained screening outside the trial.

2. No attrition from posttest measurement. All randomized
participants complete the posttest (outcome) measurement. Com-
monly observed failures of this assumption include participants
refusing to answer questions or to be observed, dropping out of the
research prior to the post test measurement, or moving to another
location in longitudinal research. In studies of aging or serious
diseases, actual participant mortality may be a significant source of
attrition. Given full treatment adherence, only if attrition is differ-
ential in the 7 and C conditions is it theoretically a problem. Under
the assumption that all variables related to both treatment assign-
ment and attrition status (1 = complete; 0 = attrited) are included
in the data set, it is possible to obtain an unbiased estimate of the
causal effect using methods that adjust for missing data (Little &
Rubin, 2002; discussed below). Whether this assumption is in fact
met in practice is unknown, except for special planned missingness
designs (see Graham, Taylor, Olchowski, & Cumsille, 2006).

3. Stable-unit-treatment value assumption (SUTVA). According
to Rubin (1986),

SUTVA is the a priori assumption that the value of Y for unit u when
exposed to treatment t will be the same no matter what mechanism is

used to assign treatment t to unit u and no matter what treatments the
other units receive. (p. 961)

The purpose of the SUTVA assumption is to guarantee that a
single value of the response will be observed for the participant
under 7T and a single value of the response (possibly [hopefully]
different) will be observed’ under C. As one example, participants
in an HIV prevention experiment may have a lowered risk of
contracting HIV if their sex partners are also individuals in the
(effective) treatment condition rather than participants in the (in-
effective) control condition. Another instance is our earlier educa-
tional research example, in which some participants in the standard
classroom instruction condition may be exposed to computer-
based instructional material by friends in classrooms receiving the
computer assisted instruction. Violations of SUTVA can also
occur if there are hidden variants of an ostensibly well-defined
treatment condition (e.g., different variants of the treatment are
implemented at different sites in a multisite experiment) and the
participants have different responses to the treatment variants.
Replications of the experiment become problematic because dif-
ferent mixtures of the treatment variants or different amounts of
participant contact can be expected to produce different estimates
of the magnitude of the average causal effect, even in the absence
of any sampling error. Rosenbaum (2007) and Sobel (2006)
present extensive discussions of interference between units.

4. Constant treatment effect (optional). Given randomization
and that the above three assumptions have been met, Rubin’s
causal model provides an unbiased estimate of the average causal
effect. Randomization yields an unbiased estimate of the average
causal effect, w; — ., an effect that characterizes the population
of participants that could be randomized. The average causal effect
has been strongly emphasized in Rubin’s work. However, this
causal effect cannot be particularized to any single participant, Y-
(u) — Y (u), the individual causal effect if the idealized experi-
ment could be performed on the same participant u at the same
time and in the same context. If the estimate of the average causal
effect in a randomized experiment were a 10-point decrease in
depression, one possible outcome would be that half of the partici-
pants do not benefit from the treatment, half of the participants have
a 20-point decrease, and no participants would show the 10-point
decrease implied by the average causal effect. To achieve an unbiased
estimate of individual causal effects in the context of a (between-
subjects) randomized experiment, a further necessary assumption
must be made that the treatment effect is constant so that a single
value characterizes all participants. Achieving an unbiased estimate of
the average causal effect is typically sufficient in areas such as
experimental and social psychology; however, unbiased estimates of
individual participant change may be the goal in many clinical and
health contexts.

In summary, one of the strengths of Rubin’s causal model is that
it makes transparent the assumptions necessary to make a causal
inference. The randomized experiment makes the fewest assump-

7 Other authors (e.g., Neyman, 1923/1990; Steyer, 2005; Steyer,
Partchev, Krohne, Nagengast, & Fiege, 2009) have alternatively assumed
that there is a single “true” response. As in classical test theory, random
measurement error is always present. Theoretically, the true score is the
mean of a very large number of observed responses by the same individual
under identical conditions.



24 WEST AND THOEMMES

tions, notably (1) treatment adherence, (2) no attrition, and (3)
SUTVA. Violations of these assumptions are potentially observable
and can be monitored by researchers. If these assumptions are met, an
unbiased estimate of the average causal effect can be computed. If
inferences are to be made about individual rather than average causal
effects of a treatment, the fourth assumption (that the causal effect is
constant across participants) must be added.

What if the assumptions are not met? Addressing violations.
One of the strengths of the potential outcomes idea within Rubin’s
causal model is that it permits researchers to conceptualize appro-
priate comparisons when the assumptions of the randomized ex-
periment are not met, sometimes termed the broken randomized
experiment (Barnard, Du, Hill, & Rubin, 1998; Barnard, Fran-
gakis, Hill, & Rubin, 2003). Considerable work has been done
within this framework to identify approaches and sets of additional
assumptions that are sufficient to yield unbiased estimation of
causal effects in broken randomized experiments and in other
designs. Here, we provide a brief introduction to an approach to
the problems of binary (all or none) treatment nonadherence and
attrition for the special case of a randomized experiment with a T
group and a C group.

Treatment nonadherence. Angrist, Imbens, and Rubin (1996)
considered the special case in which participants could choose to
take or not take the randomly assigned treatment.® Traditionally,
such situations have been analyzed by intent to treat (ITT) analysis
in which participants’ responses have been analyzed following Sir
Ronald Fisher’s maxim of “analyze them as you’ve randomized
them” (as cited in Boruch, 1977, p. 199). This strategy lumps
together participants in the 7 group who did and who did not
receive treatment, estimating the causal effect of treatment
assignment rather than treatment per se. Even for the full
sample of participants, the estimate of the effect of treatment
assignment in ITT analysis may also be biased if there are
missing data in addition to treatment nonadherence (Frangakis
& Rubin, 1999; Hirano, Imbens, Rubin, & Zhou, 2000).

Applying the idea of potential outcomes, Angrist et al. (1996)
identified four theoretically possible subgroups of participants with
respect to treatment adherence. Table 2 illustrates the four possible
subgroups of participants. The actual treatment received is listed in
the body of the table.

Adherers take the treatment to which they are assigned.” Always
takers will always receive treatment regardless of the treatment
group to which they are assigned (e.g., women who would undergo
mammography screening if assigned to the 7 group but who would
also pay to get mammography screening if assigned to the C
group). Never takers would always refuse the treatment (women
who decline mammography screening regardless of the treatment
condition to which they are assigned). Defiers, a theoretically
possible group that is rare in most research contexts, would take
the treatment if assigned to the C group and would take the control
if assigned to the 7 group. Causal effects of treatment cannot be
defined for the never taker and always taker groups because they are
only willing to accept one of the treatment conditions—there is no
alternative potential outcome. Sheiner and Rubin (1995) clearly note
that from the potential outcomes perspective, the comparison of
central interest is between an adherer assigned to the treatment con-
dition and an adherer assigned to the control condition, termed the
local average treatment effect (LATE; Angrist et al., 1996; a.k.a., the
complier average causal effect; Little & Yau, 1998).

The estimation of the LATE begins with the assumptions of the
randomized experiment—random assignment, no attrition from
posttreatment, and SUTVA—but relaxes the assumption of no
treatment adherence. However, additional assumptions are now
needed to produce an unbiased estimate of the causal effect.

1. Monotoncity. There are no defiers. The theoretical existence
of defiers keeps us from being able to statistically identify the
model so that it can be estimated.

2. Exclusion restriction. Randomization must operate only
through the treatment and not have other direct effects on the
outcome. This assumption eliminates any possibility that the ef-
fects of treatment assignment on the always takers or never takers
would affect the outcome. Hirano et al. (2000) have provided an
illustration of the violation of this assumption in a randomized
experiment in which physicians were encouraged (computer gen-
erated reminder) or not encouraged to give at risk patients inocu-
lations for influenza. The physicians in the T group apparently
gave the always takers, predominately the highest risk patients
(e.g., chronic obstructive pulmonary disease), special treatment—
such as scheduling their inoculations early—thereby decreasing
their potential exposure—or providing advice about other methods
about avoiding potential exposure to the virus. In this case, there
would be a direct path from treatment assignment to the outcome
in addition to the path through the treatment.'® This effect would
lead to bias in the estimate of the causal effect of the immunization
against influenza. This is the key assumption underlying the LATE
estimates, and it requires careful scrutiny (e.g., Hirano et al.,
2000). Masking of the treatment condition to both the participant
and treatment provider, assuming that it can be successfully
achieved, provides the strongest assurance that the exclusion cri-
terion is met in randomized experiments with noncompliance.

3. Nonzero average causal effect on compliance behavior.
Mathematically, there must be at least some compliers to be able
to compute an effect.

These three additional assumptions are sufficient to yield an
unbiased estimate of LATE. For the special (but common) situa-
tion in which there are also no always takers (e.g., the treatment
only exists in the context of the randomized experiment), the
LATE estimate can be simply computed as

(YT - Yc)

Ty

LATE =

where i, is the estimate of the proportion of compliers in the
treatment condition, ?T is the mean of the 7 group, and YC is the
mean of the C group from the ITT analysis (i.e., including all
participants as randomized). The above expression makes clear the

8 Angrist et al.’s (1996) approach requires that participants who are
assigned to the treatment condition, but who do not take the treatment,
receive the identical treatment to participants in the control condition.

¢ We have followed current psychological terminology in referring to indi-
viduals who complete the assigned treatment as adherers. These individuals are
often termed compliers in the statistical literature.

19 From Campbell’s perspective, this effect primarily represents a prob-
lem of the construct validity of the independent variable, properly describ-
ing the constructs represented by the full treatment package. The present
illustration is a complicated special case because the magnitude of the
effect is not uniform across different subgroups within the treatment group.



SPECIAL SECTION: TWO PERSPECTIVES ON CAUSAL INFERENCE

Table 2

25

Four Possible Subgroups: Types of Treatment Adherence and Nonadherence

Actual treatment
received when assigned
to the treatment group

Type of participant

Actual treatment
received when assigned
to the control group

Adherer (complier) Treatment Control
Always taker Treatment Treatment
Never taker Control Control
Defier Control Treatment

important role of randomization: The proportion of compliers is
expected to be, on average, the same in the 7" and C groups. Concep-
tually, the never takers, (1 — ;) of the participants, receive the
identical C treatment regardless of their treatment assignment. For
this subgroup, the effect size of treatment assignment is O.

The derivation of the standard error of the LATE estimate is more
challenging (see Little & Yau, 1998, for a derivation), but LATE
effects can now be tested for statistical significance using standard
statistical packages (e.g., SAS: Little & Yau, 1998; Mplus: Jo, 2002).
Although the LATE estimate is the estimand that many researchers
would like to have, researchers are often surprised by the lack of
efficiency and, hence, low statistical power of tests of significance of
LATE estimates. This lack of efficiency is realistic, as it reflects the
uncertainty associated with which participants would be in the hypo-
thetical group of control group members who would comply if offered
treatment—information about participants’ adherence status in the
C group is missing. Typically, efficiency can be improved in
randomized experiments by including covariates that predict the
outcome and reduce error variance. For LATE estimates, effi-
ciency can also be potentially improved, sometimes dramatically,
by including other covariates that reduce uncertainly associated
with membership in the complier group (Jo, 2002).

Attrition. Consider now the case in which proper randomiza-
tion has occurred and the assumptions of SUTVA and full treat-
ment adherence are met, but the assumption of no attrition from
posttest measurement is relaxed. Now we have another form of
missing data problem, here some or all of the dependent measures
for some of the participants may be missing. Of most concern with
respect to causal inference is the issue of treatment-related attrition
in which the rate of attrition or the characteristics of participants
who attrit differ in the 7 and C groups.

Rubin (1976; Little & Rubin, 2002; see also Schafer & Graham,
2002) has been at the forefront of the development of modern
missing data theory. He proposed that there are three types of
missing data. Data missing completely at random imply that the
probability that the data are missing is unrelated to any measured
or unmeasured variables that are related to the outcome. The
estimate of the causal effect is unbiased. Data missing at random
imply that all systematic sources of missingness are contained in
measured study variables. Typically, the estimate of the causal
effect must be adjusted to account for those measured variables
that are associated with both missingness and the outcome. Finally,
data may be missing not at random when missingness is related to
the participant’s level on the unobserved variables. For example,
participants in a school-based alcohol prevention program may be
more likely to miss an in-class measurement following a prior
evening of binge drinking. Here, adjustment is needed, but the
exact nature of the adjustment cannot be fully known.

Given two additional assumptions, proper estimates of the causal
effect can be achieved in randomized experiments.

1. Data are missing at random. Data missing at random imply
that all systematic sources of missingness are contained in measured
study variables. The estimate of the causal effect must be adjusted to
account for any differences in the measured variables that are asso-
ciated with both missingness and the outcome. This assumption is
more likely to be approximated if the researcher includes comprehen-
sive baseline measurement of all variables believed to be related to
both attrition and the outcome. Whether the researcher has, in fact,
met the assumption cannot be verified.

2. Distributional assumptions regarding measured variables.
Standard modern approaches to missing data with continuous
variables, including full information maximum likelihood and
multiple imputation, assumed that the measured variables had a
multivariate normal distribution. Commonly used statistical soft-
ware for missing data (e.g., SAS PROC MI, NORM, Mplus) rely
on this assumption in computation. Fortunately, the standard ap-
proaches do not appear to be sensitive to small to moderate
violations of this assumption, and original data may be trans-
formed so that the assumption is more closely approximated. New
robust methods for addressing other forms of missing data are
being developed (Little & Rubin, 2002; Raghunathan, Lepkowski,
van Hoewyk, & Solenberger, 2001; Schafer, 1997).

Given that the assumptions are met, full information maximum
likelihood and multiple imputation provide unbiased estimates of the
causal effect. The key assumption here is that data are missing at
random. This assumption cannot be verified. Researchers are encour-
aged to conduct sensitivity analyses to probe the amount of change
that could potentially occur given that an unmeasured variable is
associated with both attrition and the outcome variable. Sensitivity
analyses help bracket the magnitude of the causal effect, reflecting the
actual uncertainty that is associated with its estimation.

Comparing the Two Approaches: Randomized
Experiments

In the context of the randomized experiment, the two approaches
are largely in agreement. Both perspectives agree that randomization
potentially permits an unbiased estimate of the direction and magni-
tude of causal effect. Campbell’s perspective emphasizes practical
methods of preventing the remaining threats to internal validity,
whereas Rubin’s perspective focuses on developing the additional
assumptions sufficient to make proper analytic adjustments for prob-
lems, so that the precise magnitude of the causal effect of interest can
be estimated. Campbell’s perspective, as reflected in Shadish et al.
(2002), largely endorses Rubin’s statistical adjustment procedures,
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and the writings of Rubin contain no admonitions about the use of
Campbell’s practical methods of preventing threats to internal valid-
ity. The two perspectives largely provide complementary areas of
emphasis.

Nonetheless, we wish to note two potential differences between
Campbell’s and Rubin’s perspectives, the greater emphasis on treat-
ment adherence and the SUTVA assumption in Rubin’s relative to
Campbell’s perspective. Working within the potential outcomes
framework, Angrist et al. (1996) strongly emphasized the LATE
estimate, the comparison of the outcome of a participant in the T
condition who actually took the treatment to the outcome of a partic-
ipant in the C group who would have taken the treatment if given the
opportunity to do so. Because no effect of treatment on the outcome
can be defined for always or never takers, these individuals are
excluded from the estimation of the LATE causal effect. This ap-
proach leads to the estimate of a clearly defined treatment effect
within the potential outcomes framework. In contrast, Campbell’s
approach does not formally list treatment adherence as a threat to
internal validity, but rather Shadish et al. (2002) have identified it as
a problem with treatment implementation that may interfere with
getting “a good estimate of a treatment effect” (p. 315). Shadish et al.
appear to be more satisfied than Rubin with the results of an ITT
analysis that provides an unbiased estimate of the effect of treatment
assignment on the outcome when there is full treatment adherence.
However, Frangakis and Rubin (1999) and Hirano et al. (2000)
showed that the ITT estimate can be biased if both nonadherence and
attrition occur, and West and Sagarin (2000) raised concerns about
replicating the treatment adherence process in different investiga-
tions."'

Second, Rubin has emphasized the importance of SUTVA as a
sufficient condition to produce unbiased estimates of the magni-
tude of the causal effect. Cook and Campbell (1979) originally
treated issues related to interference between subjects (e.g., resent-
ful demoralization), but Shadish et al. (2002, p. 72) now consider
these issues to be threats to construct validity. Shadish et al. have
not discussed reasons for this change. Threats to construct validity
do not impugn causal inference.

Presumably, from Shadish et al.’s (2002) perspective, any
sources of interference are added to the package that is now consid-
ered to be the treatment. From Rubin’s perspective, this decision
potentially muddies the clear definition of the treatment and the
potential outcomes. Although rare exceptions can be cited, problems
of interference can be expected to typically affect the magnitude, but
not the direction of the treatment effect in randomized experiments
with complete data and full treatment adherence. Sobel (2006)
analytically considers more complex real world experiments with
treatment nonadherence and attrition, identifying conditions under
which even the inference of the direction of the estimate of the
causal effect may be wrong.

The differences between Campbell’s and Rubin’s traditions with
respect to full treatment adherence and SUTVA appear to be
related to two differences in emphasis between the theories. First,
Rubin relies on precise operations to define treatments, whereas for
Campbell, the operation is only the exemplar of the treatment-
related construct used in the particular experiment. Second, Rubin
relies on the precision of the potential outcomes framework,
whereas Campbell’s tradition appears to use counterfactuals in a
more general way. These differences appear to reflect the emphasis
within Rubin’s framework of defining conditions that are sufficient

to obtain precise estimates of the magnitude of the causal effect.
Historically, Campbell’s framework has appeared to be satisfied
with clear conclusions about the direction of the causal effect.

Observational Studies

Following Cochran (1965), we characterize observational stud-
ies as investigations in which causal inference is the goal, but the
treatment cannot be imposed or randomized by the experimenter.
We limit our consideration to designs with a 7' group and a C group
in which baseline covariates, often including a pretest on the
outcome variable, have been measured. This design was originally
termed the nonequivalent control group design by Campbell and
Stanley (1966). Such designs have often been used to study
important basic and applied issues, such as the effects of sudden
death of a spouse on long-term mental health of the surviving
spouse (Lehman, Wortman, & Williams, 1987), the effects of
secondhand cigarette smoking on cardiovascular problems
(Barnoya & Glantz, 2005), and the effects of retention in grade
on school children’s subsequent achievement and psychosocial
development (Jimerson, 2001; Wu, West, & Hughes, 2008a).
Observational studies inherit all of the issues identified by
Campbell’s and Rubin’s traditions for the randomized experi-
ment. The central additional problem in the observational study
is that the rule by which people are assigned to treatment and
control conditions is unknown and must be presumed to be
nonrandom. As a result, the participants in the 7" and C groups
may differ at baseline on measured and unmeasured covariates.
These covariates provide a potential alternative explanation
(selection-related confounding) for any observed treatment ef-
fect.

Campbell’s Approach

Overview. Campbell’s approach focuses on the four promi-
nent threats to internal validity described earlier—Selection X
Maturation, Selection X History, Selection X Instrumentation, and
Selection X Statistical Regression. The threats that will be of most
concern depend on the specific research context. For example,
Selection X Maturation would be an important concern in the
evaluation of a new school program to improve reading in young
children in light of children’s natural growth in reading skills in the
absence of treatment. Selection X Maturation would be of far less
concern in the evaluation of a program to decrease adult stuttering,
as stuttering behavior in adults is known to be highly stable in the
absence of intervention. The task of the researcher is to bring
current scientific knowledge to bear to identify the most important
threats to internal validity and to add targeted design elements to
address those specific threats.

Shadish and Cook (1999), Shadish et al. (2002), and Rosenbaum
(1999) have presented extensive lists of targeted design elements
that can potentially be used to address specific threats to validity.

' The ITT estimate is a weighted combination of the LATE estimate for
the compliers and a O effect for the never takers. For this estimate to
replicate, the proportion of individuals who comply must not change, and
the nature of individuals who comply must not change if there is a
nonconstant treatment effect.
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Three example design elements are given below followed by an
illustration in which they were used to strengthen causal inference.

1. Matching. If participants in the 7 and C groups can be
successfully matched on all important covariates that relate to both
treatment assignment and outcome, then selection bias can be
eliminated (see next section for more extensive discussion). This
strategy will often, but not always, reduce the viability of threats
related to interactions with selection.

2. Nonequivalent dependent variable. A nonequivalent depen-
dent variable is defined as one that would be expected to be
affected by the same threats as the outcome variable but not by the
treatment. If the outcome variable shows an effect of treatment but
the nonequivalent dependent variable does not, confidence in the
causal interpretation of the treatment effect increases. In our earlier
example, if computer-assisted teaching led to gains in achievement
in mathematics, but not in other subjects, relative to the standard
classroom instruction treatment, this pattern of results would help
rule out many forms of the Selection X History threat.

3. Repeated pretests over time. If pretests can be taken at several
time points before the intervention, the pattern of maturation can
be estimated in the 7" and C groups prior to treatment and possibly
extrapolated to the posttreatment period, addressing the Selec-
tion X Maturation threat.

Ilustration. Reynolds and West (1987) conducted an evalu-
ation of a program to increase sales of state lottery tickets by
convenience stores (see Figure 1). The store managers refused to
be randomly assigned to program and control conditions. In the
observational study, 44 stores agreed to participate in the program.
Applying the first design element above, 44 program stores were
matched 1:1 with 44 control stores from the same chain in the
same zip code (geographical location) on the basis of previous
lottery ticket sales. Increases in lottery ticket sales occurred in the
program but not the control stores (see Panel A). Applying Design
Element 2, substantial increases were observed within the program
stores on lottery ticket sales but not on other product categories
(see Panel B). Applying Design Element 3, there were no differ-
ences in sales between program and control stores during the 4
weeks before the implementation of the program, but the program
stores consistently sold more lottery tickets during the 4 weeks
after the program (see Panel C).

Summary. In summary, within Campbell’s approach, a va-
riety of additional targeted design elements are added to the
basic design to try to rule out threats that arise in the specific
research context, making it difficult to identify any potential
threats to internal validity (confounding factors) that might be
responsible for the observed pattern of results. The goal is to
rule out all potential threats to internal validity, ideally through
the use of design elements. Nonetheless, each of the design
elements is subject to criticism. For example, the nonequivalent
dependent variables could potentially be less reliable or less
subject to confounding influences than the primary out-
come—or the population that buys lottery tickets may be dif-
ferent than the population that buys other products at conve-
nience stores. The strength of the present design illustration is
that the results based on multiple design elements are coherent,
leading to a strong causal inference of a directional effect: The
sales campaign has led to an increase in lottery ticket sales.

Rubin’s Perspective

Matching and its justification. Throughout his writings (see
especially Rubin, 2006a), Rubin has emphasized matching'* as the
strongly preferred approach to the observational study. Conceptu-
ally, to the extent that a control participant can be identified that is
identical to the treated participant at baseline (i.e., they are ex-
changeable), an unbiased estimate of the individual causal effect
can be obtained (see Footnote 5 above describing Holland’s, 1986,
Approximation 2). However, in practice, when we estimate the
average causal effect comparing a 7 group with a C group, we
cannot be sure that the two groups do not differ in the population,
perhaps substantially, on key variables at baseline. As noted above,
observational studies have unknown rules for assignment of par-
ticipants to 7 and C groups. Unknown biases in the selection of
participants may produce baseline differences between the partic-
ipants in the 7 and C groups on measured or, potentially more
troublesome, unmeasured background variables. From Equation 2
above, Y(A) — Y.(B) is our (naive) prima facie estimate of the
causal effect. From the perspective of the potential outcomes
model, what we would like to estimate is a weighted combination
of Equations 1A and 1B, 7 [pAA) — pc(A)] + (1 — m[wAB) —
w(B)], where A represents the group receiving the treatment, B
represents the group receiving the control, and  is the proportion
of the population that is in the treatment group. Given that esti-
mates of the potential outcomes cannot be observed and that the
true causal effect of the treatment relative to the control may differ
when applied to Groups A and B (see Footnote 6), the prima facie
causal effect may be biased. Otherwise stated, to the extent that
some of these baseline variables are also related to the outcome,
the results are confounded. All or part of the observed “treatment
effect” might be due to differences between the groups on back-
ground variables rather than the treatment.

In special cases (Rubin, 1977), a single measured key covariate
(COV) may be known to be fully responsible for treatment assign-
ment. If we can exactly match each participant in the T group with
a participant in the C group on the baseline covariate, then
Yp|COV; — Y ICOV; represents an unbiased estimate of the indi-
vidual causal effect. More generally, if COV has an identical
distribution in the 7 and C groups, it cannot be the cause of the
observed treatment effect. Achieving this balance of COV across
the 7" and C groups forces it to be orthogonal to (not associated
with) treatment assignment. This procedure reproduces the balance
achieved on the specific covariate through randomization in large
samples.

12 We emphasize matched pairs here because it is conceptually the simplest
procedure. Rubin (2006a) has also extensively discussed creating homoge-
neous strata and parametric and nonparametric adjustments for covariates
(e.g., analysis of covariance). Ming and Rosenbaum (2000) have argued for
variable many to one matching, particularly because of its greater statistical
power. Matching and stratification are typically preferred to analysis of
covariance because they do not need to specify the functional form of the
relationship between the matching variables and the outcome, and they
reduce extrapolation of treatment effects beyond the data. The key element
of each of these procedures is the estimation of the difference between the
treatment and control means, conditioned on the probability that each
participant would be in the treatment group.
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Figure 1. Adding design elements to strengthen causal inferences in observational studies. (A) Matching. Treatment

and control stores are selected from the same chain, are in the same geographical location, and are comparable in sales
during baseline (Lottery Game 10). Introduction of the treatment at the beginning of Lottery Game 11 yields an
increase in sales only in the treatment stores. (B) Nonequivalent dependent variables. Within the treatment stores, sales
of lottery tickets increase substantially following the introduction of treatment. Sales of other major categories
(gasoline, cigarettes, groceries [nontaxable], and groceries [taxable]) that would be expected to be affected by
confounding factors, but not treatment, do not show appreciable change. (C) Repeated pre- and posttest measure-
ments. Treatment and control stores sales show comparable trends in sales during the 4 weeks prior to and following
the introduction of the treatment. The level of sales in the treatment and control scores is similar prior to the
introduction of treatment, but it differs substantially beginning immediately after treatment is introduced. (Adapted
from “A Multiplist Strategy for Strengthening Nonequivalent Control Group Designs,” K. D. Reynolds & S. G. West,

1987, Evaluation Review, 11, pp. 691-714.)

Historically, a major impediment to successful matching was the
need to match on multiple covariates. Even in large samples, it was
difficult to identify good matches when multiple variables were
involved. The development of propensity score methods (Rosen-
baum, 2002; Rosenbaum & Rubin, 1983, 1984) provided elegant
statistical theory that extended the benefits of matching from a few
to many covariates. We initially provide a conceptual presentation
of propensity scores followed by a research example.

A propensity score represents the probability that a given sub-
ject will be assigned to the T group, 0 < P(T) < 1. The propensity
score is estimated on the basis of the covariates measured at
baseline, for example through logistic regression. Rosenbaum and
Rubin (1983) have shown that if matching the 7 and C groups in
fact achieves balance on the propensity score, then the 7 and C
groups are expected to be balanced on any measured covariate
from which the propensity score is constructed. Otherwise stated,

if all important covariates related to both treatment assignment and
outcome have been measured and all propensity scores fall within
the bounds of 0 < P(7) < 1, then it is possible to achieve an
unbiased estimate of the causal effect of 7. The difference between
the means of the 7 and C groups matched on the true propensity
scores will represent the average causal effect, E[(Y; — Yo)[P(T)].
However, in practice in studies with small to moderate sample
sizes, there are several challenges to achieving the ideal results
derived from statistical theory.

First and most important, it is assumed that all important con-
founders that are related to both treatment assignment and the
outcome have been assessed. Any omitted confounders potentially
lead to biased estimates of the causal effect. Given that the basis
for selection into the T and C groups is unknown, this condition
can at best only be approximated. This approximation will be
better when subject-matter experts identify the critical covariates
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and an extensive battery of reliably measured covariates is used.
Such procedures typically provide substantial reduction in bias in
the estimate of the causal effect relative to unadjusted estimates. In
contrast, observational studies in which a few convenient demo-
graphic variables are used to construct the propensity score are
unlikely to provide substantial bias reduction.

Second, it is important that a matched pair be identified for the
maximum possible number of participants in the smaller group
(typically the T group). If the distributions of the propensity scores
only partially overlap in the two groups, it will often be impossible
to find adequate matches. This overlap of distributions is referred
to as the common support region. A small common support region
is problematic for two reasons. (1) If matches are formed that are
outside the support region, imbalances on the covariates will exist
even after matching so that the estimates of the causal effects may
be biased. (2) If participants are excluded who are not successfully
matched, an average causal effect may be estimated. However,
exclusion of participants may highlight limitations of the data:
Generalization of the average causal effect is only possible to the
range of propensity scores for which adequate matches can be
achieved. Often only the average causal effect corresponding to a
subgroup of the treated (or control) participants may be computed.
For example, Haviland, Nagin, and Rosenbaum (2007) studied the
effect of joining versus not joining a gang at 14 years of age on
subsequent violent delinquent acts. The group of boys with the
highest level of consistent violence prior to 14 years of age all
joined gangs; there were no comparable nonjoiner boys (controls)
with whom they could be matched. For participants for whom the
propensity score equals O or 1, no potential outcome is defined.
Therefore, for the most violent boys prior to 14 years of age who
may be of most interest to the researchers, no causal effect of
joining a gang can be defined or estimated. Matching on propensity
scores appropriately highlights the limits on generalization of the
causal effect, a feature that does not characterize traditional ap-
proaches, such as multivariate analysis of covariance. Little, An,
Johanns, and Giordani (2000) and Stuart and Rubin (2008) have
presented more detailed discussions of matching and analysis of
covariance as adjustment techniques.

Third, the propensity score has to be correctly estimated and
account for the relationship between the covariates and treatment
selection in the sample. There are three issues here. (1) As already
discussed, the central issue is the omission of important covariates
associated with both treatment assignment and the outcome
(termed hidden bias by Rosenbaum, 2002). (2) Some covariates
may not be reliably measured, potentially producing bias in the
estimation of the propensity scores. (3) There is the possibility that
the function relating the covariates to treatment assignment is not
correct. Traditionally, logistic regression that assumes that there is
a linear relationship between the covariates, and the logit of the
treatment assignment indicator is used to estimate propensity
scores. Rosenbaum and Rubin (1984) and Dehejia and Wahba (1999)
also included selected quadratic effects of covariates and interactions
between pairs of covariates. McCaffrey, Ridgeway, and Morral
(2004) used a nonparametric approach based on regression trees.
The goal of all these approaches is to achieve balance between the
treatment and control participants on the propensity score as well
as between each of the separate baseline covariates. This balance
can be checked, and the propensity score model can be re-
estimated (e.g., by adding interactions), and/or supplemental

adjustments can be added for important covariates, particularly
those for which good balance has not been achieved (e.g., Rubin
& Thomas, 2000). Nonetheless, some degree of uncertainty will
remain in any real data set, especially with the modest sample
sizes typically used in psychology, about how well the 7 and C
groups have been equated on measured and unmeasured base-
line covariates.

Ilustration. Wu, West, and Hughes (2008a, 2008b) sought to
investigate the effects of retention in first grade on children’s
trajectories of achievement in math and reading in later grades. In
an attempt to identify children at risk of retention, 784 children
who scored below school district medians on reading readiness at
entry to first grade were identified as potential participants. On the
basis of consultation with experts in school retention, 72 covariates
(demographic, achievement, and psychosocial variables) were
measured in first grade (prior to the retention decision) that might
possibly be related to the retention decision, achievement out-
comes, or ideally both. On the basis of the complete sample,
logistic regression was used to compute a propensity score (the
probability of retention on the basis of baseline covariates) for
each child. Retained children were matched 1:1 with a promoted
child using optimal matching with a defined caliper width of .2
standard deviation to achieve high-quality matches (for a discus-
sion of computer algorithms that attempt to optimally match
groups, see Rosenbaum, 2002, section 10.4). A total of 97 pairs of
children could be closely matched on their propensity scores. Figure 2
displays the distributions of the propensity scores prior to match-
ing (see Panel A) and following matching (see Panel B). Of note,
following matching, the distributions of the retained and promoted
children were very similar and ranged from .003 to .918, repre-
senting nearly the full potential 0—1 range of the propensity scores.

Checks on the balance of each of the individual covariates were
performed using #-tests for continuous and chi-square tests for
categorical outcomes. Of the 72 covariates, only one achieved
statistical significance at e = .05. The standardized effect size for
this largest difference was d = 0.33, slightly larger than small
according to Cohen’s norms. These results suggest that the esti-
mation of the propensity scores was probably adequate across the
two groups.

We then estimated the effect of retention for each quintile for
the propensity score matched pairs of children. These estimates
were then weighted by the number of cases in the original sample
to provide an estimate of the treatment effect that approximates the
magnitude of the effect in at risk population that was studied.
These estimates are “same age” comparisons that focus on chil-
dren’s raw reading math achievement; alternative analyses show-
ing “same grade” comparisons that compare the achievement of
the promoted and retained children to norms for their current grade
level are reported in Wu et al. (2008a). As shown in Figure 3, the
promoted children showed greater gains on the Woodcock—John-
son broad reading scores (weighted mean difference = 17.66) and
math scores (weighted mean difference = 6.49) than retained
children during Year 2 when the retained children were repeating
first grade. By Year 4 of the study (fourth grade for promoted; third
grade for retained children), this difference was substantially re-
duced for reading (weighted mean difference = 3.63) but not math
achievement (weighted mean difference = 6.37). Inclusion of the
significant baseline variable as a covariate did not alter the pattern
of results.
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Figure 2. The distributions of the propensity score for promoted and retained groups before and after matching.
The scale of the y-axis (Frequency) differs for the promoted and retained groups before matching, but it is the
same after matching. (Adapted from “Short-Term Effects of Grade Retention on Growth Rate of Woodcock—
Johnson III Broad Math and Reading Scores,” W. Wu, S. G. West, & J. N. Hughes, 2008b, Journal of School

Psychology, 46, pp. 85-105.)

The strength of the present illustration largely hinges on the
success of the matching procedure. Following Rubin (2006a), the
matching variables were all collected prior to the treatment (reten-
tion in first grade), and propensity scores were estimated without
knowledge of the outcome measures. The covariates selected for
matching were extensive and based on input from subject-matter
experts, although this knowledge is potentially fallible. Checks
were performed on the balance of each of the covariates. The
initial selection of a sample of children “at risk” for retention
helped to yield nearly complete overlap between the range of the
propensity scores in the treatment and control conditions. None-
theless, there is no certainty that other hidden covariates may not
have accounted for at least part of the observed treatment effect—
nor is there certainty that even if the proper covariates were
selected the estimated propensity scores closely tracked the true
propensity scores in this small sample.

Comparing the Two Approaches:
Observational Studies

Campbell’s approach has emphasized the identification of
threats to validity and the use of multiple, targeted design features
to address threats to validity that characterize a specific research
area. This strategy builds strongly upon current scientific knowl-
edge. It develops complex sets of hypotheses about what the
pattern of results should look like across multiple sets of design
elements and compares the obtained results to the expected pattern.
The research context determines the specific threats to validity and
the targeted design elements that will be considered. With the
exception of randomization, no design element is universally pre-
ferred to others. To the extent that the results match the hypothe-
sized pattern, the design elements rule out confounding variables
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Figure 3. Means at each measurement wave for matched retained and
promoted children for the Woodcock—Johnson (WJ) broad math and read-
ing scores. Waves 1-4 correspond to Years 1-4 of the study.

that potentially serve as alternative explanations of the results.
Failures to match the hypothesized pattern create uncertainty about
whether a true causal effect exists.

Problems may occur in Campbell’s approach for three primary
reasons. First, as in all scientific endeavors, current scientific knowl-
edge is fallible and, hence, may be incorrect. There may be less than
complete certainty that all threats to internal validity (potential con-
founders) have been identified or that a specific design element will
rule out the identified threat to validity. Second, some parts of the
hypothesized pattern of results represent “no difference” predictions.
For example, two different control groups are expected not to differ
from each other; a nonequivalent dependent variable is expected to
show no effect of treatment. Extreme care must be taken to achieve an
adequate sample size and to use highly reliable and sensitive measures

to minimize the possibility that a true effect of material size is not
being detected (Meehl, 1967). Third, in Campbell’s tradition, threats
to validity have historically been ruled out in an all or none manner,
that is, fully ruled out or not ruled out. Reichardt (2000, 2006) has
attempted to develop procedures that specify the magnitude of the
portion of the threat that has been ruled out, but this work is still in a
preliminary stage of development.

Rubin’s tradition has emphasized the development of elegant
mathematical theory that attempts to yield precisely matched treat-
ment and comparison groups on a large set of measured covariates.
Matching on propensity scores can yield unbiased estimates of the
causal effect. Potential problems arise in practice because esti-
mated propensity scores are used instead of true propensity scores.
The extent of bias reduction will depend on the success of the
estimated propensity score as a realization of the selection model
in the sample. Drake (1993) and Rubin and Thomas (1996) have
suggested that overfitting a true propensity score model can lead to
the benefit of having even more balanced 7 and C groups at
baseline in the sample. The most important key to the success of
the propensity score model will be the quality of the fallible
scientific input regarding choice of baseline covariates. Success
will also depend on the quality of the measurement (e.g., reliabil-
ity) of baseline covariates. It will further depend on the researcher’s
care in checking the balance of the estimated propensity scores,
recognizing that even careful checks may not be fully adequate in
small samples. Even with the best efforts, there may be omitted
covariates that were not considered in the baseline measurement. For
example, economists (such as Manski, 1999; Manski & Pepper, 2000)
argue that participant’s perceptions of the likely effectiveness of each
treatment may be an important, often overlooked determinant of
treatment selection. Despite these concerns, work within the tradition
of Rubin’s causal model has focused almost exclusively on matching
techniques because of their strong mathematical justification and
theoretical ability to provide an exact estimate of the magnitude of the
causal effect (but see Cochran, 1965; Rosenbaum, 1999).

Campbell’s tradition (e.g., Campbell & Erlebacher, 1970) has
historically been skeptical about matching and has not given
matching a privileged status relative to other design elements. Four
primary concerns have been raised. First, important covariates may
be omitted as noted above. Second, measures of key covariates
may be measured with less than perfect reliability so that incom-
plete adjustment takes place. Little work has been conducted to
investigate the extent to which this is a major issue when using
propensity scores based on many covariates. However, from the
standpoint of Rubin’s perspective, unreliability may simply be
viewed as another form of the omitted covariate problem. Third, in
some research situations, participants in the 7"and C groups may be
growing at different rates (Selection X Maturation), a confounding
that is unlikely to be captured by covariates measured in a single
baseline measurement. Within the potential outcomes framework,
Haviland et al. (2007) have offered an approach that addresses the
combination of differential growth rates and differential levels on
baseline covariates, but their approach requires the addition of the
design element of multiple pretests to estimate the pretreatment
growth rates. Fourth, sufficient overlap may not exist between the
T and C groups on matching variables. The development of pro-
pensity scores and the identification of a common support region in
which members of both the 7 and C groups have some probability
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of being in the T group, that is, 0 < P(T) < 1, has largely addressed
this objection.

The first three concerns above reflect omitted covariates that
result in hidden bias. An important approach to hidden bias is to
develop sensitivity analyses (Gastwirth, Krieger, & Rosenbaum,
1998; Marcus, 1997; Rosenbaum, 2002) that produce estimates of
the maximum and minimum magnitude of the causal effect under
different assumptions about the magnitude of hidden bias. Such
analyses appropriately convey the uncertainty that the propensity
scores have been properly estimated by providing brackets on the
possible magnitude of the causal effect.

Some Dimensions of Comparison of the
Two Perspectives

In this section, we highlight similarities and differences of the
two approaches on several dimensions. Our comparison is largely
based on the material reviewed above but also briefly introduces
other key issues that could not be fully considered because of
space limitations. Table 3 summarizes the dimensions described
below.

Domain of Application and Research Strategy

Campbell’s perspective comes from a synthesis of research criti-
cism in basic and applied research in psychology and education as
well as evaluation research. The perspective followed inductive prin-
ciples and synthesized the criticism into a set of general threats to
validity. Rubin’s perspective developed out of the application of
frequentist and Bayesian statistical principles to important research
problems in medicine, public health, economics, and social re-
search—areas that tend to have an applied focus. Following the
identification of a significant problem, the work followed deductive

Table 3

principles in which a set of assumptions were made, and an estimate
of the causal effect was mathematically derived within the potential
outcomes framework.

Substantive Science and the Definition of Treatment
and Outcome Variables

Both Campbell’s and Rubin’s perspectives place a strong em-
phasis on clear operationalization of the 7 and C treatments. Given
the emphasis in psychology on basic research testing verbal the-
ories that purport to explain the observed effect, Campbell’s ap-
proach places great emphasis on construct validity (Shadish et al.,
2002). For example, does frustration produce aggression as theo-
rized or is some other construct, such as physiological arousal,
responsible for the observed effect? Campbell’s focus is less on the
specific operation that is used to produce frustration but on the
underlying construct itself. Such concerns lead to series of exper-
iments in which distinct treatments that purportedly manipulate
only the prototypic features of the frustration construct (i.e., block-
age of a goal directed activity) are contrasted with various com-
parison treatments. This strong emphasis on the construct validity
of the independent variable characterizes much basic research in
psychology (e.g., social psychology; Aronson, Wilson, & Brewer,
1998). These experiments may also include diverse operational
measures of the dependent variable, possibly including multim-
ethod assessment (Campbell & Fiske, 1959; Eid & Diener,
2006). This focus on the construct validity of the dependent
variable has more often been emphasized in applied than basic
research in psychology, although illustrations can be found in
both. The hope is that a theoretically coherent set of results will
emerge that will explicate the specific constructs that are pro-
ducing this and perhaps other theoretically linked causal ef-
fects. Such understanding of the causal mechanisms responsible

Differences in Emphasis Between Campbell’s Approach and Rubin’s Approach

Dimension

Campbell’s approach

Rubin’s approach

Domain of application

Psychology, education, large scale social
research

Public health, medicine, economics, large
scale social research

Type of research

Basic, applied

Applied

Treatment, outcome definition

Constructs

Operations

Key feature of causal inference

Threats to validity

Precise assumptions, formal use of
potential outcomes model

Approach to development of principles

Inductive, scientific: Synthesize ideas on the
basis of practical research experience

Deductive, mathematical: Makes
assumptions and derives model

Primary methods of strengthening
causal inference given threats to
validity, assumption violations

Prevention of threat, addition of design
elements, pattern of results rule out threat

Checking assumptions, sensitivity analyses,
alternative approach on the basis of
weaker assumptions, more robust
statistical analysis

Causal effect estimate

Exact magnitude if assignment rule known;
otherwise direction only

Exact magnitude

Role of measurement

Strong emphasis on measurement problems

Less emphasis on measurement problems

Causal generalization (single studies)

Formal sampling model, Cook’s grounded
theory

Formal sampling model, limited
generalization

Causal generalization (multiple studies)

Meta-analysis, Cook’s grounded theory

Response surface analysis
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for the effect provides one basis for generalization of the
findings to new populations, treatments, outcomes, and settings
(Cook, 1993).

In contrast, perhaps reflecting the more applied perspective of
his fields of application, Rubin’s approach has focused on careful
definitions of the implemented treatments rather than the hypo-
thetical constructs that they may represent. Learning that a specific
medical device or school voucher program produces positive ef-
fects relative to a well-defined comparison treatment often pro-
vides sufficient information to answer the specific applied ques-
tion. If concerns about construct validity arise within Rubin’s
perspective, they are far more likely to be focused on the theoret-
ical meaning of the dependent rather than independent variables.
The relative focus on construct validity represents a central differ-
ence between the two perspectives.

Threats to Validity Versus Precise Assumptions

A key feature of Campbell’s perspective is a list of threats to
validity distilled from the field’s accumulated methodological
knowledge. This list identifies known general problems that can
undermine the causal inference process. Researchers then compare
features of their specific research setting with these threats and
identify those threats they believe to be plausible in their specific
context. There is no guarantee that the list of threats is complete
(although the rate of discovery of new threats has dwindled to near
0) or that researchers will make correct decisions about which
threats are plausible in their research context. Campbell (1988)
argued that mutual scientific criticism of important findings would
identify any omitted threats in the long run.

Precise assumptions form the analogous key feature in Rubin’s
perspective. The mathematics of the potential outcomes model
guarantees that an unbiased estimate of the precise magnitude of
the causal effect will be achieved if the assumptions are met. This
is why Rubin has so strongly emphasized assumptions that are
potentially verifiable. For Campbell, failure to rule out a threat to
validity undermines causal inference; for Rubin, failure to meet a
critical assumption undermines causal inference. Many of the
assumptions needed for causal inference in Rubin’s approach will
be also needed in Campbell’s approach; they are simply far less
explicit because of the lack of a formal mathematical development.

Addressing Threats to Validity and Violation
of Assumptions

When plausible threats to validity cannot be ruled out by the
basic design, Campbell’s perspective strongly prefers to address
these threats in the planning phase of the study. The strategy is one
of active prevention of threats before they occur and the addition
of targeted design elements that potentially make the specific
threat implausible given the expected pattern of results. Design
elements, such as multiple control groups and nonequivalent de-
pendent variables, are very general and can potentially be applied
by the researcher to a wide variety of designs, including many not
considered here (e.g., regression discontinuity; interrupted time
series).

Rubin’s approach has emphasized general design approaches
that maximize the plausibility that the optimal approximation to

the potential outcomes ideal will be realized, which increase the
efficiency of the design, or both. Rubin has not used targeted
design elements to address specific threats to validity. When
design approaches are not available, the emphasis has been on
checking assumptions to be sure they are viable. When they are
not, Rubin’s perspective has emphasized the development of
“statistical cures” for important problems that result from fail-
ures of assumptions. Within the potential outcomes framework,
important new statistical procedures—such as the treatment
noncompliance model (Angrist et al., 1996)—have already
been developed, and new developments are ongoing (e.g., Fran-
gakis & Rubin, 2002; Haviland et al., 2007). The derivation of
these procedures has often involved the introduction of addi-
tional statistical assumptions. In addition, new, more robust
statistical procedures have been developed that are less sensi-
tive to the violation of critical assumptions. When assumptions
cannot be directly checked (e.g., hidden variable bias in an
observational study), Rubin’s approach has emphasized sensi-
tivity analyses that identify the extent to which violations of
assumptions of a specified magnitude would alter the magnitude
of the causal effect. One of the strengths of sensitivity analysis
is that the effects of multiple assumptions can be investigated
both singly and in combination (interaction). Rosenbaum
(2002) has summarized several robust nonparametric methods
for estimating treatment effects as well as a number of ap-
proaches to sensitivity analyses in observational studies.

Direction Versus Magnitude of Causal Effect

The historical focus of Campbell’s perspective was on the
direction of rather than the magnitude of the causal effect. Threats
to internal validity were treated as present or absent. The recent
emphasis on the magnitude of the effect in psychology provides
challenges for Campbell’s perspective that have not been fully
resolved. Campbell’s perspective provides clear estimates of the
causal effect when the mechanism of assignment to treatment
conditions is known, as in the randomized experiment, the regres-
sion discontinuity design, or the interrupted time series design.
However, the addition of targeted design elements to address
specific threats to internal validity currently only permits the
inference of directional effects. What if a targeted design element
only partially rules out a threat to validity? What if the pattern of
results produced by different targeted design elements is not fully
consistent? Reichardt (2000, 2006) and Rosenbaum (2002) have
begun to address these issues. In addition, some advocates of
Campbell’s perspective would argue that a correct conclusion
about the direction of the causal effect is often sufficient (see Jones
& Tukey, 2000)—variations in the magnitude of the causal effect
of one construct on another are to be expected as a function of the
population, specific treatment implementation, specific measure of
the outcome, and the context. This variation may typically be of
only minimal scientific or policy interest, except when the reversal
or the elimination of a causal effect occurs.

Rubin’s perspective allows the unbiased estimation of the exact
magnitude of the causal effect when the assumptions are met.
When the assumptions are not met, sensitivity analyses are con-
ducted that attempt to precisely bracket the magnitude of the
causal effect as a function of the degree to which the assumptions
are violated. In practice, the uncertainty appropriately attached to
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the precise magnitude of causal effects estimated from Rubin’s
perspective when assumptions are violated may yield little more
than a statement of a directional effect. Campbell’s approach has
also suggested bracketing the magnitude of causal effects, but,
with rare exceptions (Shadish, Hu, Glaser, Kownacki, & Wong,
1998), it has not provided formal methods for attempting to specify
precise brackets.

The Role of Measurement

With its strong roots in psychology and education, Campbell’s
approach has afforded measurement operations a strong role."?
Great emphasis has been placed on the reliable and valid measure-
ment of the intended construct. Adding checks or design elements
to be sure problems of instrumentation can not account for the
estimated causal effect has received great emphasis. Addressing
potential threats arising from regression to the mean that may arise
when groups are selected on the basis of baseline scores has also
received considerable emphasis in both the design and the analysis
of studies (Campbell & Erlebacher, 1970; Campbell & Kenny,
1999). When regression to the mean may have occurred, recom-
mendations are typically made to correct statistical adjustments of
treatment effects for unreliability in the measurement of baseline
covariates, lack of test—retest reliability in measurement, or both
(e.g., Cook & Campbell, 1979; Judd & Kenny, 1981). In contrast,
Rubin’s perspective has given measurement issues far less atten-
tion. Reflecting the tradition in statistics, Rubin has typically
emphasized the results of the measurement operation rather than
“true scores” associated with the intended hypothetical construct.
From Rubin’s perspective, true score models involve another layer
of assumptions (e.g., true score is uncorrelated with error of
measurement) that are nonverifiable and therefore suspect. Further,
many of the standard approaches used in psychological research to
address regression to the mean may be incomplete. Instead, mea-
surement error can be treated as simply contributing to the problem
of hidden bias, and its impact can be explored through sensitivity
analysis.

Causal Generalization

Within both Campbell’s and Rubin’s perspectives, the general-
ization of causal effects is straightforward if the sample has been
randomly sampled from a defined population (Draper, 1995; Kish,
1987). Within Campbell’s perspective, both Cook (1993) and
Shadish et al. (2002) have noted that the samples of participants
are not selected following any formal probability sampling model
in practice (for two rare exceptions, see, e.g., Schwarz & Hippler,
1995; Wolchik et al., 2000). Otherwise stated, nearly all studies in
psychology and education involve samples of convenience, subject
only to possible eligibility restrictions. Further, there is often a
desire to generalize beyond the specific (a) units, (b) treatments,
(c) outcome measures, (d) settings, and (e) times involved in the
study. For example, Weisz, Weiss, and Donenberg (1992) argued that
university-based randomized controlled trials of a new therapy with
highly selected patients under near state of the art conditions may
not be a very representative realization of the therapy as it is
delivered by a community mental health centers to the patients
they serve. Cook (1993) synthesized existing empirical observa-

tions into a grounded theory of causal generalization that identifies
five scientific principles that facilitate the generalization of direc-
tional causal effects.

1. Proximal similarity. The treatments, participants, settings,
response measures, and times should include most of the central
features of the population of interest.

2. Heterogeneous irrelevancies. Aspects of treatments, partici-
pants, settings, response measures, and times that are theoretically
expected to be irrelevant to the causal relationship should be made
as heterogeneous as possible.

3. Discriminant validity. “[W]e can interpret and label the
operations used in a study more accurately if we can discriminate
between different constructs that usually have overlapping con-
tent” (Shadish et al., 2002, p. 364). To the extent that the treatment
affects the intended outcome, but not other similar constructs, the
likelihood of causal generalization is supported. To the extent that
precise types of participants or settings can be identified for which
the treatment effect holds, the likelihood of generalization to the
specific subpopulations of persons or settings is increased.

4. Causal explanation. To the extent that a theoretical explana-
tion of the causal effect can be supported, the likelihood of
generalization can be supported. Causal explanation is enhanced to
the degree that the construct validity of the independent and
dependent variables can be established.

5. Empirical interpolation and extrapolation. Causal effects are
far more likely to generalize within rather than beyond the range of
treatments (e.g., within the range of dosages studied), persons,
settings, times, and response measures that have been studied.

In Campbell’s tradition, these principles should be built into the
design to the extent possible during the planning of studies if
causal generalization is sought. The five principles can also be
applied to the meta-analysis of research literature to facilitate the
understanding of the generalization of causal effects with different
populations of participants, different treatment variations, different
outcome measures, and different settings. There is no proof that
generalization will be achieved in the new setting, but the use of
these principles is expected to substantially enhance its likelihood.

In contrast, Rubin’s perspective has been primarily concerned
about the generalization of the causal effect defined by the specific
treatments being compared, the specific outcomes, and the specific
setting to a population of which the sample participants are represen-
tative. When the formal probability sampling model cannot be ap-
plied, generalization is to a hypothetical population (superpopulation)
defined jointly by the sample recruitment processes of the study and
the participants for whom possible outcomes can be defined. To cite
two examples, generalization of the LATE effect is to a population of
treatment adherers who would participate in the randomized experi-

'3 Another source of the prominence of measurement in Campbell’s
approach may be the frequent use of self-reports, informant reports, and
standardized tests as measurement operations in psychology and education.
These instruments may be especially prone to changes over time and over
context that may make it difficult to claim that the same construct is being
measured at baseline and outcome. Although more subtle, many physical
and biological measurements share these same problems. For example,
consider the problem of calibrating functional magnetic resonance imaging
or cholesterol measures taken at baseline and outcome, often with different
(improved) equipment or scored using different procedures or by different
laboratories.
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ment. When the distributions of propensity scores do not overlap in an
observational study, generalization of the causal effect is limited to the
common support region for which potential outcomes are defined.
Careful weighting of cases is done to estimate the causal estimand of
interest, for example, the causal effect for the population willing to
receive treatment. However, for single studies, there is no formal
mathematical basis within Rubin’s approach to generalize the esti-
mate of the precise causal effect to other populations, treatments,
observations, settings, and possibly times of interest.

For multiple studies, Rubin (1992) has proposed an elegant meta-
analytic approach based on response surface modeling. The effect
sizes of each study serve as the outcome of interest, and the study
characteristics and study quality constitute two important dimensions
of predictor variables. By using information from all available studies,
a response surface representing the relationships between the predic-
tors and the effect size can be estimated. The effect sizes of scientific
interest are those for the high-quality studies. The effect size for the
average causal effect or the effect size at any location on the surface
can be estimated. This method highlights areas of sparse empirical
research and clearly identifies whether interpolation within or extrap-
olation beyond the range of existing studies is taking place. Theoret-
ically, this response surface approach offers a principled method of
generalizing magnitudes of treatment effects to the units, treatments,
observations, settings, and possibly times of interest. In practice,
quantitative scaling of the dimensions of generalization will be often
challenging. Mabe and West (1982) have reported an early applica-
tion of this general procedure to estimate the validity of self-reports.
Shadish, Matt, Navarro, and Phillips (2000) used this procedure to
estimate the magnitude of the causal effects of psychotherapy under
clinically representative conditions.

Conclusion

In this article, we have provided an introduction to Campbell’s
and Rubin’s perspectives on causal inference. We have also con-
sidered two common designs, the randomized experiment and the
observational study, from each of these perspectives. We have
compared the two perspectives on several dimensions. Campbell’s
approach strongly focuses the researcher’s attention on practical
issues in the planning of the research. It develops strong methods
to prevent threats to internal validity from arising and encourages
researchers to add design elements that can help rule out those
threats should they occur. It also provides researchers with strat-
egies for maximizing the likelihood that their results can be gen-
eralized to other applied problems of interest. It draws heavily on
current scientific knowledge to inform the interpretation of pat-
terns of results. In some cases, these features may limit conclu-
sions to the direction, but not the magnitude, of causal effects.
Rubin’s work has primarily emphasized providing methods for the
precise estimation of causal effects. The approach has emphasized
careful definition of the treatments that are being compared and the
population to which the causal estimate can be applied. It has led
to design solutions to produce clear estimates of causal effects and
statistical solutions when underlying assumptions cannot be met. It
uses the machinery of mathematics to provide precise estimates
with specified uncertainty regarding the magnitude to the causal
effect. The cost of this precision is that Rubin’s approach provides
little basis for generalization of causal effects in single, but not
multiple, studies. From our perspective, the two approaches are

largely complementary, but they have different emphases. Over
time, methodologists will continue to explicate the key differences
between the two approaches. However, researchers can already
benefit from drawing on the complementary strengths of both
approaches in the design, analysis, and interpretation of their
studies (see also West et al., 2008). Perhaps this will be another yet
affirmation of Campbell’s belief in the power of the scientific
method of mutual criticism to improve scientific practice and
ultimately bring us closer to the “truth” of scientific claims (Over-
man, 1988).
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