
Article https://doi.org/10.1038/s41467-023-37323-0

Diffusion capacity of single and inter-
connected networks

Tiago A. Schieber1, Laura C. Carpi2,3, Panos M. Pardalos4,5, Cristina Masoller 6,
Albert Díaz-Guilera 7,8 & Martín G. Ravetti 9

Understanding diffusive processes in networks is a significant challenge in
complexity science. Networks possess a diffusive potential that depends on
their topological configuration, but diffusion also relies on the process and
initial conditions. This article presents Diffusion Capacity, a concept that
measures a node’s potential to diffuse information based on a distance dis-
tribution that considers both geodesic and weighted shortest paths and
dynamical features of the diffusion process. Diffusion Capacity thoroughly
describes the role of individual nodes during a diffusion process and can
identify structural modifications thatmay improve diffusionmechanisms. The
article defines Diffusion Capacity for interconnected networks and introduces
Relative Gain, which compares the performance of a node in a single structure
versus an interconnected one. Themethod applies to a global climate network
constructed from surface air temperature data, revealing a significant change
in diffusion capacity around the year 2000, suggesting a loss of the planet’s
diffusion capacity that could contribute to the emergence of more frequent
climatic events.

Natural and artificial diffusive processes from the most varied
contexts are omnipresent in our everyday lives1–6. Advancing our
understanding of diffusive processes is a fundamental challenge
with critical practical applications across a wide range of spatial
scales. For instance, diffusion magnetic resonance is an imaging
technique that allows studying the brain’s structural and functional
connectivity7,8. A diffusion-like process describes the action of
infectious agents that attack our immune system spreading as fast
as they can9. On a large scale, the billions of individuals commuting
daily between different geographical regions constitute the highly
complex global human mobility system10–12. Similarly, gossip
spreads through vast complex social networks3,4,13–17. All these
phenomena have motivated researchers to understand the

mechanisms that enhance or suppress diffusion, and to quantify
their impacts2,18–21.

Structural and dynamical properties of diffusion processes have
been successfully modeled by networks, structures that are able to
encompass this complex combination2,18–28. The analysis of diffusive
processes usually assumes that interaction networks represent their
average behavior18; somemodels consider randomnavigation29–34, and
others consider the topological shortest paths35. Shortest paths are
essential for diffusion processes since they are the ones throughwhich
nodes are firstly reached when a process starts diffusing in a structure
in which connections are of the same nature. However, geodesical
paths are not the only ones that need to be considered, as the char-
acteristics of the connections interfere in a way that could either
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improve or worsen the transmission of information. Topological fea-
tures can be considered as connection weights to define the weighted
shortest paths. Then, the inclusion of both, geodesical and weighted
shortest paths could lead a more precise evaluation of the outcome of
the diffusion process34,36–38.

The influence of specific topological features, such as community
structures or degree heterogeneity of nodes on diffusion processes,
has been described in several works39–41. However, one interesting
point that still needs to be addressed in the literature is the studyof the
way individual nodes change their performance as diffusing agents
during the evolution of the diffusive process. This performance
depends not only on the node’s structural connectivity but also on the
dynamic process on top of the structure and initial conditions. Con-
sidering that nodes change theway they diffuse as the process evolves,
we propose a new measure called Diffusion Capacity that is able to
track the evolution of the node’s performance. Diffusion-Capacity
quantifies the evolving diffusive ability of nodes through the use of a
weighted distance distribution that allows the inclusion of dynamical
features of the process.We introduce in thiswork amethod thatbrings
many possibilities for strategic interventions to design more efficient
diffusive structures.

The concept of Diffusion Capacity is also extended to inter-
connected networks, structures that represent a system composed by
several networks interacting simultaneously. These systems are a good
representation of natural systems since they are the result of the
complex interaction ofmany subsystems. Considering thiswepropose
a measure called Relative Gain (G) that compares the diffusive per-
formance of an element acting in an isolated network and its perfor-
mance when it is part of an interconnected structure. Among the
examples presented in this workwe consider heat diffusion, Kuramoto
oscillators, disease spreading and a climate network. This variety of
applications reflects the versatility of themeasures here proposed and
their efficacy in revealing useful diffusive features.

Results
Single networks
Climate networks. As a real world example of heat diffusion we use
the gridded reanalysis dataset of Surface Air Temperature (SAT)42 to
analyze the way the diffusion-capacity measure captures the heat flow
through the Earth surface. For this example diffusion capacity is
computed for each geographical point (2.5 latitude × 2.5 longitude) of
a gridded Earth network in which the weights of the connections are
the temperaturedifferences betweenpoints. Trimestralmeans of node
diffusion-capacity values are depicted in Fig. 1. Some interesting global
features can be observed from the diffusion-capacity spatial patterns.
In general, superficial air over oceans show lower diffusion-capacity
values than superficial air over land, increasing gradually in coastal
waters. Considering only land areas, higher diffusion-capacity values
are observed in places of higher altitudes aswell as in winters of colder
places (see extratropical places in South Hemisphere in Fig. 1B, C, and
extratropical places in North Hemisphere in Fig. 1A, D). Another
interesting fact is that diffusion-capacity variation among seasons is
much lower between tropics than in extratropical regions.

Figure 2 depicts the average global temperature and global
diffusion-capacity values from 1951 to 2020. It is possible to see that
while temperatures rise constantly, diffusion-capacity drastically
changes its tendency around 2000. It is worth mentioning, that
extreme weather events has increased significantly in the last 20 years
almost duplicating the number of natural disasters43–46.

Disease spreading. The SIRmodel47–50 is a simplemathematicalmodel
for the spread of epidemic diseases, in which, nodes can be suscep-
tible, infected, or recovered from an infectious agent. Recovered
nodes are immune to thedisease, while a susceptible node canbecome
infected if it is in contact with an infected node. We study here, the
evolution of the SIR model in a small network (Fig. 3A) when one
central node is initially infected, and also when a peripheral node
initiates the epidemic process. In this experiment, we consider the
probability of a susceptible node to become infected is pinf =0.1 and
different recovery rates prec values.

In general, when the process begins with the infection of a central
node, the number of new infections grows more and faster, reaching
earlier immunity, than when the process is initiated in a peripheral
node. In this case, the number of new infected nodes grows less and
slower, having its maximum later. The evolution of the dynamic also
depends on the probability of recovery (prec) of infected nodes, that
induces different outcomes.

In Fig. 3 it is depicted a SIR model when the probability of infec-
tion is greater than the probability of recovery (pinf > prec), when the
probabilities are equal (pinf = prec), and finally when the probability of
infection is lower than the probability of recovery (pinf < prec). The
lower the probability of recovery, the faster the disease spreads. Fig-
ure 3B, C show the evolutionof the diffusion capacitywhen the central,
and peripheral nodes are initially infected for different recovery
probability values. For pinf > prec values of diffusion capacity present
the highest peak, lower for the process initiated in the peripheral node.
The lowest values correspond to the case of prec > pinf.

Figure 3D, E compare the different infection processes explained
above. These figures show that the initial diffusion capacity is higher
when the process is initiated in the central node. As the process
evolves, the diffusion capacity increases until amaximum that appears
earlier than the maximum number of cases, showing itself as an early
indicator of the peak of the epidemic process. As in this case, weights
are the same in all links, peripheral nodes posses a lower diffusion
capacity than central nodes, then they aremore affected by changes in
the dynamical process. As central nodes already are strong diffusive
agents, the impact of changes is less significant. This information can
be useful to plan strategies to reduce the impact of these kind of
spreading diseases.

Interconnected networks
Kuramoto oscillators. To understand themeaning of the relative gain
in a different dynamic, we consider the well-known Kuramoto’s
model51–54 in themultiplex system of Fig. 4A. Coupled by a constantDx,
for each vertex i 2 G

!
there is an oscillator with phase θi that varies

following the differential equation for any node i belonging to a

Fig. 1 | Spatial patterns of diffusion-capacity values that correspond to average values of trimestral networks. Colors of geographical points correspond to the
diffusion-capacity mean value of each season computed through daily surface air temperature data.
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generic layer L:

_θi = ωi + c
X
j2VL

Ai,jsinðθj � θiÞ +
X
k=2VL

Ai,kDxsinðθk � θiÞ
2
4

3
5, ð1Þ

where, ωi is the fundamental frequency of the oscillator i, c a constant,
and A the adjacency matrix of the multilayered system. Figure 5A, B
shows the corresponding relative gains GL of each isolated layer for
three different coupling constants.

It is possible to see that, for Dx =0.01 the relative gains of both
layers are less than one, and thismeans that the shortest path between
two nodes that belong to the same layer, is in the layer. When Dx = 100
the relative gains of both layers are higher than one showing that
shortest paths between pairs of nodes in one layer use connections in
the other. For Dx = 3, the relative gain presents an interesting behavior
being less than 1 in some periods as for Dx =0.01 regime, and greater
than 1 in other periods as inDx = 100. Additional information regarding
DC is presented in the last three sections of the Supplementary
Information. Degree correlations between layers are analyzed in Sec-
tion G, and a multilayer brain network to study different hearing
pathologies is presented in Section H.

Discussion
In this study, we present the concept of Diffusion Capacity, a
quantity that offers insights into a node’s ability to diffuse infor-
mation. By leveraging a probability distribution that encodes
information about geodesic and weighted paths, we define Diffu-
sion Capacity and propose a method for computing it. Our
approach allows for the inclusion of dynamical characteristics of
the diffusion process, providing local and global temporal infor-
mation about the system’s performance.

We extend the concept of Diffusion Capacity to interconnected
networks, enabling us to quantify changes in the node’s diffusive
performance when it is connected to other structures. We introduce a
new quantity, called Relative Gain, which measures the change in Dif-
fusionCapacity of a nodedue to the inclusion of newnetworks into the
system. This approach allows to project superdiffusive structures, as

Fig. 3 | Diffusion Capacity Analysis of SIR Models with different initial condi-
tions. Small network highlighting a central (red) and a peripheral (green) node (A).
Network diffusion-capacity evolution of a SIRmodel when the central node (B) and
a peripheral node (C) is initially infected, for three different infection probabilities.

D, E depict the evolution of the number of infections respectively. All figures show
mean values of 100 realization considering a constant pinf =0.1 and
prec =0.05, 0.10 and0.20.

Fig. 2 | Comparison of Annual Diffusion Capacity and Temperature Values in
Global Surface Air Temperature Climate Network. Annual values of diffusion
Capacity (orange) and annual temperature values (green) for the global surface air
temperature (SAT) climate network.
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well as enhance or suppress diffusion by modifying the network’s
topology.

As a real data application, we study the temporal evolution of
Diffusion Capacity in a global climate network constructed using SAT
data. Our findings reveal a significant change in tendency around the
year 2000, despite the continuous rising of global temperatures. This
result suggests a loss of the planet’sDiffusionCapacity, whichmaybe a
contributing factor to the emergence of more frequent and extreme
climatic events. Further research is necessary to investigate thisfinding
and its implications for the planet’s climate.

In conclusion, our work introduces an approach to quantify
the Diffusion Capacity of nodes in a network and identify potential
interventions for improving the system’s efficiency. We believe
that our approach has broad applications in various fields,
including transportation, social networks, and epidemiology,
among others.

Methods
Paths in single networks
By definition, the geodesic distancebetween nodes i and j,Dg(i, j) is the
minimum number of links separating them. The weighted distance
betweennodes i and j,Dw(i, j), is theminimumsumof the inverse of the
weights connecting both nodes. Then, considering Fig. 6, the geode-
sical path betweennodes 1 and 2 is 1→ 2, thenDg = 1. Theweightedpath
between nodes 1 and 2 is 1→ 3→ 2, as the corresponding weights are 1

(Dw = 1) for link 1→ 3 and 2 (Dw = 1/2) for link 3→ 2, then Dw = 1 + 1/
2 = 3/2.

Dg(i, j) and Dw(i, j) allow the proposition of a weighted node dis-
tance distribution (wNDD) based on the quantity Δi,j =Dw(i, j)/Dg(i, j),
the ratio of the weighted and geodesical distances between nodes i
and j55–57.

If Δi,j < 1 the weighted distance connecting i to j is smaller than the
geodesical distance (Dg >Dw), and 1 −Δi,j quantifies this difference. If
Δi,j > 1, the weighted distance connecting i to j is larger than the geo-
desical distance Dg(i, j) <Dw(i, j), and this difference can be quantified
by 1 − 1/Δi,j.

Considering a networkG=(V,E),where V is the set of nodes and E is
the set of edges, for each i∈V and d = 1, 2…∣V∣ − 1,∞, let
Γi(d) = {y∈V∣Dg(i, j) = d}. The fraction of disconnected nodes from i is
defined as pi(∞) = ∣Γi(∞)∣/(∣V∣ − 1), and the fraction of nodes at geodesic
distance d from i for d ≠∞,pi(d) = ∣Γi(d)∣/(∣V∣ − 1) as the vector:

p+ iðdÞ,p0
i ðdÞ,p�iðdÞ� �

=
1

∣V ∣� 1

X
y2ΓiðdÞ

maxð1 � Δi,j , 0Þ,min Δi,j,
1
Δi,j

 !
,max 1 � 1

Δi,j
,0

 !" #

in which, p +
i ðdÞ is the fraction of nodes at geodesic distance d from i,

for which their weighted shortest path is smaller than d,p�
i ðdÞ indi-

cates the fraction of nodes at geodesic distance d from i, for which
their weighted shortest path is larger than d, and p0

i ðdÞ is the fraction
of nodes for which there is no difference between the paths.

Fig. 5 | Time evolution of a randomexperiment forKuramoto’smodel (Eq. 1) on
the multiplex system of Fig. 4A in which, initially, all oscillators are in phase
(θi =0) having their fundamental frequencies chosen from a uniform dis-
tribution [0, 1] for different coupling constants Dx. A, B Shows the evolution of

the relative gains of layers G1 and G2, respectively, and (C) the plane G1 × G2 for the
three different coupling constants considered. In all experiments the value of c is
0.01/18.

Fig. 4 | Multiplex network formed by layers G1 and G2 connected by weighted
links with equal interlayer strength. Nodes in blue/red represent those that
decrease/increase their diffusion capacity in the fully coupledmultilayer structure,
compared to their diffusion capacity in isolation (A). Diffusion Capacity Λ of G1,G2

and, for different interlayer strengths (logarithmic scale) the multilayer diffusion
capacity MðG1Þ and MðG2Þ (B). Evolution of the Multilayer diffusion Capacity for
small interlayer strength values (C).
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Considering this, if all weights are one,p +
i ðdÞ = 0 andp�

i ðdÞ = 0. In the
extreme case that weights tend to infinity \, and p0

i ðdÞ ! 0, being the
topological configuration, irrelevant. On the other hand, if weights
tend to zero, p�

i ðdÞ ! ∣ΓiðdÞ∣=ð∣V ∣� 1Þ,p +
i ðdÞ=0 and p0

i ðdÞ ! 0,
approximating to the situation of considering only the geodesic dis-
tances. The weighted node distance distributionwNDD is then defined
for each node, as:

Pi = p+
i ð1Þ,p0

i ð1Þ,p�
i ð1Þ, . . . ,p+

i ð∣V ∣� 1Þ,p0
i ð∣V ∣� 1Þ,p�

i ð∣V ∣� 1Þ,pið1Þ� �
,

ð2Þ

Pi = ð1, 0, 0, . . . , 0Þ is the formof the distancedistribution (wNDD) of a
node in a fully connected network with weights tending to infinite.
When larger weights accelerate the diffusion process,Pi corresponds
to the distance distribution of a node in the most diffusive structure,
and for that, we consider them as our reference structure Gref and
distribution Pref .

Diffusion Capacity in single networks
Then, let G = (V, E,W) be a weighted network composed by a set of
vertices V, edges E and weights W. We define the diffusion capacity of
node i,Λi(G), as the inverse of the distance betweenPiðGÞ andPiðGref Þ,

where Gref is the graph reference of the same size than G. We measure
the distance between these distributions using the cumulative Jensen-
Shannon divergence (CDD), described in Section A of the Supple-
mentary Information (SI). Therefore, the Diffusion Capacity (DC) of
node i∈G,Λi(G), is

ΛiðGÞ = CDDðPi,Pref Þ
h i�1 ð3Þ

and the diffusion capacity of the network G,ΛD(G), is the average over
all nodes

ΛðGÞ = 1
∣V ∣

X
i2V

ΛiðGÞ: ð4Þ

To study diffusion processes in networks we propose the
embedding of dynamical features in the topological weights. Then,
weights considered in this analysis are the result of the combination of
topological anddynamical characteristicsof the structure andprocess,
respectively. Figure 7 depicts a simple example of a heat diffusion
process on a regular network58. In this case, the weights considered in
the analysis are the combination of the thermal conductivity of the
links wi,j (topological weights), and the temperature difference
between the nodes involved (xj − xi) (dynamical feature),
Wi,j =wi,j(xj − xi) as explained in Section B of the SI. Nodes interact by
exchanging heat with a rate proportional to their temperature differ-
ence and to the thermal conductivity. In thermal equilibrium, as there
is no energy flow, the diffusion capacity (DC) of nodes, represented by
the node’s sizes, depends exclusively on the topological structure.
However, when energy flows, the DC of the nodes varies until reaching
equilibrium. The system’s DC, defined as the average of the node’s DC,
increases to amaximumvalue and returns to the state in which no flow
is present. In Fig. 7A the thermal conductivity is the same in all con-
nections, then, because of their global topological configuration,
central nodes have higher DC values. In Fig. 7B the thermal con-
ductivity of some connections is increased, then, the size of the nodes
also increase in different proportions depending of their topological
location. To better analyze this process, we simulate the evolution of
the heat exchange and compute, at each time step, the DC value of the
whole structure as depicted in Fig. 7C. First, we increase the tem-
perature of node 1 and compute DC in structure A, as shown by the
green andblue lines.By comparing theseprocesses, it is possible to see
that, under the same initial conditions, the system in B reaches higher
DC values and reaches thermal equilibrium in a shorter time than the
system in A. However, after increasing the temperature of node 2 and

Fig. 6 | Example of a network composed of 4 nodes and 4 links, with different
values of topologicalweights.Theweights reflect the strength of the connections
between nodes.

Fig. 7 | Regular grid in which the size of the nodes correspond to their topo-
logical diffusion capacity. A and the topological diffusion capacity when some
peripheral links possess a higherweight (B). Twodifferent heat diffusion processes
are initiated in nodes 1 or 2 in both structures by assigning a temperature 25

degrees higher than the temperature of the other nodes. The time evolution of the
diffusion capacity values of the system is shown in (C). Theminimumvalue (DCmin)
corresponds to the DC value when (xj − xi)→0.
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computing DC in structures A and B, as shown by the red and black
lines, respectively, contrary to what it is expected because of the
presence of some connections with higher thermal conductivity in
structure B, the process in structure A reaches thermal equilibrium
earlier.

Two important DC values exist for every system. By assuming
(xj − xi) = 1 as an arbitrary value, we have information about the relative
DC values between nodes to represent their structural latent diffusive
potential. This value corresponds to the topological diffusion capacity
(DCt). Figure 7 shows two regular grids, in which DCt values are
represented by the size of the nodes when all connections have the
same weight (A) and when some links possess a higher thermal con-
ductivity (thicker lines) in (B). The color scale in Fig. 7B represents the
percentage increase in DCt considering only the topological change.

The second important network DC value is the asymptotic mini-
mum depicted in Fig. 7C, where all DC curves converge in different
moments, independently of the weights of the connections, the
dynamical process involved and the initial conditions. This minimum
DC value (DCmin) is unique for each specific adjacency matrix, and
corresponds to the case in which (xj − xi)→0, and only geodesic
distances count.

Section C of the SI presents an experiment of DC applied to
Kuramoto oscillators, and the computational complexity of DC is
discussed in Section D.

Paths in interconnected networks
When considering interconnected networks, represented asmultilayer
structures, we have to consider paths usingmore than one layer. Using
the concepts of single and doubly connected nodes proposed in the
Lace Expansionmethod59, we define that twonodes i and j, of the same
layer, are doubly connected (i⇔ j) if it exists, between them, at least a

shortest path going through two different layers. Then, two nodes are
single connected (i↔ j) if they are not doubly connected. For example,
vertices 1 and 3 of Fig. 8 are doubly connected because the shortest
path connecting them contains links inmore than one layer (1–5–6–3).
Vertices 5 and 6, on the other hand, are not doubly connected because
the shortest path connecting them corresponds to the same layer.
Then, the wNDD of a multilayer system have to consider the intra-
layer links.

For a weighted multilayer network composed by a set of M
weighted networks, G

!
= ðG1,G2, . . . ,GM ,EÞ with

GL = (VL, EL,WL), L = 1, 2,…,M, and layers connected by weighted
interlayer links E= fwx,y∣x 2 Vα ,y 2 Vβ,α ≠βg, we define for
nodes i, j∈VL:
1. Dw(i, j), as the shortest distance over all paths connecting i and j in

the multilayered system, being Pi its corresponding probability
distribution;

2. Dβ
wði,jÞ, the shortest distance over all paths connecting i and j such

that at least one node in the path belongs to a different layer, Gβ

with β ≠ L, being Pβ
i its corresponding probability distribution.

For every i 2 VL,Pi captures the impact of the shortest paths
reduction due to the multilayer structure, andPβ

i captures the impact
of the paths that are forced to have, at least, one link connected to
layerGβ. In the SI section Ewepresent, in detail, the constructionof the
probability distributions for the network depicted in Fig. 8.

Diffusion capacity in interconnected networks
To define DC we use Pref that, in this case, corresponds to the most
diffusive multilayer structure. In these structures, if there are no
interlayer connections, diffusion occurs independently in each layer.
However, when the interlayer strength is low, the diffusion time may
become excessively long, as these weak interlayer connections slow
down the dynamics of both layers. On the other hand, a strong inter-
action between layers enhances diffusion.

Let G
!

= ðG1,G2, . . . ,GM ,EÞ a multilayer weighted network, we
define, for each node i∈VL and for all L = 1, 2,…,M:
1. The Node Diffusion Capacity (Mi):

MiðG
!Þ = 1

2
CDDðPi,Pref Þ +

1
2M � 2

XM
β= 1,β≠ L

CDDðPβ
i ,Pref Þ

2
4

3
5
�1

ð5Þ
2. The Layer Diffusion Capacity is defined as the average ofMi over

all the nodes in a layer,

MðGLÞ =
1

∣VL∣

X
i2VL

Mi ð6Þ

In the first term of Eq. 5, Pi is the distribution of the multilayer
dynamical paths between node i and the other nodes of layer GL (see
methods). CDDðPi,Pref Þ compares the diffusive potential of a node
through a distance to a reference distribution. In the second term, Pβ

i

Table 1 | Mono and multilayer diffusion-capacity values for the system depicted in Fig. 4

Nodes

DC 1 2 3 4 5 6 7 8 9 Average

Λx(G1) 0.2825 0.2825 0.2825 0.2825 0.2825 0.2825 0.2825 0.2825 1.0000 0.3622

MxðG1Þ 0.2909 0.2867 0.2867 0.2867 0.2867 0.2867 0.2867 0.3074 0.9950 0.3682

Λx(G2) 0.3400 0.3103 0.3103 0.3103 0.3103 0.2321 0.2506 0.5657 0.5657 0.3550

MxðG2Þ 0.3396 0.3100 0.3100 0.3100 0.3100 0.2379 0.2537 0.5652 0.5914 0.3587

Fig. 8 | Bilayer network composed by layer α possessing 4 nodes and layer β
possessing 2 nodes. Layers α and β are interconnected through nodes by a dif-
fusion coefficient Dx = 10.
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represents the distribution of themultilayer paths between node i and
the other nodes of layerGL, for which paths are imposed to go through
layer β (see methods). The average of CDDðPβ

i ,Pref Þ captures the
effect caused by the presence of all β ≠ L, on node i. In this way, the
multilayer DC of node i,MiðG

!Þ is represented by the structural and
dynamical dissimilarity between the multilayer connectivity of node i
in G, and the multilayer connectivity of node i in Gref.

Relative gain. Figure 4 shows a multiplex system containing nine
nodes in each layer, coupled through a constant interlayer weight
between layers G1 and G2 (Fig. 4A). Multiplex networks are multilayer
structures with the restriction of having the same set of nodes in all
layers, and intralayer connections exclusively through the same nodes.
Figure 4B depicts the DC values of isolated layers (Λ(G1) and Λ(G2),
and for the multiplex system, (MðG1Þ and MðG2Þ), for different
interlayer weights. In this system, as the coupling increases, the
diffusion capacities of the multilayer system also increase up to a
point whereMðG1Þ>ΛðG1Þ and MðG2Þ>ΛðG2Þ. Figure 4C shows that
for small values of the coupling constant, the increase in diffusion
capacity is nearly linear. DC values can be found in Table 1. This
result is consistent with previous findings in60 in which it is shown
that the time for a multiplex network to reach equilibrium, scales
with the inverse of the smallest positive eigenvalue of the Laplacian
matrix (λ2). In the Section F of the SI we show the relationship
between DC and λ2 values.

By comparing the single and multilayer node diffusion capacities
Λi andMi, it is possible to know if it is advantageous or not for a node,
in terms of diffusion, to be coupled with another network and, by
comparing the diffusion capacities Λ(GL) and MðGLÞ, it is possible to
know if it is advantageous or not for a layer, in terms of diffusion, to be
part of a multilayer system. Node nine in layer G1 of the structure
depicted in Fig. 4A for example, reduces its diffusion-capacity when it
is part of the multilayered system.

To explore this relationship between single and multilayer diffu-
sion capacities, we define the relative gain G as the ratio between the
multilayer diffusion capacity and the diffusion capacity of the isolated
layer. For a node i in a layer GL:

Gi =Mi=Λi ð7Þ

and

GL =MðGLÞ=ΛðGLÞ ð8Þ

In this way, GL quantifies the improvement of the DC of layer Lwhen it
is connected to the other layer in comparison to DC of itself in
isolation.

Relative gain is also an important concept for the study of
superdiffusion60,61, phenomenon in which diffusion processes reach a
steady state faster on a multilayer structures than in any of their con-
stitutive layers in isolation. In Fig. 9 are represented two multiplex
networks composed by two layers with nine nodes and different
connectivity configurations. Systems are built in a way that all red
nodes satisfy Mi >Λi meaning that they are more diffusive in the
interconnected system than in the isolated layer, and blue nodes
satisfyMi <Λi meaning that they aremore diffusive in it isolated layer
than when it is connected to another structure. To study the emer-
gence of superdiffusion on these structures we use 1000 different
random initial conditions and we observe the number of times
superdiffusion is developed. Results reveal that superdiffusion is
found in 99.8% of cases for S1 and in 75.6% of the cases in S2, showing
the strong influence of the network topology and its dependence on
initial conditions. It is interesting to note that, considering the
approach based on spectral properties of Laplacian matrices60, both
structures are considered superdiffusive. This experiment highlight
the advantage of the possibility of quantifying DC as it allows the
design of structures with specific diffusive requirements and also to
investigate the initial conditions in which the structure becomes
superdiffusive.

Data availability
The Climate Network Dataset is freely available42. The artificial net-
works data used in the heat model and Kuramoto experiments are
provided in the github repository: tischieber/Diffusion-Capacity-of-
Single-and-Interconnected-Networks (github.com)62.

Code availability
The source code for computing the Diffusion Capacity and instruc-
tions on how to use it are freely available at: tischieber/Diffusion-
Capacity-of-Single-and-Interconnected-Networks (github.com)62.
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