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Graphs have a superior ability to represent relational data, such as chemical compounds, proteins, and so-

cial networks. Hence, graph-level learning, which takes a set of graphs as input, has been applied to many

tasks, including comparison, regression, classification, and more. Traditional approaches to learning a set

of graphs heavily rely on hand-crafted features, such as substructures. While these methods benefit from

good interpretability, they often suffer from computational bottlenecks, as they cannot skirt the graph iso-

morphism problem. Conversely, deep learning has helped graph-level learning adapt to the growing scale of

graphs by extracting features automatically and encoding graphs into low-dimensional representations. As

a result, these deep graph learning methods have been responsible for many successes. Yet, no comprehen-

sive survey reviews graph-level learning starting with traditional learning and moving through to the deep

learning approaches. This article fills this gap and frames the representative algorithms into a systematic tax-

onomy covering traditional learning, graph-level deep neural networks, graph-level graph neural networks,
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and graph pooling. In addition, the evolution and interaction between methods from these four branches

within their developments are examined to provide an in-depth analysis. This is followed by a brief review

of the benchmark datasets, evaluation metrics, and common downstream applications. Finally, the survey

concludes with an in-depth discussion of 12 current and future directions in this booming field.

CCS Concepts: • Computing methodologies → Neural networks; • Mathematics of computing →
Graph algorithms;

Additional Key Words and Phrases: Graph-level learning, graph datasets, deep Learning, graph neural net-

works, graph pooling
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1 Introduction

Research into graph-structured data started with the Konigsberg bridge problem [1] in the 18th
century, that is: “How can we design a path among seven bridges in Konigsberg city that crosses each

bridge only once?” Through modeling seven bridges into a graph in which nodes represent the
junctions between bridges and edges represent bridges, the Konigsberg bridge problem is proved
unsolvable. Since then, graph-structured data has become an indispensable tool for exploring the
world. For instance, in a graph that models a chemical molecule, nodes represent atoms and edges
describe chemical bonds between atoms. Researchers can model millions of molecules, in which
each presents a graph, to analyze their properties (e.g., anti-cancer activity, toxicity) [2]. Such a
case illustrates graph-level learning, which learns the underlying patterns among a set of graphs
for classification [3, 4], regression [5, 6], generation [7, 8], and so on.

Mining the underlying rules among a set of graphs is tough, as graphs are irregular with an
unfixed number of disordered nodes and varied structural layouts. A long-standing challenge in
graph-level learning, the graph isomorphism problem, is “How to determine whether two graphs

are completely equivalent or isomorphic?”1 An enormous number of studies [9–11] focused on this
question and concerned it as a candidate for NP-immediate until a quasi-polynomial-time solution
was proposed in 2016 [12]. To tackle the struggle in this area, tremendous efforts have been made
involving traditional methods and deep learning.

Generally, traditional graph-level learning builds the architecture upon handcrafted features
(e.g., random walk sequences [13], frequently occurring substructure [14]) and classical machine
learning techniques (e.g., support vector machine). This paradigm is human-interpretable but is
usually restricted to simple small graphs rather than reality large networks. This is because tra-
ditional methods cannot bypass the graph isomorphism problem, the predefined features are re-
quired to preserve the isomorphism between graphs, i.e., mapping isomorphism graphs to the same
features. On the contrary, deep learning techniques break the shackles by training the network to
automatically learn non-linear and low-dimensional features. This makes deep neural networks
bring new benchmarks for state-of-the-art performance and support the ever-increasing size of
graph data. The fly in the ointment is the black-box nature of deep learning, which leads to compro-
mised trustworthiness. An emerging trend is to develop reliable graph-level learning techniques
that own the advantages of neural networks and traditional methods.

1Two graphs G1 and G2 are isomorphic if the following two conditions are met: (1) There exists matching between nodes

in G1 and G2; (2) two nodes are linked by an edge in G1 iff the corresponding nodes are linked by an edge in G2.
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Benefiting from these techniques, graph-level learning has applications and promise in many
fields. Wang et al. [15] performed graph regression among a set of molecules to predict their prop-
erties for discovering more economical crystals. In another study, a graph generation task based
on a series of protein graphs was used to produce graphs of proteins with specific functions to
support drug discovery [16]. Likewise, graph classification with brain graphs has the potential to
distinguish brain structures with neurological disorders from those of healthy individuals [17, 18].

Despite the demonstrated potential proven by successful applications, graph-level learning still
lacks a systematic review. The objective of a comprehensive overview of graph-level learning
should encompass its broad scope and provide an in-depth analysis. On the discussion of broad
scope, graph-level learning involves various mainstream techniques spanning eras. However, most
existing surveys have not given a holistic treatment to the topic. For instance, Wu et al. [19] and
Zhang et al. [20] concentrated on exploring nodes in the graph while treating graph-level learning
as a subsequent by-product. As a result, most graph-level methods they discussed are node-level
learning combined with pooling operations. However, graph-level techniques are not confined to
this by leveraging all possible elements in the graph to capture graph properties, such as walk se-
quences or distances (see Section 4.1), subgraphs (see Sections 4.2 and 6.2), and so on. In addition,
several works only investigate a single technique, such as graph kernels [21] and graph pooling
[22, 23]. The limited scope of these investigations hinders an in-depth analysis, e.g., evolution and
interaction in this field, which are novel and essential to delivering high-level insight into this field.
As illustrations, the message-passing scheme, aggregating neighborhood information, has evolved
in various techniques ranging from graph kernels to GL-GNNs. Understanding this evolution is
crucial for clarifying the developments and commonalities of related techniques. The interaction
is equally significant, as researchers have leveraged traditional techniques that perceive global
topology to empower GL-GNNs (see Sections 6.2 and 6.3), thus breaking the expressivity limita-
tions imposed by local topology.

To the best of our knowledge, this is the first comprehensive survey of graph-level learning that
spans both traditional methods and deep learning-based techniques (i.e., GL-DNNs, GL-GNNs,
and graph pooling). This article exhaustively depicts the mainstream techniques across various
periods of graph-level learning and further provides an in-depth review, including the evolution
and interaction of these techniques. Thus, the contributions of this survey include:

— A comprehensive taxonomy: We propose a comprehensive taxonomy for graph-level
learning techniques. Specifically, our taxonomy covers graph-level learning through both
traditional and deep learning methods.

— An in-depth review: Over four categories, we summarize the representative algorithms,
make comparisons, and discuss the contributions and limitations of existing methods. Addi-
tionally, we talk about the evolution and interaction between various techniques.

— Abundant resources: This survey provides readers with abundant resources for graph-
level learning, including information on the state-of-the-art algorithms, the benchmark
datasets for different domains, fair evaluation metrics for different graph-level learning
tasks, and practical downstream applications. The repository of this article is available at
https://github.com/ZhenyuYangMQ/Awesome-Graph-Level-Learning.

— Future directions: We identify 12 important future directions in the graph-level learning
area.

2 Background and Definitions

This section provides the background knowledge and some definitions for understanding this arti-
cle. Bold lowercase characters (e.g., x) are used to denote vectors. Bold uppercase characters (e.g.,
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Fig. 1. Illustrative examples of graph learning on a single graph and graph datasets.

X) are used to denote matrices. Plain uppercase characters (e.g., V) are used to denote mathemat-
ical sets, and lowercase-italic characters (e.g., n) are used to denote constants.

Learning on a Single Graph versus Graph-level Learning: Learning on a single graph involves us-
ing node attributes and edges from one graph as inputs to understand and make predictions about
elements (e.g., nodes and edges) within that graph. Graph-level learning aims to make predictions
or extract meaningful insights about the entire graph rather than individual nodes or edges. The dif-
ferences between learning on a single graph and graph-level learning are shown in Figure 1. Some
methods can serve both of them, for instance, most GL-GNNs are adept at learning representations
for individual nodes within a graph, while also aggregating these learned node representations to
capture properties of the entire graph. In contrast, there are also methods specifically designed for
graph-level learning, like graph kernels, which calculate the similarities between pair-wise entire
graphs.

Definition 2.1. (Graph): A graph can be denoted as G = (V,E), where the node set V having
n nodes (also known as vertices) and the edge set E having m edges. In an undirected graph,
Eu,v = {u,v} ∈ E represents that there is an edge connecting nodes u and v , where u ∈ V
and v ∈ V . If G is unweighted, then we use an adjacency matrix A ∈ {0, 1}n×n to describe its
topological structure, where Au,v = 1 if Eu,v ∈ E, otherwise, 0. If G is weighted, then the value of

Au,v refers to the weight value of Eu,v . X ∈ Rn×f is the node attribute matrix, and a node u ∈ V
can be described by an attribute vector xu ∈ Rf . Similarly, the edge feature matrix is denoted as
S ∈ Rm×d , where su,v ∈ Rd describes the edge Eu,v ∈ E. Unless otherwise specified, the graphs in
this article are undirected attributed graphs.

Definition 2.2. (Graph Dataset): A graph dataset G is composed of N graphs, where G =
{G1, . . . ,GN }.

Definition 2.3. (Subgraph/Substructure): Let G = (V,E) and дm = (Vдm
,Eдm

) each denote
a connected graph, дm is a subgraph/substructure of G iff there exists an injective function ϕ :
Vдm

→ V s.t. {u,v} ∈ Eдm
and {ϕ(u),ϕ(v)} ∈ E.

Definition 2.4. (Graph-level Learning): Graph-level learning takes a graph dataset G =

{G1, . . . ,GN } consisting of N graphs as inputs and returns a function f (·) that maps a graph Gi
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Fig. 2. The timeline of graph-level learning in terms of four mainstream techniques.

to some output f (Gi ). For instance, in the graph classification task, for any graph G′
i isomorphic

to Gi , we have f (Gi ) = f (G′
i ). In other words, f (·) is permutation-invariant.2

3 Taxonomy of Graph-level Learning Techniques

This section provides a taxonomy of graph-level learning techniques. Its categories include tra-
ditional learning, graph-level deep neural networks (GL-DNNs), graph-level graph neural

networks (GL-GNNs), and graph pooling. Each category is briefly introduced next. The timeline
of these four mainstream techniques is shown in Figure 2, and a related taxonomy tree can be
found in Figure 8 in Appendix A.
Traditional Learning. As the historically dominant technique, traditional learning tries to solve
the fundamental problem that is lacking feature representations of graphs by manually defined

2The prediction results of a graph-level learning algorithm are invariant to any permutations of the order of nodes and/or

edges of each input graph.
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features. Given well-designed features (e.g., random walk sequences [13], frequently occurring
substructure [14]), off-the-shelf machine learning models were used to tackle graph classification
tasks in a non-end-to-end fashion. The form of traditional learning is less applicable to reality com-
plex graph-structured data due to the computational bottlenecks, yet, it still provides great valuable
insights, such as better interpretability and better ability to model irregular structures [24].
Graph-Level Deep Neural Networks (GL-DNNs). Towards the deep learning era, neural net-
works achieved wide success in representing Euclidean data (e.g., images and texts). Thus, re-
searchers try to apply deep neural networks to graph data; the explorations range from skip-gram
to transformer. These deep neural networks were not initially designed to learn non-Euclidean
data like graphs. Hence, one of the important issues with GL-DNNs is how to enable them to learn
graph-structured data that varies in size and has irregular neighborhood structures.
Graph-Level Graph Neural Networks (GL-GNNs). GL-GNNs are deep neural networks spe-
cific for graph-structured data. Most GL-GNNs employ the graph convolutional layers to aggregate
and update neighborhood information layer-by-layer for graph-level learning. These methods are
simple, easy to understand, and have linear complexity [25], condensing the most fruitful achieve-
ments of graph-level learning. Recently, there has been a trend that integrating GL-GNNs with
other techniques, particularly traditional learning techniques, to promote graph-level learning.
Graph Pooling. GL-DNNs and GL-GNNs always encode graph information into node represen-
tations that cannot be directly applied to graph-level tasks; graph pooling fills this gap. Graph
pooling is a kind of graph downsizing technology where compact representations of a graph are
produced by compressing a series of nodes into a super node [20, 22]. It is worthy to be recorded
as a significant graph-level technique, as it is unique for graph-level learning without appearing
in node-level and edge-level tasks. In addition, graph pooling has great power to preserve more
information (e.g., hierarchical structure) for graph-level tasks, resulting in an abundant literature
of related methods.

4 Traditional Learning

Traditional graph-level learning algorithms work in a deterministic way, encoding graphs using
handcrafted features. Traditional graph-level learning methods can be divided into three main
types: i.e., those based on graph kernels (GKs, Section 4.1), subgraph mining (Section 4.2), and
graph embedding (Section 4.3). We summarize all discussed traditional graph-level learning models
in Table 1 and compare the graph kernel architectures in Table 5 within Appendix B.

4.1 Graph Kernels (GKs)

GKs perform graph-level learning based on kernel values (i.e., pair-wise graph similarities). Given a
graph datasetG, GKs decompose each graph G into a bag-of-graphs SG = {д1, . . . ,дI }, where дi ⊆
G and дi can be a node or a subgraph. Most GKs are based on the paradigm of an R-Convolution
kernel [26] that obtains the kernel value KR−conv (G,G′) of two graphs G and G′ by:

KR−conv (G,G′) =
I∑

i=1

J∑
j=1

Kpar ts

(
дi ,д

′
j

)
, (1)

where Kpar ts (дi ,д
′
j ) is the kernel function that defines how to measure the similarity between дi

and д′j , and I and J count the size of bag-of-graphs for decomposing G and G′, respectively. A

kernel matrix that packages all kernel values is then fed into an off-the-shelf machine learning
model, such as a support vector machine (SVM), to classify the graphs.

4.1.1 Message Passing Kernels (MPKs). MPKs perform message passing on neighborhood
structures to obtain graph representations. The 1-dimensional Weisfeiler-Lehman (1-WL)

ACM Comput. Surv., Vol. 57, No. 2, Article 28. Publication date: October 2024.
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Table 1. Summary of Traditional Graph-level Learning Methods

Technique Architecture Year Method Venue Inputs Complexity Applications

Graph
Kernels

Message
-passing
Kernels

2009 NHK [28] ICDM A, L O(hnbd) Molecule/Protein Classification
2011 WL [27] JMLR A, L O(hm) Molecule/Protein Classification
2016 PK [30] ML A,X O(hm) Molecule/Protein/Text/Image/3D Point Clouds Classification
2017 Global-WL [29] ICDM A,X O(hm) Molecule/Protein/Social Network Classification
2019 P-WL [31] ICML A,X O(hmloдm) Molecule/Protein/Social Network Classification

ShortestPath
Kernels

2005 SPK [32] ICDM A,X O(n4) Molecule/Protein Classification
2017 SPK-DS [33] EMNLP A,X O(n4) Text Classification

Random
Walk

Kernels

2003 RWK [13] LNAI A,X O(n6) Molecule/Protein Classification
2004 ERWK [34] ICML A,X O(n6) Molecule/Protein Classification
2010 SOMRWK [35] JMLR A,X O(n3) Molecule/Protein Classification;Protein-protein Interaction Prediction

Optimal
Assignment

Kernels

2005 OAK [36] ICML A,X O(n4) Molecule/Protein Classification
2013 PS-OAK [37] NeurIPS A,X O(n3) Image Alignment
2015 GE-OAK [38] KDD A,X O(n3) Molecule/Protein Classification
2015 TAK [39] SIMBAD A,X O(n3) Molecule/Protein Classification;Shape Recognition

Subgraph
Kernels

2009 Graphlet [40] AISTATS A O(nk ) Molecule/Protein Classification
2010 NSPDK [41] ICML A O(bnm) Molecule/Protein Classification

2012 SMK [42] ICML A,X O(knk+1) Molecule/Protein Classification

Subgraph
Mining

Frequent
Subgraph
Mining

2000 AGM [14] ECML PKDD A, L O(nmn!m!) Molecule/Protein Classification
2001 FSG [43] ICDM A, L O(nmn!m!) Molecule/Protein Classification
2002 gSpan [44] ICDM A, L O(nmn!m!) Molecule/Protein Classification

Discrimina
-tive

Subgraph
Mining

2008 LEAP [45] SIGMOD A, L O(nmn!m!) Molecule/Protein Classification
2009 CORK [46] SDM A, L O(nmn!m!) Molecule/Protein Classification
2010 gMLC [47] ICDM A, L O(nmn!m!) Molecule/Protein Classification
2010 gSSC [48] KDD A, L O(nmn!m!) Molecule/Protein Classification
2011 gPU [49] ICDM A, L O(nmn!m!) Molecule/Protein Classification
2014 gCGVFL [50] ICDM A, L O(nmn!m!) Image/Social Network Classification

Nonlearnable
Graph

Embedding

2017 FGSD [51] NeurIPS A O(n2) Molecule/Protein/Social Network Classification
2018 AWE [52] ICML A,X O(n3) Molecule/Protein/Social Network Classification
2019 LDP [53] ICLR RLGM A O(m) Molecule/Protein/Social Network Classification
2020 SLAQ [54] WWW A O(m + n) Molecule/Protein/Social Network Classification
2021 VNGE [55] WWW A O(n3) Social Network Classification
2021 A-DOGE [56] ICDM A,X O(n2 + hm) Molecule/Protein/Social Network Classification

*For the Inputs column, A, L, X refer to the adjacency matrix, node label matrix, and node attribute matrix,

respectively. To be notified, node attributes could be node labels or even more fine-grained features (e.g., text

information, RGB colors).

*The Complexity column depicts the time complexity of algorithms within the worst case. h is the iteration times and

n, m refer to the number of nodes and edges, respectively. In addition, b involves the number of bits in the hash

function, d means the average of node degrees, and k indicates the size of the largest mined substructure.

algorithm3 [10, 27] is one of the most representative MPKs. 1-WL updates a node’s label (or color)
iteratively. The iteration of 1-WL is shown in Figure 3(d). At the hth iteration, 1-WL aggregates
node v’s label l (h−1)(v) and its neighbor’s labels l (h−1)(u),u ∈ N(v) to form a multi-set4 of labels
{l (h−1)(v), sort(l (h−1)(u) : u ∈ N(v))}. Subsequently, 1-WL employs an injective hash function ϕ(·)
to map the {l (h−1)(v), sort(l (h−1)(u) : u ∈ N(v))} into a new label l (h)(v). Formally:

l (h)(v) = ϕ
(
l (h−1)(v), sort(l (h−1)(u) : u ∈ N(v))

)
. (2)

When ϕ(·) no longer changes the labels of any nodes, 1-WL stops iterating and generates a vector
ϕwl (G) that describes G. That is,

ϕwl (G) =
[
c(0)(l (0)1 ), .., c(0)(l (0)

I0
); ...; c(H )(l (H )

1 ), . . . , c(H )(l (H )
IH

)
]
, (3)

where l (h)i is the ith label generated at the hth iteration, and c(h)(l (h)i ) counts the occurrences of

nodes labeled with l (h)i in the hth iteration. The kernel value of 1-WL between G and G′ is the
inner product of ϕwl (G) and ϕwl (G′):

KW L (G,G′) =< ϕwl (G) ,ϕwl (G′) > . (4)

The following works refine the 1-WL algorithm from two views: aggregation and relabeling.
Hido and Kashima [28] replaced the hash function with a binary arithmetic giving rise to a faster

31-WL is also a well-known algorithm for graph isomorphism test.
4In a multiset, multiple elements are allowed to be the same instance.
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Fig. 3. Different mechanisms of four graph kernels in decomposing and comparing pairwise graphs.

ϕ(·). Morris et al. [29] used the idea of k-WL to relabel node groups consisting of k nodes that
could form a connected graph. Theoretically, k-WL is more powerful than 1-WL for distinguishing
between graph structures. Further, Neumann et al. [30] proposed a random label aggregation pro-
cess based on node label distributions that only considers labels of part of neighbors. Random label
aggregation saves time and computational resources making work on large-scale graphs more ef-
ficient. Persistent Weisfeiler–Lehman (P-WL) [31] is the recent enhancement to MPKs that
adds weighted edges into the aggregation process. To calculate the edge weight, P-WL measures
the distance between the continuous iterative updated labels of two end nodes. Additionally, P-WL
can track changes in substructures that cannot be identified by 1-WL, such as cycles.

4.1.2 Shortest-path Kernels (SPKs). SPKs denote the kernel value as a comparison between pair-
wise node sequences (see Figure 3(b)). For example, the shortest-path kernel [32] determines the
shortest path between the verticesv andu via the Floyd-Warshall [57] or Dijkstra’s [58] algorithms.
The distance between the pairwise shortest paths from G and G′ is defined as the kernel value
between them. Formally,

KSP (G,G′) =
∑

v,u ∈V
v�u

∑
v ′,u′ ∈V ′

v ′�u′

KPar ts ((v,u) , (v ′,u ′))

:=

{
KD (P (v,u) , P (v ′,u ′)) if l (v) ≡ l (v ′) ∧ l (u) ≡ l (u ′) ,
0 otherwise,

(5)

where l(v) is the label of node v , P (v,u) is the length of shortest path between vertices v and u,
andKD (·, ·) is a kernel comparing the shortest path lengths. Nikolentzos [33] proposed a variant of
SPKs that draws on more information in a shortest path, such as node and edge labels, to calculate
the distance of any two paths.

4.1.3 Random Walk Kernels (RWKs). RWKs are another kernel method guided by node se-
quences. Gärtner et al. [13] were the first to propose a random walk kernel. This technique counts
the same random walk sequences that pair-wise graphs both own. Performing random walks on
G = (V,E) and G′ = (V′,E′) simultaneously is the same as conducting random walks on a direct
product graph G× = (V×,E×), where

V× = {(v,v ′) : v ∈ V ∧v ′ ∈ V′ ∧ l(v) ≡ l(v ′)},
E× = {{(v,v ′) , (u,u ′) ∈ V×} : Ev,u ∈ E ∧ E′

v ′,u′ ∈ E′}. (6)

ACM Comput. Surv., Vol. 57, No. 2, Article 28. Publication date: October 2024.
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Given G×, the kernel function is defined as:

KRW (G,G′) =
|V× |∑
i=1

|V× |∑
j=1

[
P∑

p=0

λpA
p
×

]
i j

, (7)

where A× is the adjacency matrix of G×, P is the predefined max length of random walking se-
quences, and λp are the weights given to different P . KRW (G,G′) counts the occurrences of com-
mon walk paths in G and G′ with lengths equal to or less than P .

The random walk kernel in Equation (7) assumes a uniform distribution for the beginning and
ending probabilities of the walks across two graphs. However, Vishwanathan et al. [35] proposed
a generalized version of RWKs. Specifically, they defined p and q as the beginning and ending
probability vectors in G, respectively. In addition, they used the Kronecker product operation ⊗
to derive A×, that is, A× = A ⊗ A′. Formally, the kernel value is:

KRW (G,G′) =
∞∑

l=0

μl (q ⊗ q′)
(A×)l (p ⊗ p′), (8)

where μl is the convergence coefficient.
RWKs suffer from a problem called tottering, where a random walk sequence traverses v to u

and immediately returns to v via the same edge. To address tottering, Mahé et al. [34] employed a
second-order Markov random walk that considers the last two steps in the current random walk
sequence when deciding the next step.

4.1.4 Optimal Assignment Kernels (OAKs). Fröhlich et al. [36] were the first to propose OAKs.
OAKs consider nodes as a basic unit for measuring kernel values. Of all the GKs introduced in this
article, OAKs are the only family of GKs that do not belong toR-Convolution paradigm. Specifically,
given a fixed i in Equation (1), OAKs only add in the maximum similarity value between дi and д′j
where j ∈ {1, . . . , J }. Formally, OAKs are defined as:

KOA (G,G′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
π ∈

∏
J

∑I
i=1 Kpar ts

(
дi ,д

′
π [i]

)
, if J ≥ I ,

max
π ∈

∏
I

∑J
j=1 Kpar ts

(
дπ [j],д

′
j

)
, otherwise,

(9)

where
∏

I represents all permutations of the indexes of a bag-of-graphs {1, . . . , I }, and π is the
optimal node permutation to reach maximum similarity value between two graphs.

Searching for a pair-wise element with the maximum similarity tends to be a highly time-
consuming process. Hence, to reduce the time requirement of this task, Johansson et al. [38]
mapped the graphs in geometric space and then calculated the Euclidean distance between pair-
wise nodes. This method enables OAKs to use approximate nearest neighbors algorithms in Eu-
clidean space as a way to speed up the process. Transitive Assignment Kernels (TAKs) [37, 39]
are variants of OAKs. Unlike OAKs, which focus on comparing individual nodes between two
graphs, TAKs assess pairs of nodes from each graph to measure graph-graph similarity. Addition-
ally, TAKs take into account intermediary nodes between these pairs, allowing for the incorpora-
tion of more structural information. OAKs have been confined to node similarity measurement,
although they can be extended to measure subgraph similarities to capture a graph’s topological
information [59]. As discussed next, we introduce the GKs with subgraph information.

4.1.5 Subgraph Kernels (SGKs). SGKs calculate the similarity between two graphs by com-
paring their subgraphs. For example, the representative SGK—Graphlet Kernel [40]—uses either
depth-first search (DFS) or sampling to identify the subgraphs. With these subgraphs, the

vector ϕSG (G) = [c(G)T1
, . . . , c(G)TN

] is then used to describe the graph G, where Ti means the ith
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Fig. 4. Different subgraph extraction methods of FSM and DSM.

isomorphism type of subgraphs, N is the total number of subgraphs’ types, and c(G)Ti
counts the

occurrences of the Ti category subgraphs in graph G. Graphlet’s kernel value is then defined as
the inner product of ϕSG (G) and ϕSG (G′):

KSG (G,G′) =< ϕSG (G) ,ϕSG (G′) > . (10)

There are several different implementations of SGKs kernel functions. For instance, Wale et al.

[60] employed a min-max kernel

∑N
i=1 min(c (G)

Ti
,c
(G′)
Ti

)∑N
i=1 max (c (G)

Ti
,c

(G′)
Ti

)
to measure the distance between two graphs.

Subgraph Matching Kernels (SMKs) [42] calculate the similarity between two subgraphs by
counting the number of nodes with the same labels. Then, the similarities between all pairwise
subgraphs sourced from the two graphs are summed as the kernel value of the SMKs. Methods
of identifying the subgraphs in SGKs have also been explored. For example, Neighborhood Sub-

graph Pairwise Distance Kernels (NSPDK) [41] denote the subgraphs as the first-, second-, and
third-hop neighborhoods of pairwise vertices with the shortest path of a predefined length. How-
ever, the main contributions of SGKs lie in assessing the similarity of graphs in terms of a set of
selected subgraphs, not how the subgraphs are chosen. More detailed and sophisticated subgraph
mining methods are demonstrated next.

4.2 Subgraph Mining

Subgraph mining is similar to SGKs, where the vector xi = [x1
i , . . . ,x

M
i ]
 is taken as a graph-level

representation of the graph Gi . Here, xm
i ∈ {0, 1}, xm

i = 1 if дm ⊆ Gi , otherwise, xm
i = 0. The

established graph-level representation is then directly input into an off-the-shelf machine learn-
ing model, such as SVM classifier, for downstream tasks. What is different about subgraph min-
ing algorithms is that they place particular emphasis on how to extract the optimal subgraph set
S∗ = {д1, ...дT } from the subgraph set {д1, ...дM }, where д1, . . . ,дM denote all possible subgraphs
of G = {G1, . . . ,GN }. Techniques for extracting subgraphs can be divided into two branches,
depending on how the supervision information is used. Frequent subgraph mining is the unsuper-
vised method, as illustrated in Figure 4(a), while discriminative subgraph mining is the supervised
or semi-supervised method (see Figure 4(b)).
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4.2.1 Frequent Subgraph Mining (FSM). FSM identifies the subgraphs whose frequency of oc-
curence inG sits over a predefined threshold δ . These subgraphs are then added to S∗. Apriori-like
algorithms, such as AGM [14] and FSG [43], enumerate subgraphs from size one to a predefined
largest size as candidates for S∗. In the enumeration, these apriori-like algorithms pick up the can-
didates that occur more frequently than δ and add them to S∗. Other subgraphs are dropped and
expansions based on those subgraphs are no longer considered. Testing for subgraph isomorphism
with vast numbers of candidate subgraphs can mean apriori-like algorithms suffer from compu-
tation bottlenecks. To address this issue, gSpan [44] employs a DFS strategy to search subgraphs
while assigning a unique DFS code of minimum length for each subgraph searched. gSpan can then
do a quick check for isomorphism by simply comparing the DFS codes of pairwise subgraphs.

4.2.2 Discriminative Subgraph Mining (DSM). DSM extracts discriminative subgraphs from a
set of all possible subgraphs ofG based on the label information. Given a binary graph classification
task, CORK [46] proposes an evaluation criterion for the discriminative score of a subgraph set S,
S ⊆ {д1, . . . ,дM }. Formally,

CORK(S) = −1 × num(Gi ,Gj ), s .t . Gi ⊂ G+ ∧ Gj ⊂ G− ∧ ∀дm ∈ S : xm
i = xm

j , (11)

where num(·) counts the number of pairs of graphs (Gi ,Gj ) satisfying the specific conditions. G+
is the set of graphs with positive labels, while G− is the set of graphs with negative labels. The
optimal subgraph setS∗ has the highest CORK score among all possible subgraph setsS containing
T subgraphs, denoted as:

S∗ = arдmax
S⊆{д1, ...,дM }

CORK(S) s .t . |S| ≤ T . (12)

The CORK score can also be used to prune the subgraph search space of gSpan, mentioned
in Section 4.2.1. More specifically, if replacing any existing element of S∗ with a subgraph дm

does not S∗’s CORK score, then gSpan will no longer perform DFS along дm . To speed up DSM
based on discriminative scores and gSpan, LEAP [45] initializes an optimal subgraph set S∗ with
frequent subgraphs. In this way, LEAP prunes gSpan’s search space right at the beginning. In
addition, gMLC [47] and gCGVFL [50] expand DSM to the multi-label5 and multi-view6 scenarios,
respectively. Note, however, that all the DSM methods discussed are supervised methods. In terms
of semi-supervised subgraph mining, gSSC [48] is proposed to map each graph into a new feature
space by S∗. Unlabeled graphs are separated from each other in the new feature space. In the
labeled group, graphs with the same label are close, whereas graphs with different labels remain
distant. In addition, gPU [49] utilizes the positively labeled graphs and unlabeled graphs to select
S∗ when performing binary graph classification tasks.

4.3 Non-learnable Graph Embedding

Graph embeddings are the compression of graphs into a set of lower-dimensional vectors. Some
non-learnable graph embedding methods extract graph-level representations from the inherent
properties of graphs, e.g., their topologies and eigenspectrums.

Local Degree Profile (LDP) [53] summarizes the degree information of each node and its 1-hop
neighbors as node features. LDP constructs graph representations by building an empirical distri-

5Each graph owns more than one label, such as a drug molecular can own different labels to represent anti-cancer effects

for various cancers, e.g., breast cancer (+) and lung cancer (-).
6An object has different views, where each view can represent a separate graph, e.g., a scientific publication network is

shown as two graphs, an abstract graph demonstrating the keywords correlations in the abstract of papers, and a reference

citation graph about citation relationships.
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bution or histogram of the hand-crafted node features. In addition to node degree, non-learnable
graph embedding can also leverage anonymous random walk sequences to describe a graph’s topo-
logical information. Specifically, anonymous random walks record the status change of node labels.
Two anonymous random walk sequences A → B → A and B → A → B can be both written as
1 → 2 → 1. Anonymous Walk Embeddings (AWE) [52] encode a graph via an n-dimensional
vector in which each element represents the occurrence frequency of a specific anonymous ran-
dom walk sequence.

In spectral graph theory [61], the spectrum of a graph is determined by its topology. Based
on this theory, the Family of Graph Spectral Distances (FGSD) method [51] proposes that
the distance between the spectrums of two graphs can be used to test whether the graphs are
isomorphic. Thus, the histogram of the spectrum is used to construct a graph-level representation.
Analogously, A-DOGE [56] depicts a graph by computing the spectral density across its eigenspec-
trum. However, these methods are limited to use with small graphs given the prohibitive costs of
computing eigenspectrum decompositions with large-scale graphs. As a possible solution to this
limitation, SlaQ [54] uses stochastic approximations as a way of quickly calculating the distance
between two graphs’ spectral densities. More specifically, these works employ Von Neumann

Graph Entropy (VNGE) [62, 63] as a way of approximately representing the spectral properties
of the graphs. In turn, this approximation supports fast computation by tracing a Laplacian matrix
of the graph. Another VNGE-based method [55] derives the error bound of the approximation
estimation for VNGE.

5 Graph-Level Deep Neural Networks (GL-DNNs)

GL-DNNs form the basis of a pioneering set of works that employ deep learning techniques to
achieve graph-level learning. Researchers have explored graph-level learning techniques based on
classic deep neural networks, including skip-gram neural network, recurrent neural networks

(RNNs), convolutional neural networks (CNNs), capsule neural networks (CapsNets), and
transformers to achieve Skip-gram-based (see Section 5.1), RNN-based (see Section 5.2), CNN-
based (see Section 5.3), CapsNets-based (see Section 5.4) GL-DNNs, and Transformer-based GL-
DNNs (see Section 5.5), respectively. The representative GL-DNNs mentioned in this section are
summarized in Table 2.

5.1 Skip-gram-based GL-DNNs

Skip-gram [80] is a widely used unsupervised neural network model that predicts context words
given a target word. Initially, the researchers built a skip-gram model based on the relationship
between two adjacent subgraphs, namely, subgraph2vec [64]. Subgraph2vec first takes the (d-1)-,
d-, (d+1)-hop neighborhoods of the vth selected node in the graph Gi as three subgraphs дi

v−1, дi
v ,

дi
v+1, respectively, where d ≥ 1 is a predefined value. {w1

1−1, . . . ,w
1
V+1; ...; wN

1−1, . . . ,w
N
V+1} are

the randomly initialized embeddings of all sampled subgraphs {д1
1−1, . . . ,д

1
V+1; ...;дN

1−1, . . . ,д
N
V+1},

respectively, where N represents the total number of graphs, and V is the number of selected
nodes in each graph. Then, the Skip-gram model is used to update the subgraph embeddings. The
Skip-gram model takes wi

v as its input and predicts the context of wi
v (i.e., wi

v−1 and wi
v+1). Then,

the prediction results are back-propagated to update wi
v . To summarize, subgraph2vec’s learning

objective is to maximize the following probability Pr:

N∑
i=1

V∑
v=1

log Pr
(
wi

v−1, . . . ,w
i
v+1 | wi

v

)
. (13)

Another method, Graph2vec [65], was designed to tackle graph representation tasks. By estab-
lishing semantic associations between a graph and its sampled subgraphs, Graph2vec employs the
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Table 2. Summary of Graph-Level Deep Neural Networks (GL-DNNs)

Architecture Year Method Venue Inputs Complexity Applications

Skipgram-
based

2016 Subgraph2vec [64] KDD MLG A, L O(knm + hn) Molecule/Protein Classification; Malware detection
2017 Graph2vec [65] KDD MLG A, L O(knm + hn) Molecule/Protein Classification; Malware detection
2018 GE-FSG [66] SDM A, L O(nmn!m!) Molecule/Protein/Social Network Classification

RNN-
based

2016 GGNN [67] ICLR A,X O(m) Code Retrieval
2018 GAM [68] KDD A,X O(m) Molecule/Protein Classification
2018 SAN [69] AAAI A O(nm) Molecule/Protein Classification
2018 NetGAN [7] ICML A,X O(kmn) Social Network Generation
2018 GraphRNN [8] ICML A O(nm) Protein/Social Network Generation

CNN-
based

2016 PATCHYSAN [70] ICML A,X, S O(nk f ) Molecule/Protein/Social Network Classification
2016 DCNN [71] NeurIPS A,X O(n2) Molecule/Protein Classification
2017 ECC [72] CVPR A,X, S O(2m + n) Image/3D Point Clouds Classification
2018 KCNN [73] ICANN A,X O(n2) Molecule/Protein/Social Network Classification

CapsNet-
based

2018 GCAPSCNN [74] WCB A,X O(n.c2) Molecule/Protein/Social Network Classification
2019 CapsGNN [75] ICLR A,X O(n.c2) Molecule/Protein/Social Network Classification
2019 PatchyCaps [76] Arxiv A,X O(n.c2) Molecule/Protein Classification

Transformer-
based

2020 GT [77] AAAI DLG A,X, S O(n2 +m) Molecule Property Regression
2021 Graphormer [78] NeurIPS A,X, S O(n3 +m) Molecule/Protein Classification; Molecule Property Regression
2022 TokenGT [79] NeurIPS A,X, S O((n +m)2) Molecule Property Regression

*For the Inputs column, A, L, X, S refers to the adjacency matrix, node label matrix, node attribute matrix, and edge

attribute matrix, respectively.

*The Complexity column depicts the time complexity of algorithms within the worst case. h is the iteration times, and

n, m refer to the number of nodes and edges, respectively. In addition, f is the size of convolutional filters, k indicates

the size of the largest substructure, and c means the number of statistical moments in capsules.

idea of Skip-gram to learn graph embeddings. Following this work, Dang et al. [66] replaced the
sampled subgraphs in Graph2vec with frequent subgraphs that have more discriminative features
for graph classification tasks.

5.2 RNN-based GL-DNNs

RNNs are particularly good at learning sequential data, such as text [81] and speech [82]. Two
main types of algorithms apply RNNs to graph-level learning. One type transforms graphs into
sequential-structured data. The other aggregates neighborhood information about the target node
and relabels those aggregated features through an RNN. This is similar to Message Passing Ker-

nels (MPKs, Section 4.1.1).
A natural way to capture the sequential information in graphs is to use a series of random walk

paths to represent a graph. For example, GAM [68] employs a long short-term memory (LSTM)

model to guide a random walk on graphs. Meanwhile, the LSTM model generates a representation
for the walk sequence to describe the graph. In addition, Zhao et al. [69] proposed an RNN-based
graph classification algorithm called SAN. Starting from a node, SAN employs an RNN model that
adds nodes and edges to form an informative substructure whose representation is progressively
generated by the RNN model. A graph-level representation that can be used for graph classifica-
tion tasks is then generated by summing all the representations of the formed substructures. Given
a graph generation task, NetGAN [7] uses an LSTM model as a generator to yield fake walk se-
quences, while a discriminator disambiguates the graph’s real walk sequences from the generated
fake ones to reverse-train the generator. Another graph generation model, GraphRNN [8], creates
various permutations of graphs, with various combinations of nodes and edges as sequential data
for RNNs.

The second category of RNN-based GL-DNNs implements neural network versions of MPKs
through RNN models. For instance, Scarselli et al. [83] recurrently updated node embeddings until
reaching a stable situation, that is:

h
(k)
v =

∑
u ∈N(v)

fw
(
xv , su,v , xu , h

(k−1)
u

)
, (14)
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where h0
u is randomly initialized and fw (·) is a parametric function that maps vectors into a con-

centrated space to shorten their distance. To address the graph-level task, a super node connected
with all the other nodes is used to output the representation of the whole graph. In addition, Li
et al. [67] proposed the idea of using a gated recurrent unit (GRU) to relabel the aggregated in-
formation from the 1-hop neighborhoods of the center node. This approach reduces the recurrent
process for updating node embeddings to a fixed number of steps and avoids control convergence
parameters, formulated as:

h
(k)
v = GRU

(
h
(k−1)
v ,AGG(k)

(
h
(k−1)
u : u ∈ N(v)

))
, (15)

where h
(k)
v represents the node representation of v at the kth iteration, h

(0)
v is the node feature

xv , and here AGG is a weighted sum aggregation function. This algorithm continues the recurrent
process until it hits the predefinedK number of iterations needed to form the node representations.
A graph-level representation is then produced via:

hG = tanh

( ∑
v ∈V

ft
(
h
(K )
v , h

(0)
v

)
� tanh

(
h
(K )
v

))
, (16)

where ft (·) is a softmax function guided by an attention mechanism, which preserves and aggre-
gates valuable node representations for specific graph-level tasks. tanh (·) is an activation function,
and � is element-wise multiplication.

5.3 CNN-based GL-DNNs

Another significant deep learning technique that works in the Euclidean domain is CNN. Here,
grid-structured data, such as images [84, 85], are studied. Similar to RNN-based GL-DNNs, there
are two main branches of CNN-based graph-level learning. In Appendix ??, Figure ?? depicts the
details of these two different branches.

The first branch sorts nodes and arranges the node features to form a concentration matrix, of
grid-structured data, to train the CNNs. PATCHY-SAN [70] selects a fixed number of neighbors of a
central node and sorts neighbors to concatenate their features as the grid-structured feature matrix.
By choosing a series of central nodes, PATCHY-SAN constructs some matched feature matrices.
Finally, a graph-level representation is produced by the CNN model from the concatenation matrix
of all built feature matrices. In addition, Kernel Convolutional Neural Network (KCNN) [73]
sorts all vertices in a graph to form grid-structured data. A neighborhood graph is built for each
vertex, and a kernel matrix is constructed by implementing the kernel function (i.e., an SPK or an
MPK) between all pairwise neighborhood graphs. In this work, the grid-structured data for feeding
up CNN is the kernel matrix, where each row is a vector describing the similarities between the
neighborhood graph of the matched index vertex and the other neighborhood graphs.

The second branch involves CNN-guided neural network versions of MPKs. These methods
have two main steps: aggregating neighborhood information to the central node and using the
convolution operation to relabel the aggregated features. NN4G [86] performs a convolution kernel
upon 1-hop neighbors for updating the center node and outputs the graph-level representations
based on the node embeddings produced by each convolution layer, which is defined as:

h
(k)
v = f

���w(k−1)
xv +

k−1∑
i=1

w

k,i

∑
u ∈N(v)

h
(i)
u

��� , hG = f

(
K∑

k=1

wk
1

|V|
∑

v ∈V
h
(k)
v

)
, (17)

where f (·) is a linear or sigmoidal function and h(0)v = 0. Another related work, ECC [72], concate-

nates 1-hop neighbor embeddings (h(k−1)
u : u ∈ N(v)) around the central node v to construct a
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feature matrix by the kth iteration. Subsequently, a convolution and average operation is executed
on the aggregated neighbor feature matrix to obtain a representation for the central node. Then, a
graph-level representation is produced via max-pooling the node embeddings.

H = [h(k−1)
u : u ∈ N(v)], h

(k)
v =

1

|N(v)| (W � H) + b(k), hG = MaxPooling
(
h
(K )
v : v ∈ V

)
.

(18)
Moreover, Diffusion CNN (DCNN) [71] expands the diffusion process on graphs to derive

the probability transition matrix P = [A,A2, . . . ,Ah] ∈ Rh×n×n , which presents the transition
probability of information transfer from one node to other nodes during h diffusion steps. The rep-
resentations of nodes within h steps is presented as PX ∈ Rh×n×f . For graph classification tasks,
DCNN permutes the dimensions giving PX ∈ Rn×h×f , and all node representations are averaged
as P∗ ∈ Rh×f . Subsequently, a convolution operation is implemented on P∗ to produce a graph-
level representation. The convolution operation can be defined as hG = f (W � P∗) , where f (·)
is a nonlinear activation function, and W is a trainable weight matrix for convolution and sum-
mation. Although it is similar to MPKs that aggregate multi-hop neighborhoods, DCNN leverages
diffusion process to directly aggregate features over multiple steps instead of layer-by-layer. This
unique characteristic allows DCNN to capture global topology and direct control over the scale of
information aggregation through diffusion steps.

5.4 CapsNet-based GL-DNNs

CapsNets [87] were originally designed to capture more spatial relationships between the parti-
tions of an entity than CNNs. CapsNets are available to assemble vectorized representations of
different features (e.g., colors, textures) to a capsule dealt with by a specific network. Thus, ap-
plying a CapsNet to a graph preserves rich features and/or structure information at the graph
level.

Graph Capsule Convolutional Neural Networks (GCAPS-CNN) [74] iteratively aggregates
neighbor information under different statistical moments (e.g., mean, standard deviation) to form
a capsule representation of the central node, formulated as:

h
(k)
v =

1

|N(v)|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( ∑
u ∈N(v)

h
(k−1)
u

)
W1 (mean)( ∑

u ∈N(v)

(
h
(k−1)
u − μ

)2
)

W2 (std)( ∑
u ∈N(v)

(
h
(k−1)
u −μ

σ

)3
)

W3 (skewness)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

where (W1,W2, ...) are the learnable weight matrices for mapping the aggregated features into a
uniform hidden space with a dimensionality of h. If the number of statistical moments is p and the

final iteration number is K , then each node will be represented as h
(K )
v ∈ Rp×h , and the matrix of

all n node embeddings will be H (K ) ∈ Rn×p×h . This approach employs a covariance function as the
permutation-invariant layer to output a graph-level representation, defined as:

hG =
1

n
(H (K ) − μ)
(H (K ) − μ). (20)

CapsGNN [75] iteratively aggregates node features to a center node, and, in turn, adds the ag-
gregation results of each iteration to a capsule representation of the central node. An attention
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mechanism is then applied to all node capsules to generate a graph capsule that can be plugged
into a capsule network for graph classification. Mallea et al. [76] employ the same approach as
PATCHY-SAN [70] to find substructures in graphs, while the feature matrices of searched sub-
structures are assembled in a capsule network for graph classification.

5.5 Transformer-based GL-DNNs

Recently, transformers [88] have achieved remarkable success in many fields, such as Natural Lan-
guage Processing [88] and Computervision [89], attracting interest from the graph-level learning
community. Transformers are initially designed for modeling relationships among all pair-wise en-
tities (e.g., words, pixels); such relationships only consider semantic relationships while overlook-
ing structure. Therefore, it still requires endeavors to generalize transformers on graph-level tasks.
Dwivedi and Bresson [77] proposed an early Transformer-based GL-DNN, which limits transform-
ers into the neighborhood range as the structure inductive bias, that is,

a(k−1)
vu = softmaxu

(
q
(k−1)
v · k

(k−1)
u√

dz

)
, h

(k)
v =

∑
u ∈N(v)

a(k−1)
vu v

(k−1)
u ,

where q
(k−1)
v = h

(k−1)
v WQ , k

(k−1)
v = h

(k−1)
v WK , and v

(k−1)
v = h

(k−1)
v WV ,

(21)

where h
(k)
v ∈ R1∗d represents the node representation of v at the kth layers, WQ ∈ Rd∗dz ,WK ∈

Rd∗dz , and WV ∈ Rd∗dz are the projection matrix to map the node representations as query,
key, value vectors, and N(v) means the set of nodes in the v’s neighborhood including itself.
Graphormer [78] frees transformers for all node pairs on the graph while encoding structure infor-
mation (i.e., degree centrality and shortest path) for modeling relationships. In addition, TokenGT
[79] treats all nodes and edges in the graph as inputs and augments them with orthonormal iden-
tifiers that allow transformers to recognize and exploit the connectivity structure of the graph.
The graph-level representation can be obtained by inserting an extra trainable graph entity into
TokenGT.

6 Graph-Level Graph Neural Networks (GL-GNNs)

This section focuses on GL-GNNs, which are the most influential graph-level learning techniques
at present. The cornerstone branch of GL-GNNs—Message Passing Neural Networks (MPNNs)

(see Section 6.1)—is introduced first, followed by emerging methods in GL-GNNs, such as subgraph-
based (see Section 6.2), graph kernel-based (see Section 6.3), and Transformer-based (see Sec-
tion 6.5) approaches. Notably, subgraph- and graph kernel-based approaches take advantage of
some of the insights from traditional graph-level learning methods. In addition, we review progress
in spectral GL-GNNs (see Section 6.4), which push graph-level learning forward through spectrum
properties. There are also some contents related to GL-GNNs in Appendix D, such as contrastive
learning-based approaches (see Appendix D.1), the expressivity (see Appendix D.2), generalizabil-
ity (see Appendix D.3), and explainability (see Appendix D.4) of GL-GNNs. Please refer to Table 3
for the GL-GNNs discussed in this section and Table 6 in Appendix D for comparisons of GL-
GNNs/DNNs architectures.

6.1 Message-passing Neural Networks (MPNNs)

As mentioned, researchers have developed RNN- and CNN-based versions of MPKs. However, as
the influence of deep learning has expanded, researchers have also developed various feedforward
versions of Message-passing Kernels (MPKs, refer to Section 4.1.1). Collectively, these are called
MPNNs. MPNNs are similar to RNN-based MPKs in Equation (15), but MPNNs set different weights
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Table 3. Summary of Graph-level Graph Neural Networks (GL-GNNs)

Architecture Year Method Venue Inputs Complexity Applications

Message
-passing
Neural

Networks

2015 Fingerprint [90] NeurIPS A,X O(m) Molecule/Protein Classification
2016 GraphSim [91] NeurIPS A,X, S O(m) Physical State Prediction
2017 MPNN [25] ICML A,X, S O(m) Molecule/Protein Property Regression
2017 DTNN [92] NC A,X O(m) Molecule/Protein Classification
2019 GIN [3] ICLR A,X O(m) Molecule/Protein/Social Network Classification
2019 K-GNNs [93] AAAI A,X O(n4) Molecule/Protein/Social Network Classification
2019 PPGN [5] NeurIPS A,X O(n3) Molecule/Protein/Social Network Classification; Molecule Property Regression
2019 RP [94] ICML A,X, S O(n!) Molecule/Protein Classification
2021 FGNN [95] ICLR A,X O(n2) Molecule/Protein/Social Network Classification

2021 SWL [96] ICML A,X, S O(nk ) Molecule/Protein/Social Network Classification

2021 CWN [97] NeurIPS A,X, S O(nk ) Molecule/Protein/Social Network Classification; Molecule Property Regression
2021 RNI [98] IJCAL A,X O(n2) Molecule/Protein Classification

Subgraph
-based

2020 SubGNN [99] NeurIPS A,X O(nk ) Molecule/Protein Classification; Clinical Diagnostic
2021 SUGAR [100] WWW A,X O(knm) Molecule/Protein Classification
2021 NGNN [101] NeurIPS A,X, S O(n3) Molecule/Protein Classification; Molecule Property Regression
2022 GNN-AK [102] ICLR A,X O(knm) Molecule/Protein Classification; Molecule Property Regression
2022 GraphSNN [103] ICLR A,X O(m) Molecule/Protein Classification
2022 ESAN [104] ICLR A,X O(n4) Molecule/Protein/Social Network Classification
2022 GSN [105] TPAMI A,X O(nd) Molecule/Protein/Social Network Classification
2023 I 2-GNN [106] ICLR A,X, S O(nd5) Molecule/Protein Classification; Cycles counting

Kernel
-based

2019 GNTK [24] NeurIPS A,X O(nd2) Molecule/Protein Classification
2019 DDGK [107] WWW A,X, S O(hn) Molecule/Protein Classification

2020 GCKN [108] ICML A,X O(ndk ) Molecule/Protein/Social Network Classification
2020 RWNN [109] NeurIPS A,X O(n3) Molecule/Protein/Social Network Classification

2021 GSKN [110] WWW A O(ndk ) Molecule/Protein/Social Network Classification
2022 KP-GNN [111] NeurIPS A,X, S O(n2) Molecule/Protein/Social Network Classification

Spectral
-based

2016 ChebNet [112] NeurIPS A,X O(m) Image/Text Classification
2021 GNNTFS [113] JMLR A,X O(m) Molecule/Protein Classification
2021 GNNMatlang [114] ICML A,X O(n3) Molecule/Protein/Social Network Classification
2021 ARMA [115] TPAMI A,X O(m) Molecule/Protein/Image/News Classification
2021 UFG [116] ICML A,X O(m) Molecule/Protein Classification

Transformer
-based

2020 GTransformer [6] NeurIPS A,X, S O(m + n2) Molecule/Protein Classification; Molecule Property Regression
2022 GraphGPS [117] NeurIPS A,X, S O(m + n) Molecule/Protein Classification; Molecule Property Regression
2022 SAT [116] ICML A,X O(m + n2) Molecule/Protein Classification; Molecule Property Regression

*For the Inputs column, A, X, S refer to the adjacency matrix, node attribute matrix, and edge attribute matrix,

respectively.

*The Complexity column depicts the time complexity of algorithms within the worst case. h is the iteration times and

n, m refers to the number of nodes and edges, respectively. In addition, d means the large value of node degrees, k

indicates the size of the largest sampled substructure, and p is the degree of the polynomial.

in separate layers rather than sharing weights in all layers. Gilmer et al. [25] summarize a collection
of MPNNs [90–92] and further propose a unified framework for this branch of techniques, as
shown in Figure 5(a) and denoted as:

h
(k)
v = U

(k) ���h
(k−1)
v ,

∑
u ∈N(v)

M (k)
(
h
(k−1)
v , h

(k−1)
u ,Ev,u

)��� , (22)

where h
(0)
v = xv , M (k) is a function that outputs the passed message for the target node based

on itself and its neighbors, and U (k) (·) updates the embedding of the target node. After multiple

iterations, the node embeddings h
(k)
v learn the local structure information and the graph-level

topology has distributed in all nodes. A readout function reads all node embeddings and outputs
a graph-level representation, that is:

hG = readout
(
h
(k)
v : v ∈ V

)
. (23)

MPNNs have become the mainstream of graph-level studies [25]. They are also representative
of spatial-based GL-GNNs, since they are easy to use through matrix operations. Last, the time
and memory complexity of MPNNs only grows linearly with the graph size, making this a very
practical approach for large sparse graphs. In recent years, practitioners have developed numerous
enhanced versions of MPNNs, including subgraph-enhanced MPNNs (see Section 6.2) and kernel-
enhanced MPNNs (see Section 6.3).
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Fig. 5. Different mechanisms of MPNNs, Subgraph Enhanced MPNNs, and Kernel Enhanced MPNNs. In
Subgraph Enhanced MPNN, we used 1-hop neighborhoods as the subgraph for easy understanding, but the
specific subgraph extraction is up to the article.

6.2 Subgraph-based GL-GNNs

The widespread of MPNNs attracts researchers’ interest in exploring their upper-bound capability
for distinguishing structures. Recently, some studies [111, 118] have identified flaws in MPNNs,
noting that they fail to perform in certain cases, such as regular graphs [94, 106, 119, 120].
The reason for these flaws is that MPNNs, relying on aggregating neighborhood information,
are restricted by local topology. Thus, investigating GL-GNNs capable of capturing more
topological information has been a crucial stream of study. As yet, practitioners have devised
subgraph-based GL-GNNs, which leverage the rich structural information in subgraphs. These
subgraph-based GL-GNNs can be divided into two branches. The first branch enhances an
MPNN by injecting the subgraph information into the aggregation process, as outlined in
Figure 5(b). The other branch borrows the graphlet idea and decomposes the graph into a few
subgraphs, merging multiple subgraph embeddings to produce an embedding of the entire
graph.

6.2.1 Subgraph-enhanced MPNNs. As mentioned, MPNNs learn topological information via
a neighborhood aggregation process. However, standard MPNNs only aggregate node features,
not structural information. Therefore, a straightforward way of strengthening an MPNNs is to
enrich the features of the nodes or edges with subgraph information. Graph Substructure

Network (GSN) [105], for example, counts the number of occurrences of a predefined sub-
graph pattern д1, . . . ,дM (e.g., a cycle or a triangle) that involves the target node v or edge
Ev,u . From these, subgraph feature vectors are constructed for v as x

д
v or for Ev,u as S

д
v,u ,

denoted as:{
x

дm
v = |{дs � дm : v ∈ V,v ∈ Vдs

,дs ⊆ G}|, x
д
v = [xд1

v , . . . ,x
дM
v ]
 (Node),

S
дm
v,u = |{дs � дm : Ev,u ∈ E,Ev,u ∈ Eдs

,дs ⊆ G}|, S
д
v,u = [Sд1

v,u , . . . , S
дM
v,u ]
 (Edge),

(24)

where дm is a predefined subgraph pattern, and дs � дm means дs is isomorphic to дm , x
дm
v

counts the number of isomorphic subgraphs дs containing the node v , and S
дm
v,u indicates the

number of isomorphic subgraphs дs containing the edge Ev,u . As a last step, the subgraph fea-
ture vectors for the node x

д
v and the edge S

д
v,u are injected into the aggregation layer, which is
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defined as:

h
(k)
v = U

(k)
(
h
(k−1)
v ,m

(k)
v

)
, m

(k)
v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

u ∈N(v)
M (k)

(
h
(k−1)
v , h

(k−1)
u , x

д
v , x

д
u ,Ev,u

)
(Node),∑

u ∈N(v)
M (k)

(
h
(k−1)
v , h

(k−1)
u , S

д
v,u ,Ev,u

)
(Edge).

(25)

GSN is a promising start for subgraph-enhanced MPNNs. However, they have one fatal draw-
back in that searching for and testing subgraphs for isomorphism is computationally prohibitive.
To avoid this high computational bottleneck, GNN-AK [102] samples neighborhood subgraphs as
supplementary information for MPNN learning. Specifically, GNN-AK extracts the neighborhoods
of each node as subgraphs (i.e., the neighborhood of node v is a subgraph дv ) and applies a base
MPNN to each neighborhood subgraph to obtain the final node embeddings, i.e.:

x
д
v =

[
Emb (v |дv ) |

∑
u ∈V∧u�v

Emb (u |дv ) |
∑

u ∈V∧u�v

Emb (v |дu )
]
, (26)

where Emb (v |дv ) is the embedding of node v produced by running the base MPNN on subgraph
дv , Emb (v |дu ) == 0 if subgraph дu does not contain node v (i.e., v � Vдu

), and x
д
v is the subgraph

feature of node v for MPNN’s aggregation.
Analogously, Nested Graph Neural Networks (NGNN) [101] extracts nodes (i.e., N(v) ∪ v)

and edges (i.e., Ev1,v2 ∈ E & v1,v2 ∈ N(v) ∪ v) in the 1-hop neighborhood of node v , as a
neighborhood subgraph дv , to be encoded by a GNN. The subgraph дv is then encoded as the
embedding hдv

, which denotes the subgraph feature of node v .
One thing common to all the above methods is that they dilute or replace the node features. But

such feature properties are essential for graph-level learning. Thus, GraphSNN [103] incorporates
the idea of encoding the subgraph features into the edge’s weight for aggregation without chang-
ing the node features. This approach defines the formula for calculating the degree of isomorphism
between two subgraphs. The weight of Ev,u is equal to the degree of isomorphism between two
specific subgraphs, where one of the subgraphs is the node v’s neighborhood subgraph, and the
other subgraph is the overlap between the neighborhood subgraphs of nodes u and v . By normal-
izing the computed weights at the end, GraphSNN builds a subgraph-guided attention mechanism
partaking in the MPNN’s aggregation.

6.2.2 Graphlet. In addition to empowering MPNNs through subgraph information, researchers
have directly used the embeddings of subgraphs to form a graph-level representation. SUGAR
[100], for example, uses GNNs to embed discriminative subgraphs selected through reinforcement
learning. A readout function over all learned subgraph embeddings is then used to build a graph-
level representation for classification, which can be used for classification. Correspondingly, the
graph classification results are back-propagated to train the GNNs that embed selected subgraphs.
Similarly, Subgraph Neural Networks (SubGNN) [99] views the subgraphs of a graph as in-
stances with independent labels. For each instance, SubGNN samples a few finer local structures
and forms embeddings through the GNN. A representation of each instance is generated by aggre-
gating all the embeddings of the sampled local structures. Another approach, Equal Subgraph

Aggregation Network (ESAN) [104], enhances this branch by applying two GNNs, one for learn-
ing individual embeddings for sampled subgraphs and the other for learning message passing
among them. Finally, a universal set encoder [121] compresses all the subgraph embeddings into
one graph-level representation. In addition, I 2-GNN [106] extracts k-hop neighborhood subgraphs
from each root node while assigning distinct identifiers for the root node and its neighbors within
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each subgraph. By aggregating all subgraph embeddings, I 2-GNN obtains powerful graph-level
representations that are proven capable of distinguishing cycles of length 3 to 6.

6.3 Graph Kernel-based GL-GNNs

Like the revival of the subgraph idea in the deep learning field, graph kernels that incorporate deep
learning techniques have also attracted attention. Similar to subgraph-based GL-GNNs, there are
generally two branches of graph kernel-based GL-GNNs. As Figure 5(c) shows, one branch replaces
the 1-hop neighbor aggregation and vertex update functions in MPNNs with a kernel function. This
group is called the kernel-enhanced MPNNs. Another branch involves designing differentiable and
parameterized kernels by plugging kernels into neural networks.

6.3.1 Kernel-enhanced MPNNs. This type of method often uses a graph kernel to update the
node embeddings, which in turn are used to recalculate the graph kernel. Kernel-enhanced MPNNs
break the local update of the MPNN (i.e., the node features are aggregated via adjacent neighbors)
to capture more structure information.

For example, Graph Convolutional Kernel Networks (GCKN) [108] and Graph Structured

Kernel Networks (GSKN) [110] employ walk-based kernels to iteratively generate node embed-
dings. Specifically, these methods generate q walking sequences starting from the target node,
where each sequence records all node embeddings in the walk. As an example, in the kth iteration,

the one-step walk sequence Pi from node v to u would be represented as R(Pi ) = [h(k−1)
v , h

(k−1)
u ]
.

By building a kernel function K
(
R(Pi ),R(Pj )

)
(e.g., a random walk kernel) as the similarity mea-

surement for any two walking sequences Pi and Pj , GCKN and GSKN aggregate the kernel values
as the updated node embeddings, that is:

h(k)v =
∑

1≤i≤q

[K (R(P1),R(Pi )) , . . . ,K
(
R(Pq),R(Pi )

)
]
. (27)

To follow up, the node embeddings updated by the graph kernel are used to obtain the kernel
value in the next iteration. Du et al. [24] combined a Neural Tangent Kernel (NTK) [122] with
an MPNN, summarizing the advantages of this category of approach. Overall, the technique gives
better theoretical explanations, brought about by the graph kernel, and the convex-optimized tasks
are easy to train. Thus, kernel-enhanced MPNNs use a kernel function to replace the aggregation
and vertex update functions in MPNNs. The walk-based kernels do particularly well at capturing
topology information to encode into the node embeddings. Recently, Feng et al. [111] proposed
to leverage the shortest path kernel and graph diffusion kernel to filter duplicate nodes in K-hop
neighborhoods, pursuing higher expressivity of K-hop MPNNs (i.e., MPNNs aggregate and update
node embeddings via k-hop neighborhood information).

6.3.2 Deep Graph Kernel. Traditional graph kernels are limited by the theoretical computa-
tional bottleneck, thus, researchers search for an optimal solution for comparing two graphs by
neural networks. Recently, Lei et al. [123] discussed deep graph kernels as parameterized learn-
able graph kernels for deriving neural operations. These deep graph kernels can be optimized for
specific tasks with fast computation speeds and good interpretability.

Deep Divergence Graph Kernels (DDGK) [107] take M base graphs {G1,G2, . . . ,GM } to
represent a target graph Gt as M-dimensional vectors hGt

= [KD (G1,Gt ) , . . . ,KD (GM ,Gt )]
,
where KD (Gm ,Gt ) is a trainable kernel for measuring the distance between Gm and Gt . First,
DDGK uses each base graph {G1,G2, . . . ,GM } to train an encoder {Z1,Z2, . . . ,ZM }. The encoder
Zm takes the one-hot encoding of nodes (e.g., the first node’s encoding is [1, 0, 0, · · · ]
) in Gm as
the input and tries to predict their neighbors (e.g., if a node only links to the second and third
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nodes, then the correct output should be [0, 1, 1, 0, · · · ]
). Then, the trained encoder Zm is used
for predicting the node’s neighbors in Gt as the divergence scoreKD (Gm ,Gt ) between two graphs.
That is:

KD (Gm ,Gt ) =
∑

vi ,vj ∈Vt ,Ei, j ∈Et

− log
(
vj |vi ,Zm

)
. (28)

Random Walk graph Neural Networks (RWNN) [109] also derive a trainable random walk
kernel KRW (·, ·) through a series of learnable graph patterns {G1,G2, . . . ,GM }. A learnable graph
Gm has a fixed node set Vm but a changeable edge set Em . RWNN produces graph-level embed-
dings hGt

= [KRW (G1,Gt ) , . . . ,KRW (GM ,Gt )]
 of the target graph Gt for graph classification
tasks. Correspondingly, the classification results are back-propagated to change the adjacency ma-
trix of learnable graph patterns. That is, RWNN uses the prediction results to train the input of the
kernel function (i.e., graph patterns) so the kernel values can be learned according to the down-
stream task.

6.4 Spectral-based GL-GNNs

Spectral-based GL-GNNs were started earlier by Bruna et al. [124], which designed graph con-
volutions via the spectral graph theory [61]. Recently, Balcilar et al. [125] described spectral and
spatial graph convolution in a unified way and performed spectral analysis on convolution kernels.
The analysis results demonstrate that a vast majority of MPNNs are low-pass filters in which only
smooth graph signals are retained. Graph signals with a low-frequency profile are useful for node-
level tasks on assortative networks where nodes have similar features to their neighborhoods [126].
However, with graph-level tasks, graph signals beyond the low frequency may be critical, since
they can highlight the differences between different graphs [127], and, although MPNNs have been
widely used, they overlook the signal frequency of graph data.

In terms of a feature x ∈ Rn (a column vector of X ∈ Rn×f ) as a graph signal on a graph with
n nodes, spectral graph convolution performs graph signal filtering after transforming the graph
signals x in spatial space into the frequency domain. According to spectral graph theory [61], the
frequency domain generally takes the eigenvectors of the graph Laplacian L = D − A, where D

is the degree matrix (or the normalized version L = I − D− 1
2 AD− 1

2 ) of a set of space bases. Note,
though, that other bases can also be used, such as graph wavelet bases [128, 129]. Specifically,
{λ1, . . . , λn} where 0 ≤ λ1 ≤ ... ≤ λn ≤ 2, and U = (u1, . . . , un) are the n eigenvalues and
n orthogonal eigenvectors of L, respectively. λi represents the smoothness degree of ui about L.
Based on the graph Fourier transformation x̂ = UTx, the graph signal x is mapped to the frequency
domain. And x = Ux̂ is the graph Fourier inverse transformation that can restore the graph signal
in spectral domain to the spatial domain. The polynomial filter is adopted by most of spectral
graph convolution methods; for example, ChebNet [112] defines the spectral graph convolution as

Udiag(Φ(Λ))UTx, where Λ = diag({λi }i=n
i=1 ), Φ(Λ) =

∑K
k=0 θk Λk is the polynomial filtering function,

K are the hyper-parameters that realize the localized spectral graph convolution, and θk is the
polynomial coefficient.

Spectral graph convolution can be task-agnostic when graph signals with any frequency pro-
files are filtered. Conversely, they can also be task-specific; for example, a band-pass filter can
highlight graph signals that are strongly related to downstream tasks [125]. However, only a few
practitioners have designed graph-level neural networks from the perspective of spectral graph
convolution [114, 115]. The main problem with applying spectral convolution in graph-level tasks
is the transferability of the spectral filter coefficients from the training graph set to the unseen
graphs. The spectral filters depend on the graph Laplacian decomposition, but different graph
structures have different graph Laplacian decomposition results. Most recently, Levie et al. [113]
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theoretically proved the transferability of spectral filters on multigraphs. Balcilar et al. [114] pro-
posed a custom filter function that could output frequency components from low to high to better
distinguish between graphs. Due to the limitation of polynomial filters in modeling sharp changes
in the frequency response, Bianchi et al. [115] employed an auto-regressive moving average

(ARMA) filter to perform graph-level tasks. The ARMA filter is more robust to the changes or
perturbations on graph structures, as it does not depend on the eigen-decomposition of the graph
Laplacian explicitly. Zheng et al. [116] proposed a graph convolution based on graph Framelet
transforms instead of graph Fourier transform with a shrinkage activation to decompose graphs
into both low-pass and high-pass frequencies. However, there is no theoretical proof of the trans-
ferability of framelet decomposition. In addition, Wang et al. [130] analyzed various spectral GL-
GNNs to find that an orthogonal basis whose weight function is related to the density of graph
signals can maximize the convergence speed. Thus, they designed a novel spectral graph convo-
lution via the Jacobi basis, which is orthogonal and flexible to adapt to a wide range of weight
functions.

6.5 Transformer-based GL-GNNs

Transformers [88] have attracted growing interest from the graph-level learning community. In
addition to generalizing it directly on graph-level tasks (see Section 5.5), a more efficient way is
to leverage transformer architecture for raising up GL-GNNs. The addition of transformers into
GL-GNNs offers numerous advantages, such as capturing long-range interactions and relieving
strict structural inductive bias. GTransformer [6] welds GL-GNNs and transformer as a hybrid
layer, passing the node representations learned by GL-GNNs through a subsequent transformer.
Thus, the final node representations contain both local and long-range topology information to
capture precise graph embeddings. GraphGPS [117] constructs the framework that ensembles var-
ious GL-GNNs and transformers, achieving state-of-the-art results on multiple graph-level tasks.
In addition, SAT [131] employs GL-GNNs and transformers to generate and update subgraph em-
beddings, respectively, and sums subgraph embeddings as the graph representation.

7 Graph Pooling

Generally, deep graph-level learning methods encode graphs based on node representations. Graph
pooling is a technique that integrates node embeddings into a graph embedding. In this section, we
introduce two mainstream types of graph pooling techniques, i.e., global and hierarchical graph
pooling (see Sections 7.1 and 7.2). We summarize all discussed pooling approaches in Table 7 in
Appendix E and compare different pooling architectures in Table 8 in Appendix E.

7.1 Global Graph Pooling

There are four different types of global graph pooling—numeric operation, attention-based, CNN-
based, and global top-K—all of which aggregate all node embeddings at once to build a graph-level
representation.

7.1.1 Numeric Operation. Adopting a simple numeric operation for all node embeddings is a
common graph pooling method [3, 90], since it is easy to use and obeys the permutation invariant.
An illustration of a type of numeric operation (i.e., a summation) for all node embeddings is shown
in Figure 6(a). It is common to see practitioners aggregating node embeddings via summation,
maximization, minimization, mean, and concatenation functions. For example:

hG =
∑

v ∈V
hv

/
max/min

v ∈V
(hv )

/ 1

|V|
∑

v ∈V
hv

/
[hv1 |...|hv |V| ]. (29)
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Fig. 6. Illustrative examples of Global Pooling methods.

Duvenaud et al. [90] empirically proved that, in graph-level learning, summation has no weaker
an outcome than a hash function. Similarly, GIN [3] shows us that the injective relabeling function
in the WL algorithm can be replaced with a simple numeric operation. Further, GIN also allows
us to analyze the efficacy of different functions: summation, maximization, and mean functions.
Summation comprehensively summarizes the full features and structure of a graph. Maximization
emphasizes significant node embeddings, and mean learns the distribution of labels. Inspired by
GIN, Principal Neighbourhood Aggregation (PNA) [132] employs all three of these functions
to pool the node embeddings, while TextING [133] includes both mean and maximization pooling
to capture the label distribution and strengthen the keyword features. A few variants of graph
pooling have also been developed. For example, Deep Tensor Neural Network (DTNN) [92]
applies a neural layer that processes the node embeddings before the summation function and
second-order pooling (SOPOOL) [134] is executed as hG = [hT

v1
hv1 |...|hT

v |V|hv |V| ].

7.1.2 Attention-based. The contributions of node embeddings to graph-level representations
could not be equal, as some contain more important information than others. Hence, some re-
searchers have tried using an attention mechanism to aggregate the node embeddings based on
their particular contribution, as outlined in Figure 6(c). Li et al. [67] and Duvenaud et al. [90], for
example, both employ a softmax function as an attention-based global pooling for aggregation.
This can be written as:

hG =
∑
v,k

softmax
(
wk

v , h
k
v

)
, (30)

where wk
v is a trainable weight for the embedding hk

v of node v in iteration k . Note that wk
v will

be large if hk
v is important to the downstream task. Set2Set [135] is a more complicated attention-

based graph pooling model. It learns the attention coefficients of all node embeddings from an
ordered sequence generated by LSTM. Although Set2Set handles sequential node embeddings, the
order of nodes is determined by an LSTM model without affecting permutation invariance.

7.1.3 Global Top-K . Global top-K graph pooling sorts all nodes and selects the first K node em-
beddings for aggregation, as shown in Figure 6(b). In this way, the pooling layer only preserves K
significant vertices and drops out others. SortPool [4] regards the last layer of GL-GNNs containing
fine-grained topology information, thus, for ranking vertices. Subsequently, the highest-scored K
nodes are embedded by contacting all layers’ outputs in GL-GNNs, which come together to form
the graph-level representation. Graph Self-adaptive Pooling (GSAPool) [136] is another global
top-K graph pooling model that ranks nodes based on the summing of feature and structure scores.
The node structure scores are taken the same as SortPool, while the feature scores are learned by
feeding the node features into an MLP.
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Fig. 7. Illustrative examples of hierarchical pooling methods.

7.2 Hierarchical Graph Pooling

Global graph pooling ignores the hierarchical structures in graphs. The evolution of a graph is
to collect nodes into hierarchical structures (e.g., communities), then to form the graph. Hence,
researchers tend to capture hierarchical information through an aggregation process that has mul-
tiple parses, which coarsens the graph each time. We have divided hierarchical graph pooling
techniques into three branches: clustering-based, hierarchical top-K , and tree-based.

7.2.1 Prior Clustering. Clustering methods were originally designed to capture the hidden hi-
erarchical structures in graphs, which can be incorporated into the pooling process. Figure 7(a)
demonstrates clustering-based graph pooling, which has been the focus of many studies. The prior
clustering indicates that the graph pooling is served by off-the-shelf clustering methods, which par-
tition graphs based on inherent properties rather than model performance. For instance, Henaff
et al. [137] implemented multi-resolution spectral clustering [138] that assigns each node to a
matched cluster. Subsequently, the clusters in the input graph are treated as coarsened nodes in
the coarsened graph. The embedding of the coarsened node is obtained by averaging all node em-
beddings in the cluster. This coarsening process is iterative and operates until only one or very few
vertices remain in the most recent coarsened graph. Similarly, EigenPool [139] involves a spectral
clustering method that coarsens graphs and pools node embeddings into cluster-level embeddings
by converting spectral-domain signals, and Bruna et al. [140] adopted hierarchical agglomerative
clustering [141] to coarsen graphs. The prior clustering methods are implemented conveniently
and efficiently, however, they cannot optimize the clustering process via results on downstream
tasks, falling into sub-optimal performance.

7.2.2 Trainable Clustering. To overcome the limitations of prior clustering methods, re-
searchers build the end-to-end architecture for clustering and coarsening graphs, that is, trainable
clustering. Graph Multiset Transformer (GMT) [142] uses a multi-head self-attention mecha-
nism to cluster nodes into different sets according to the final task, and the graph-level representa-
tion is therefore derived through these sets. MinCutPool [143] assigns each node to a cluster via an
MLP, which is optimized by two goals: first, that the clusters are similar in size, and, second, that
the clusters’ embeddings are separable. Finally, the graph-level representation is obtained by pool-
ing the substructure-level embeddings. The above trainable clustering methods follow the fashion
of hard assignment, yet, DiffPool [144] assigns each node to multiple clusters through a trainable

soft assignment matrix S(k) ∈ Rn(k )×n(k+1)
, where n(k) is the number of vertices in the input graph at

the kth layer, and n(k+1) represents the cluster’s number in the input graph or the node’s number
in the coarsened graph. To be specific, at the kth layer, each row of S(k) corresponds to a node in
the input graph, and each column of S(k) corresponds to a new node in the coarsened graph (i.e.,
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a cluster in the input graph). The assignment matrix S(k) is trained by a graph convolutional layer,
which is defined as:

S(k) = softmax
(
Conv(k)

(
A(k),H(k),W(k)

))
, (31)

where A(k) ∈ Rn(k )×n(k )
and H(k) ∈ Rn(k )×f are the adjacent matrix and node embedding matrix

of the input graph at the kth layer, respectively. W(k) ∈ Rf ×n(k+1)
is the trainable weight matrix,

and softmax (·) function is applied to each row. In addition, StructPool [145] supports both hard
and soft assignment clustering by training assignment matrix via softmax and argmax functions,
respectively.

7.2.3 Hierarchical Top-k . The high complexity of the clustering process exacerbates the com-
putational cost burden of graph pooling. For example, the DiffPool [144] is extremely costly in
terms of time and memory, because the assignment matrices need to be trained. So, to speed up
the process of hierarchical graph pooling, researchers have looked to replace the clustering process
with a scheme that coarsens the graph according to the top-K idea, as shown in Figure 7(b). Graph
U-Nets [146], for example, project each node feature into a 1-dimensional vector Y as the rank
score. Subsequently, the K nodes with the highest score are selected to form the new coarsened
graph, which is defined as:

Y =
Z(l )P(l )

| |P(l ) | |
, idx = Top K (Y) , Z(l+1) =

(
Z(l ) �

(
sigmoid (Yidx) 1
Z

) )
, A(l+1) = A

(l )
idx, idx

, (32)

where Z (l ) is the input node features at the layer l , P(l ) is a learnable projection matrix, Top K (·)
is a function that returns the index of the top-K nodes, and all the elements are 1 in the vector
1Z , which has the same dimension as the node feature. Cangea et al. [147] employed the Graph
U-Nets to coarsen graphs and concatenated the mean and maximum values of node embeddings
on the coarsened graphs as graph-level representations. Further, SAGPool [148] chooses the top-K
nodes to generate the coarsened graph by adopting a graph convolution operation to project node
features as scores.

All these methods generate a coarsened graph by preserving the top-K nodes. However, Ranjan
et al. [149] presented the novel idea of ranking the clusters and preserving on the top-K of them.
The clusters were ranked by employing a self-attention algorithm called Master2Token [150] that
scores each cluster based on the node embeddings within it.

7.2.4 CNN-based. CNN-based hierarchical graph pooling tends to partition a graph into several
small subgraphs within close sizes, where each subgraph is coarsened by performing a regular
1-D pooling. For instance, ChebNet [112] and MoNet [151] use the Graclus [152] algorithm to
cluster pair-wise nodes in the graph, then perform a max pooling between the clustered node
pairs to obtain the coarsened nodes. Similarly, NDP [153] partitions graphs based on the MAXCUT
objective and pools in the partitioned subgraphs. These methods are equivalent to CNNs that
compute local characteristics for pooling.

7.2.5 Tree-based. Tree-based hierarchical graph pooling implements the coarsening process
via an encoding tree, where the input graph is coarsened layer-by-layer to the ultimate node from
the leaf layer to the root layer, as shown in Figure 7(c). Wu et al. [154] use a structure encoding tree
[155] for tree-based hierarchical graph pooling. Structural coding trees compress the hierarchy of a
graph into a tree. Here, the leaves are the nodes, the root represents the whole graph, and the other
non-leaf nodes are the hierarchical structures (e.g., the communities). An MLP merges the features
of the child nodes in the structure encoding tree to generate an embedding of the father node. The
result is an embedding of the root node, which serves as a graph-level representation. Moreover,
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Table 4. Summary of Selected Benchmark Datasets

Domain Dataset Size #Graphs
Average
#Nodes

Average
#Edges

Node
Attr.

Edge
Attr.

#Classes Source

Biology

ENZYMES Small 600 32.6 62.1 � — 6 [160, 166]
PROTEINS Small 1,113 39.1 72.8 � — 2 [160, 166]
D&D Small 1,178 284.3 715.7 � — 2 [160, 167]
BACE Small 1,513 34.1 36.9 � � 2 [2, 168]
MUV Medium 93,087 24.2 26.3 � � 2 [2, 169]
ppa Medium 158,100 243.4 2,266.1 — � 37 [161, 170]

Chemistry

MUTAG Small 188 17.9 19.8 � � 2 [42, 160]
SIDER Small 1,427 33.6 35.4 � � 2 [2, 171]
ClinTox Small 1,477 26.2 27.9 � � 2 [2, 172]
BBBP Small 2,039 24.1 26.0 � � 2 [2, 173]
Tox21 Small 7,831 18.6 19.3 � � 2 [2, 174]
ToxCast Small 8,576 18.8 19.3 � � 2 [2, 175]
MolHIV Small 41,127 25.5 27.5 � � 2 [2, 161]
MolPCBA Medium 437,929 26.0 28.1 � � 2 [2, 161]
FreeSolv Small 642 8.7 8.4 � � — [2, 176]
ESOL Small 1,128 13.3 13.7 � � — [2, 177]
Lipophilicity Small 4,200 27.0 29.5 � � — [2, 178]
AQSOL Small 9,823 17.6 35.8 � � — [163, 179]
ZINC Small 12,000 23.2 49.8 � � — [163, 180]
QM9 Medium 129,433 18.0 18.6 � � — [2, 160]

Social
Networks

IMDB-BINARY Small 1000 19.8 96.5 — — 2 [160, 181]
IMDB-MULTI Small 1,500 13.0 65.9 — — 3 [160, 181]
DBLP_v1 Small 19,456 10.5 19.7 � � 2 [160]
COLLAB Medium 5,000 74.5 2,457.8 — — 3 [160, 181]
REDDIT-BINARY Small 2,000 429.6 497.8 — — 2 [160, 181]
REDDIT-MULTI-5K Medium 4,999 508.5 594.9 — — 5 [160, 181]
REDDIT-MULTI-12K Medium 11,929 11.0 391.4 — — 11 [160, 181]

Computer
Vision

CIFAR10 Medium 60,000 117.63 941.1 � — 10 [163, 182]
MNIST Medium 70,000 70.57 564.53 � — 10 [163, 183]
MODELNET40 Medium 12,311 — — � — 40 [165]

Code Retrieval Code2 Medium 452,741 125.2 124.2 � � — [161, 184]

Cybersecurity MALNET Large 1,262,024 15,378 35,167 — — 696 [162]

*Node Attr. and Edge Attr. indicate the labels or features of nodes and edges, respectively.

*The size of datasets follows the setting of OGB [161], medium datasets have more than 1 million nodes or more than

10 million edges, and large datasets own over 100 million nodes or 1 billion edges.

Wu et al. [156] empirically verified that the hierarchical tree pooling guided by structure entropy
[157, 158] can preserve higher-quality structural information than U-Nets and MinCutPool. Alter-
natively, EdgePool [159] scores edges based on the features of two endpoint nodes, eliminating the
highest-ranked edge by merging its two end nodes while maintaining all neighbors. The features
of the newly generated node are obtained by summing two node features for passing a tanh gating
function. EdgePool merges two child nodes in a tree into a father node.

8 Benchmarks

8.1 Datasets

Table 4 summarizes a selection of benchmark graph-level datasets, including TUDataset [160],
Open Graph Benchmark (OGB) [161], MOLECULENET [2], MALNET [162], and others [163].
TUDataset [160], consisting of molecules, proteins, images, social networks, synthetic graphs, and
data from many other domains, has been widely used to evaluate graph-level learning approaches.
However, despite its wide use, it has attracted criticism from some practitioners. For example,
Ivanov et al. [164] contend that the sets suffer from isomorphism bias, i.e., they contain isomorphic
graphs with different labels, which may hinder model training—a claim based on the analysis of

ACM Comput. Surv., Vol. 57, No. 2, Article 28. Publication date: October 2024.



State of the Art and Potentialities of Graph-level Learning 28:27

54 widely used graph datasets. They also note that some of the datasets are too small to train a
data-hungry deep learning model. For example, Dwivedi et al. [163] presented that most GL-GNNs
have a close performance to others in the small dataset. Further, some topology-agnostic baselines
yield a performance that is competitive to GL-GNNs.

Developing practical and large-scale benchmark datasets has become an important issue for the
graph-level learning community. To this end, Wu et al. [2] proposed a benchmark named MOLECU-
LENET that contains a set of large-scale graph datasets of molecules for their property prediction.
Dwivedi et al. [163] transformed images into graphs for classification, in which a group of pixels
is clustered as a node. In addition, 3D point clouds are naturally represented as graph datasets. For
instance, MODELNET40 [165] consists of 12,311 meshed models, and each model can be treated
as a single graph by sampling 1,000 points as nodes and constructing edges between all neigh-
bors [72]. Based on real-world cybersecurity scenarios, Freitas et al. [162] proposed a large-scale
graph dataset of over 1.2 million graphs with imbalanced labels. Recently, OGB [161] published
application-oriented large-scale graph datasets of molecules, proteins, and source code coopera-
tion networks.

8.2 Evaluations

The development of graph-level learning has been impeded by unfair evaluations. For example,
Ruffinelli et al. [185] argue that some graph-level learning models only produce state-of-the-art
performance because of tricks with the model’s training, not because of the novel ideas proposed
in the articles. However, there is no consensus on which evaluation to use with the most widely
used graph datasets, such as TUDatasets, nor is there even a universally accepted data split [186].
Hence, to evaluate the graph-level learning models in a unified and fair way, some researchers
have attempted to establish a standard model evaluation protocol. For example, Dwivedi et al.
[163] built a benchmark framework based on PyTorch and DGL7 that evaluates models on graph
classification and graph regression tasks with an unified model evaluation protocol. They do apply
training tricks, such as batch normalization, residual connections, and graph size normalization,
to GL-GNNs to measure their effects. But all models being evaluated with the protocol are subject
to the same training regime. Similarly, in addition to the large-scale graph datasets, OGB [161]
provides a standard model evaluation protocol that includes a unified way to load and split data, the
model evaluation itself, plus the cross-validations. Recently, Zhu et al. [187] provided a benchmark
framework for graph contrastive learning.

9 Downstream Tasks and Applications

This section introduces seven common downstream tasks with corresponding applications and
metrics of graph-level learning, including Graph Classification, which learns the mapping rela-
tionship between graphs and corresponding class labels and predicts the discrete labels of unseen
graphs; Graph Regression, which predicts the continuous properties of graphs. Taking molecules
as examples, graph regression can predict different molecular properties related to the tightness
of chemical bounds, fundamental vibrations, the state of electrons in molecules, the spatial distri-
bution of electrons in molecules, and others; Graph Generation, aiming to generate new graphs
that have specific properties based on a series of graphs; Graph Comparison, which evaluates
the distance or similarity between graphs; Subgraph Discovery for detecting discriminative sub-
structures in a graph dataset; Graph Ranking, sorting a set of graphs into a particular order
based on the importance and relevance to the specific tasks, namely, graph ranking; and Apply-

ing Complex Scenarios, referring to graph-level learning extended to complex scenarios, such as

7DEEP GRAPH LIBRARY: https://www.dgl.ai
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multi-graph-view [188, 189], semi-supervised setting [48], and so on. Details of related applications
and metrics are shown in Appendix ??.

10 Future Directions

In this section, we spotlight 12 future directions of graph-level learning, involving technical chal-
lenges, application issues, and potential opportunities, for readers to refer to.

10.1 Neural Architecture Search (NAS) for GL-GNNs

Challenges: Existing GL-GNNs often have a complex architecture, consisting of a number of differ-
ent components, e.g., multiple graph convolutions and graph pooling layers. Developing effective
NAS methods to free researchers from repeatedly searching for good architectures manually and,
in turn, tuning the parameters is an urgent goal. However, the multitude of optional components
with numerous parameters results in an exceedingly vast parameter search space for GL-GNNs.
Additionally, diverse graphs could desire distinct optimal parameters, raising the demand for a
globally searched architecture that fits all graphs.

Opportunities: Although NAS has attracted a bulk of interest from the deep learning community,
there is limited exploration for NAS on GL-GNNs. To fill this gap, one strategy could be leveraging
reinforcement learning or policy gradients to restrict the entire architecture space to an optimal
subspace by maximizing expected results (e.g., accuracy). Another strategy could involve estimat-
ing optimal parameters based on intrinsic graph properties. This approach would enable the con-
sideration of diverse graph properties, thereby providing a globally applicable architecture for
entire graph datasets. For instance, Yang et al. [190] estimated the embedding dimensionality for
each graph via their entropy and sought a few centers of all individual estimated dimensionalities
as final embedding dimensions for encoding the graph dataset.

10.2 Geometrically Equivariant GL-GNNs

Challenges: In geometric graphs [191], each node is described by two vectors, i.e., a feature vector
and a geometric vector. For example, in 3D molecule graphs, atoms are assigned geometric infor-
mation such as speeds, coordinates, and spins that together comprise the geometric vector. A key
challenge for GL-GNNs working on geometric graphs is the equivariant, i.e., when inputting a
geometric graph with a specific rotation into a GL-GNN, the subsequent output should reflect the
same rotation.

Opportunities: Geometrically Equivariant GL-GNNs have been a newly raised field in recent
years; as yet, there is limited research [192, 193]. A straightforward direction could be to extend
the current GL-GNN architecture on both node features and geometric vectors to construct the GL-
GNNs on geometric graphs. For instance, Equivariant Graph Neural Networks (EGNN) [192]
expand MPNNs aggregating both feature vectors and geometric vectors, and AMP [194] designs
a novel message-passing scheme considering the directional effects from an external field or a set
of particles unreachable in a graph. In addition, we argue that presenting geometric graphs as
hypergraphs or multi-view graphs can also help us better learn complex geometric features.

10.3 Global Explainable GL-GNNs

Challenges: Providing global explanations for GL-GNNs’ prediction could offer high-level insight
into model behavior and task mechanism. For example, we can learn why models diagnose brain
networks as normal or disordered without case-by-case explanations. However, building global
explainable GL-GNNs is non-trivial, since it requires an excellent abstraction ability to explain
generic patterns of a set of graphs, rather than only recognizing the significant part in a single
graph.
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Opportunities: Most algorithms for explaining the predictions of GL-GNNs focus on instances
(e.g., PGExplainer [195], GSAT [196]); globally explainable GL-GNNs is less studied. A promising
direction in building globally interpretable GL-GNN could be summarizing rules from all instance-
level explanations via statistical inference methods, e.g., logic combination [197], Bayes theorem,
and so on. Furthermore, the graph generation techniques could also be a significant tool, generat-
ing generic graph patterns without reference to instance-level explanations [198].

10.4 Informative Graph Pooling

Challenges: Existing graph pooling techniques leverage all nodes collectively or seek the most
representative nodes for presenting graphs, but neither can ensure a low redundancy between
the selected nodes. An informative graph pooling should select the set of nodes within the high
representative and low redundancy. Yet, there are no existing criteria to evaluate the redundancy
of a set of nodes, and optimizing the node set with two criteria could be a nonconvex problem.

Opportunities: As far as we know, informative graph pooling is first identified in this article. We
highlight the informative node set selection for pooling with two criteria, high representative and
low redundancy. On the one hand, the criteria of representative nodes could be a score function
via neural networks [4, 136] or the policy gradient’s feedback. On the other hand, the redundancy
of a set of nodes can be evaluated by the similarity of their features or even the graph kernel
value between their neighborhoods. The nonconvex optimization problem could be alleviated by
reinforcement learning or evolutionary algorithms.

10.5 Graph-level Federated Learning

Challenges: Most state-of-the-art graph-level learning models are data-hungry, especially GL-
GNNs. In the industrial scenario, however, the size of the graph dataset sourced from a single
institution is limited for training models. There is a practical demand to develop graph-level feder-
ated learning, that is, joint training graph-level learning models via diverse institutions. A major
obstacle to graph-level federated learning is the divergence of graph structure and feature distri-
bution across graph datasets from various institutions. This incongruity leads to complications in
both training and convergence of federated models.

Opportunities: Federated learning has attracted a surge of attention in promoting graph learning,
as both are valuable in real-world applications. Xie et al. [199] proposed a graph-level federated
learning model, which clusters graph datasets from various institutions and trains an exclusive
GNN for each cluster. This could be a promising strategy that divides the multi-sourced data into
homogeneous clusters to smooth training. Another strategy could involve enhancing the generaliz-
ability of graph-level learning models, which enable models trained via common patterns between
graphs sourced from distinct institutions.

10.6 Graph-level Imbalance Learning

Challenges: Graph-level tasks could face an imbalanced state of class labels, such as anomaly detec-
tion [200] and long-tail event detection [201], confronting challenges on model learning. Specifi-
cally, the model trained on the data with an imbalanced label distribution might be biased towards
the majority classes, that is, with many samples and the minority classes consisting only of a small
number of samples, the model may be under-fit.

Opportunities: Although imbalanced learning has been a long-standing issue in deep learning,
graph-level imbalance learning, especially with deep models, is underexplored. Adopting some
simple but effective solutions for imbalanced learning is an easy-implemented way, such as Wang
et al. [202] over-sampled graphs in the minority class to relieve imbalance distributions between
the majority and minority classes. However, this approach may be criticized for its shortcomings,
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such as over-fitting and changing the original distribution of the dataset. We argue that a more rea-
sonable direction is leveraging graph generation techniques to expand the subspace of the minor
classes [203–205]. Another possible direction could be to capture the special factors of minority
graphs, e.g., key substructures existing in minority graphs but not appearing in the majority. To-
wards this, strengthening the structural awareness of the current graph-level learning tools is
feasible.

10.7 Graph-level Learning on Complex Graphs

Challenges: In this survey, almost all the investigated graph-level learning methods are assumed to
work on fundamental graphs (i.e., unweighted and undirected graphs, and their nodes and edges
are homogeneous). However, realistic graphs are usually complex graphs, such as heterogeneous
graphs involving multiple types of nodes or edges, dynamic graphs whose structure or attributes
evolve over time, and so on. Graph-level learning on complex graphs confronts the challenges of
tuning graph-level models for the specific type of graph according to its structure and attributes.

Opportunities: Compared to highly developed graph-level learning on fundamental graphs, min-
ing complex graphs still requires further development. For instance, most GL-GNNs for heteroge-
neous graphs rely on manually defined meta-paths (i.e., a sequence of relations between nodes or
edges) that are based on domain knowledge. However, defining meta-paths is not only expensive
but also loses partial semantic relationships [206, 207]. Thus, developing the automatic mechanism
for exploring comprehensive meta-paths could be a feasible direction. Dynamic graphs could be
conceptualized as a collection of static graphs sourcing from a series of temporal scales. One po-
tential strategy for dealing with dynamic graphs is learning from distinct static graphs at each
scale, culminating in the fusion of all outcomes [208]. In addition, building a cross-time graph link-
ing all static graphs together represents a promising direction, e.g., tdGraphEmbed [209] adopts a
temporal random walk across all time-scale static graphs.

10.8 Graph-level Interaction Learning

Challenges: Almost all the literature on graph-level learning treats each graph in a dataset as an
independent sample. However, considering the interactions between graphs should lead to chal-
lenging and highly novel research. For example, learning the interactions between graphs might be
used to predict the chemical reactions when two compounds meet or to explore the effect of mixing
multiple drugs. Graph-level interaction learning raises the requirement to explore the graph-graph
relationships, which is tough, since there are no explicit metrics to compare two graphs regarding
a tremendous number of irregular components (e.g., nodes, substructures).

Opportunities: Although this topic has strong practical implications for graph-level learning ap-
plications in biochemistry, it is still understudied. A few attempts [104, 210] revamp GL-GNNs for
this task, but we argue that GL-GNNs are not the most suitable tool. Graph kernels and attention
mechanisms could be the better candidate for this task, due to their advantages in measuring pair-
wise similarities. In addition, capturing crucial substructures that lead to chemical reactions can
be a powerful assistance, which requires the addition of interpretable learning.

10.9 Graph-level Anomaly Detection

Challenges: Anomaly detection aims to identify objects that significantly deviate from the major-
ity of other objects. However, when it comes to the anomalous as entire graphs, the inducement
could be node features or substructures in graphs. Generally anomaly detectors mostly only pay
attention to outliers in the feature space, but the challenge of graph-level anomaly detectors is
identifying outlier points in terms of both node feature and structure.
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Opportunities: Graph-level anomaly detection that identifies anomalous graphs in a graph
dataset is a research topic of great value application-wise but lacks exploration. Some pioneering
studies [211, 212] combine state-of-the-art GL-GNNs with traditional anomaly-detection methods
(e.g., one-class classification [213]) to detect anomalous graphs in a graph dataset. This is a fea-
sible way but still needs to solve some derivative issues, e.g., performance flip, and hypersphere
collapse [212]. Another possible direction could be designing specific graph convolution layers to
highlight anomalous. This is because current graph convolution works like a low-pass filter [125]
that smooths the anomalous information in a graph [214].

10.10 Out-of-distribution Generalization

Challenges: Out-of-distribution (OOD) learning indicates the scenarios in which the test data
own deviation distribution as the training data. Almost all the graph-level learning algorithms
assume that the training and the test data will have the same distribution. However, this I.I.D.

(independent, identically distributed) assumption may be violated in some scenarios. For ex-
ample, molecules with the same function may contain some different scaffolds. When test data
have a scaffold that never appears in training data, graph-level learning methods models will not
perform nearly as well.

Opportunities: The graph-level learning community has recently noticed the OOD generalization
issue and desired related research in response. Invariant learning could be a direction for this task,
for instance, Wu et al. [215] identified the causal subgraphs that are invariant across different
distributions to improve the OOD generalization ability of GL-GNNs. Similarly, Bevilacqua et al.
[216] employed an inference model to capture approximately invariant causal graphs to improve
the extrapolation abilities of GL-GNNs. In addition to invariant learning, many techniques such
as meta-learning, data augmentation, and disentanglement learning are feasible for OOD learning.
Combining these techniques with GL-GNNs is likely to be the future of achieving graph-level
learning models with a strong OOD generalization capacity. For more details on this topic, we
refer readers to the graph OOD learning benchmark [217].

10.11 Brain Network Analytics

Challenges: Brain networks, also known as connectomes, are maps of the brain where the nodes
denote the brain regions of interest (ROIs) in the brain, and the edges denote the neural con-
nections between these ROIs. Existing graph-level learning algorithms, especially GL-DNNs and
GL-GNNs, tend to be over-parameterized for learning brain networks, which are usually sparse.
Further, obtaining a brain network usually comes at a high cost, because it involves scanning an
individual’s brain and converting the neuro-image into a brain network. In addition, existing GL-
DNNs and GL-GNNs cannot handle the correspondence of nodes between different graphs. How-
ever, distinct brain networks have the same ROIs, and node identities and ROIs are one-to-one
correspondence [218].

Opportunities: Brain network analytics pertains to a vast of valuable realistic applications, such
as distinguishing brains with neurological disorders from normal individuals and identifying those
regions of the brain that are the cause of brain disease. We argue that graph-level learning with
brain networks requires lightweight models to prevent the model from overfitting on realistic small
datasets. In addition, the model should add a module for identifying corresponding nodes between
different graphs.

10.12 Multi-graph-level Learning

Challenges: Standard graph-level learning views each graph as an instance, which can be restrictive
in practical applications. Considering a product that has multiple reviews on an online shopping
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page, each review can be represented as a graph of the textual semantics among the words. To pre-
dict any properties of that online product, one needs to learn from review-based multi-graphs—that
is, multi-graph-level learning. Two significant challenges arise when multiple graphs are bagged as
an object: how to glean insights from multi-graph level labels instead of individual instance-level
labels and how to filter redundant information across multi-graphs.

Opportunities: To the best of our knowledge, the current multi-graph-level learning algorithms
are all subgraph mining methods [219, 220]. However, these endeavors cannot leverage label infor-
mation to guide the learning process. We argue that deep learning models will revolutionize this
task; one possible direction is to build a new GL-GNN framework enabling multiple graph embed-
dings used to predict a single label. Another promising way could be informative graph pooling,
which avails of selecting the node set that contains highly representative and low-redundancy
information across multiple graphs.

11 Conclusions

This survey article provides a comprehensive review of graph-level learning methods. Due to the
irregular structure of graphs, graph-level learning has long been a non-trivial task with related
research spanning the traditional to the deep learning era. However, the community is eager for
a comprehensive taxonomy of this complex field. In this article, we framed the representative
graph-level learning methods into four categories based on different technical directions. In each
category, we provided a detailed discussion on, and comparison of, the representative methods.
We also discussed open-source materials to support research in this field, including datasets, algo-
rithm implementations, and benchmarks, along with the most graph-level learning tasks and their
potential industrial applications. Last, we identified 12 future directions based on currently open
issues that would make valuable contributions to this field.
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