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Myocardial steatosis as a possible mechanistic link between diastolic
dysfunction and coronary microvascular dysfunction in women. Am J
Physiol Heart Circ Physiol 310: H14–H19, 2016. First published
October 30, 2015; doi:10.1152/ajpheart.00612.2015.—Women with cor-
onary microvascular dysfunction (CMD) and no obstructive coronary
artery disease (CAD) have increased rates of heart failure with preserved
ejection fraction (HFpEF). The mechanisms of HFpEF are not well
understood. Ectopic fat deposition in the myocardium, termed myocardial
steatosis, is frequently associated with diastolic dysfunction in other
metabolic diseases. We investigated the prevalence of myocardial steato-
sis and diastolic dysfunction in women with CMD and subclinical
HFpEF. In 13 women, including eight reference controls and five women
with CMD and evidence of subclinical HFpEF (left ventricular end-
diastolic pressure �12 mmHg), we measured myocardial triglyceride
content (TG) and diastolic function, by proton magnetic resonance
spectroscopy and magnetic resonance tissue tagging, respectively. When
compared with reference controls, women with CMD had higher myo-
cardial TG content (0.83 � 0.12% vs. 0.43 � 0.06%; P � 0.025) and
lower diastolic circumferential strain rate (168 � 12 vs. 217 � 15%/s; P
� 0.012), with myocardial TG content correlating inversely with dia-
stolic circumferential strain rate (r � �0.779; P � 0.002). This study
provides proof-of-concept that myocardial steatosis may play an impor-
tant mechanistic role in the development of diastolic dysfunction in
women with CMD and no obstructive CAD. Detailed longitudinal studies
are warranted to explore specific treatment strategies targeting myocar-
dial steatosis and its effect on diastolic function.

myocardial steatosis; magnetic resonance spectroscopy; coronary mi-
crovascular dysfunction; diastolic dysfunction; women

NEW & NOTEWORTHY

Heart failure with preserved ejection fraction (HFpEF) is
highly prevalent in women but poorly understood. Mechanistic
understanding is critical to the development of HFpEF man-
agement strategies and guidelines. In this article, we present
magnetic resonance spectroscopy data that identify cardiomy-
ocyte fat accumulation as a potential novel mechanistic
pathway.

ISCHEMIC HEART DISEASE IS a leading cause of death in women,
with annual mortality rates 10-fold higher than mortality from
breast cancer (13). Unlike their male counterparts, women with
persistent chest pain and evidence of myocardial ischemia are
more likely to have normal or no obstructive coronary artery
disease (CAD) (4, 6, 7). As a result of targeted research initiatives
to elucidate this sex difference, including the National Heart,
Lung, and Blood Institute-sponsored Women’s Ischemia Syn-
drome Evaluation (WISE) study, it is now recognized that coro-
nary microvascular dysfunction (CMD) plays an important role in
the development of ischemic heart disease in women (15, 34).
Women with CMD have a 2.5% annual risk of major adverse
cardiac events, including death, nonfatal myocardial infarction,
nonfatal stroke, or hospitalization for heart failure (20, 37). Five-
year WISE follow-up data also demonstrated that the most prev-
alent event for women with CMD is hospitalization for heart
failure (15), predominantly heart failure with preserved ejection
fraction (HFpEF), a condition that is associated with a �25%
mortality rate in 3 years (27). HFpEF mechanistic pathways and
treatment strategies remain poorly understood.

We recently reported that women with signs and symptoms of
ischemia with no obstructive CAD have evidence of left ventric-
ular (LV) diastolic dysfunction (29). The exact mechanism re-
sponsible for the dysfunction, however, remains incompletely
understood. We hypothesize that CMD triggers a metabolic shift
away from free fatty acids, resulting in ectopic fat deposition in
cardiomyocytes. Cardiac steatosis has indeed been mechanisti-
cally linked with diastolic dysfunction in various rodent models
(8, 10–12, 51) and is an independent predictor of diastolic dys-
function in men (31, 47). The purpose of this study was, therefore,
twofold: 1) to determine whether myocardial steatosis is prevalent
in women with CMD and 2) to determine the relationship between
cardiac steatosis and diastolic dysfunction.

METHODS

Study Population

Five women with persistent chest pain, evidence of ischemia by
stress testing, no obstructive CAD, and evidence of subclinical HF-
pEF were recruited from the WISE study, and all had been diagnosed
with CMD by prior invasive coronary reactivity testing per WISE
protocol (49). After coronary angiography demonstration of no ob-
structive CAD and measurement of resting LV end-diastolic pressure
(LVEDP), four coronary reactivity testing measures were assessed as
previously published: 1) abnormal coronary flow reserve, defined as
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�2.5 in response to adenosine; 2) abnormal coronary endothelial
function defined as a change in epicardial coronary artery diameter
�0% in response to ACh; 3) abnormal microvascular endothelial
dysfunction, defined as an increase in coronary blood flow �50% in
response to ACh; and 4) abnormal nonendothelial function defined as
a change in epicardial coronary artery diameter �20% in response to
nitroglycerin (44). The WISE group previously demonstrated that
myocardial perfusion reserve worsened as the number of abnormal
coronary reactivity measures increased (44).

Inclusion criteria for evidence of subclinical HFpEF consisted of
resting LVEDP � 12 mmHg and preserved ejection fraction �50%
(9). Exclusion criteria comprised type 2 diabetes, age �18 years, body
mass index (BMI) �44 kg/m2, and irregular heartbeat, as well as any
contraindication to MRI.

A reference control group consisted of eight women selected by
using the following inclusion criteria: absence of any cardiovascular
symptoms, absence of cardiac risk factors according to the National
Cholesterol Education Program (1), and a normal maximal exercise
treadmill stress test (Bruce protocol). Exclusion criteria for the control
group were the same as for the group of WISE cases.

All subjects underwent cardiac magnetic resonance (CMR) imaging
for evaluation of heart morphology and function, abdominal MRI for
evaluation of abdominal visceral and subcutaneous fat mass, proton
magnetic resonance spectroscopy (1H MRS) for evaluation of myocardial
and hepatic steatosis, and in body-impedance testing for the evaluation of
lean and fat body mass. The study was approved by the Institutional
Review Board at Cedars-Sinai Medical Center, and all study subjects
provided informed consent before any experimental procedure.

Cardiac magnetic resonance imaging and spectroscopy. CMR
tissue tagging and cardiac 1H MRS testing were performed at 3.0T
whole body Magnetom Verio MR system (Siemens Healthcare, Er-
langen, Germany) using a phased array 3.0T body matrix coil, highly
standardized protocol (36, 41) and localized spectroscopy with
PRESS (PointRESolvedSpectroscopy) sequence for spatial localiza-
tion and signal acquisition.

CMR and myocardial tissue tagging for LV function. LV morphol-
ogy and global function were assessed using retrospective ECG-gated,
segmented steady state short-axis cine images, across the entire LV.
All images were acquired at end-expiration using the following
parameters: repetition, time 3 ms; echo time, 1.3 ms; flip angle, 50°;
slice thickness, 8 mm with a 2-mm gap between slices; matrix, 224 �
224; field of view, 300 � 225 mm; 33% oversampling. LV volumes,
ejection fraction, and mass were measured by tracing the epicardial
and endocardial borders of the short-axis cine images at end diastole
and end systole using commercial software (cvi42; Circle Cardiovas-
cular Imaging, Calgary, Alberta, Canada).

Two short-axis CMR tissue tagging images were acquired at the
mid-LV level (papillary muscles), using a standard gradient echo
sequence. Typical imaging parameters included slice thickness, 8 mm;
7-mm grid tags; temporal resolution, 20–30 ms; echo time, 1.8 ms;
repetition time, 4.1 ms; matrix, 224 � 100; flip angle, 8°; field of
view, 330 � 247 mm2. For systolic function assessment, the first
tissue tagging image was acquired with the trigger at end diastole (R
wave of ECG). For diastolic function assessment, because tags fade
within 400 to 500 ms (5), myocardial tagging was acquired with the
trigger delay applied at end systole, to ensure persistence of tags
throughout diastole (29). Time delay was adjusted individually in each
subject for optimal tag persistence during diastole. Tagged CMR
images were analyzed using commercial software (HARP, Diagnosoft
3.0; Palo Alto, CA) to determine circumferential strain and strain rate
in both systole and diastole. Tag analysis was semi-automated, with
user input limited to tracing the endo- and epicardium at a single
reference cardiac phase for each slice.

1H MRS for myocardial triglyceride measurements and
quantification. 1H MRS is a preferred method for non-invasive and in
vivo measurement of steatosis. It permits precise and reproducible
quantitation of intracellular TG content in cytosol of nonadipose cells.

Evaluation of steatosis by 1H MRS is now broadly accepted in clinical
studies as fast, safe, and reliable. As previously described (26, 36, 40,
41), a spectroscopic volume of interest (a single voxel, 0.8 � 1.8 �
2.4 cm3) was positioned over the interventricular septum using end-
systolic cardiac cine images in two cardiac planes (short axis and semi
4 chamber axis), collected at end-expiration (Fig. 1). During acquisi-
tion of spectroscopic data, patients breathed freely. Data acquisition
was triggered simultaneously at end systole (via ECG gating) and end
expiration (via a respiratory navigator PACE) (46). The spectra were
collected without water suppression and with the following parame-
ters: repetition time was �4 s depending on heart rate; echo time, 35
ms; 1,024 data points over a 2,000-Hz spectral width; and 32 acqui-
sitions. Spectroscopy data were processed using commercial software
(NUTS, Acorn NMR, Fremont, CA). Final calculation of fat and
water signal intensities accounted for fat and water signal decay due
to spin-spin relaxation (41, 42). Myocardial TG content was expressed
as a percentage of tissue water content.

Abdominal MRI and Spectroscopy

MRI for abdominal fat distribution and hepatic 1H MRS were
performed following cardiac imaging.

MRI for abdominal fat distribution. Subcutaneous and intra-ab-
dominal fat masses were determined from a single abdominal axial
image at the level of lumbar L2-L3. Image analysis via mapping of the
subcutaneous and intra-abdominal adipose tissue compartments (2)
was performed by an observer blinded to patient clinical history using
Slice-O-Matic software (4.3 rev 10; Virtual Magic, Montreal, Can-
ada). Fat area was reported in square centimeters.

1H MRS for hepatic TG measurements and quantification. As
described previously (40, 42), a testing volume of 8 cm3 was selected
within the right hepatic lobe, avoiding major blood vessels, intrahepatic
bile ducts, and neighboring adipose tissue, was selected from high
resolution morphological hepatic images acquired with breath hold at
end-exhalation. During acquisition of spectroscopic data patients
breathed freely and acquisition was triggered at end-exhalation. Respira-
tory motion was compensated with a respiratory navigator PACE. Spec-
tra were collected without water suppression and with the following data
acquisition parameters: repetition time, 3 s; echo time, 35 ms; 1,024 data
points over a 2,000-Hz spectral width; and 16 acquisitions. Final calcu-
lation of fat and water signal intensities accounted for fat and water signal

Fig. 1. 1H magnetic resonance spectroscopy (MRS) measurement of myocardial
fat accumulation. Volume of interest (single voxel, 3.4 cm3) was positioned in the
interventricular septum, and 1H MRS was acquired at end systole and in end-
expiration. Myocardial water (4.8 ppm), myocardial metabolites [e.g., carnitine,
creatinine, trimethylamine, 3–3.5 parts per million (ppm)], and methylenes of fatty
acids in myocardial TG (1.4 ppm) are shown. LA, left atrium; LV, left ventricle;
RA, right atrium; RV, right ventricle; TG, triglyceride.
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decay due to spin-spin relaxation (40, 42). Hepatic TG content was
expressed as a percentage of tissue water content.

Statistical Analysis.

Subject characteristics were presented as means � SD or 95%
confidence interval. Differences between WISE cases and reference
controls were compared using Student’s two-sided t-test. Pearson
correlation was performed for evaluation of linear dependence be-
tween pairs of variables, i.e., myocardial TG content and circumfer-
ential strain rate in WISE cases and reference controls. Statistical
significance was defined as P value �0.05.

RESULTS

The cases and reference controls had similar age, BMI, and
blood pressure (Table 1). Three of the five WISE cases had
hypertension, five had dyslipidemia, one had hypothyroidism,
and one had prior history of smoking. None were diabetic/pre-
diabetic. Cardiac medications of the WISE cases included
statins (80%), 	-blockers (80%), ranolazine (40%), calcium-
channel blockers (40%), and diuretics (40%); all subjects held
their 	-blockers, calcium channel blockers, ranolazine, and/or
diuretics for at least 24 h before their procedures. All five cases
were postmenopausal. All eight reference controls had no
cardiovascular risk factors and did not take any cardiac med-
ications; four were postmenopausal. None received hormone
replacement therapy.

All five cases had persistent chest pain, evidence of ischemia by
stress testing, a diagnosis of CMD by invasive coronary reactivity
testing, and no obstructive CAD. Three cases had abnormal
coronary flow reserve to adenosine, one case had abnormal
endothelial function to ACh with both epicardial constriction and
abnormal coronary blood flow response, and all five cases had
abnormal nonendothelial function in response to nitroglycerin.
Two cases had evidence of nonobstructive CAD (stenosis, 20–
30%) in the left anterior descending artery, while the other three
cases had no angiographic evidence of CAD. The mean LVEDP
of the cases was elevated at 18 � 3 mmHg, whereas the mean
NT-proBNP was normal at 7 � 26 pg/ml.

Diastolic dysfunction was present in women with CMD as
evidenced by a mean diastolic circumferential strain rate that
was lower in cases than in reference controls (168 � 12%/s vs.
217 � 15%/s; P � 0.012; Fig. 2A). Myocardial TG content
was higher in cases than in reference controls (0.83 � 0.12%
vs. 0.43 � 0.06%; P � 0.025; Fig. 2B), documenting presence
of myocardial steatosis in women with CMD. In addition
myocardial TG content and diastolic circumferential strain rate
correlated inversely (r � �0.779; P � 0.002; Fig. 2C).

There were no group differences in LV mass, LV concentricity
(mass/end-diastolic volume), or LV ejection fraction (Table 1).
There were also no differences in lean body mass, body fat mass,
and percentage body fat measured by impedance scale testing
between the cases and reference controls. There was no difference
in the percentage of visceral fat and subcutaneous fat measured by
MRI between the cases and reference controls. Hepatic TG was
within normal range (42) and was not different between cases and
reference controls (4.2 � 2.6% vs. 5.1 � 1.9%; P � 0.8).
Moreover, hepatic TG content did not correlate with myocardial
TG content (R2 � 0.09; P � 0.39).

DISCUSSION

The major novel findings of this investigation are fourfold.
First, in women with CMD, myocardial steatosis was 100%
higher than in reference controls. Second, diastolic circumferen-
tial strain rate, a measure of LV relaxation, was impaired by
�20% in WISE cases than in reference control subjects. Third,
myocardial TG content and diastolic circumferential strain rate
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Fig. 2. Diastolic circumferential strain rate and myocardial TG content. A:
diastolic circumferential strain rate was significantly higher in reference
controls than in cases (217 � 15 vs. 168 � 12%/s; P � 0.012). B: myocardial
TG content was significantly higher in cases than in reference controls (0.83 �
0.12% vs. 0.43 � 0.06%; P � 0.025). C: myocardial TG content correlated
inversely with diastolic circumferential strain rate (r � �0.779; P � 0.002),
demonstrating that diastolic dysfunction is present in women with coronary
microvascular dysfunction.

Table 1. Characteristics of study population

Variable Cases Controls P Value

Anthropometric data
Age, yr 52 � 5 44 � 6 0.28
Systolic BP, mmHg 110 � 4 122 � 6 0.14
Diastolic BP, mmHg 62 � 3 69 � 4 0.26
BMI, kg/m2 29.0 � 3.6 26.4 � 1.6 0.48
Lean body mass, kg 45.6 � 3.4 46.5 � 1.9 0.82
Body fat mass, kg 34.2 � 7.9 25.1 � 3.6 0.28
MRI visceral fat, % 13.8 � 3.0 22.0 � 4.6 0.16
MRI subcutaneous fat, % 37.9 � 6.2 36.3 � 3.2 0.85
Hepatic TG content, % 4.2 � 2.6 5.1 � 1.9 0.80

LV hemodynamics and global
function

LV end-diastolic pressure, mmHg 18.4 � 2.6 n/a —
LV end-diastolic volume, ml 129.5 � 13.1 125.7 � 8.7 0.80
LV end-systolic volume, ml 39.4 � 6.3 44.0 � 4.5 0.56
LV stroke volume, ml 90.1 � 8.1 81.7 � 5.5 0.39
LV ejection fraction, % 70 � 3 65 � 2 0.17
LV concentricity, g/ml 0.68 � 30.03 0.59 � 0.07 0.37

Values are means � SD; n � 5 cases and n � 8 controls. BMI, body mass
index; BP, blood pressure; LV, left ventricular; n/a, not applicable; TG,
triglyceride.
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were inversely related, suggesting a relationship between myocar-
dial TG content and LV diastolic function. Fourth, hepatic steato-
sis was not associated with myocardial steatosis, suggesting that
the ectopic myocardial fat deposition measured in our cases may
be due to myocardial ischemia rather than systemic metabolic
disease. Taken together, these data support the hypothesis that
myocardial ischemia-related steatosis may be mechanistically
linked with impairments in ventricular relaxation in women with
CMD.

Combining MRI with 1H MRS provides detailed pathophys-
iologic insights into inter-relationships among cardiac struc-
ture, function, and metabolism. 1H MRS offers quantitative
assessment of myocardial TG content, which cannot otherwise
be assessed without using invasive biopsy or external radiola-
beled tracers. Our laboratory has previously shown that this
approach is highly reproducible in humans with a broad range
of obesity and glucose levels, with TG content expressed as a
percentage of tissue water content (26, 41). Moreover, we have
shown that the amount of fat stored in a healthy nonadipose
tissue (i.e., liver and myocardium) is usually minimal and
tightly regulated, but increases significantly when the healthy
metabolic milieu is disturbed (26, 30, 35, 48). The reliability of
1H MRS to identify and quantify myocardial TG content is
important in the identification of myocardial steatosis as a
potential treatment target for diastolic dysfunction. Myocardial
steatosis and diastolic dysfunction has been shown to be
reversible in subjects with severe aortic stenosis undergoing
aortic valve replacement (24) and in pharmacologic and dietary
reductions of plasma TG levels (16, 17). Traditional and new
anti-ischemic therapies may reduce myocardial steatosis and
thus may improve myocardial dysfunction in subjects with
CMD and HFpEF. In a pilot study, short-term ranolazine was
found to decrease LVEDP but did not improve echocardio-
graphic diastolic parameters (E/A, E/E=) (25); it is unknown
whether long-term ranolazine may have beneficial effects on
LV filling pressure and on sensitive noninvasive diastolic
parameters, like those used in this investigation.

Although the presence of myocardial steatosis in HFpEF has
not been previously described, myocardial TG accumulation has
been described in ischemic cardiomyopathy (28) and end-stage
systolic heart failure, as documented by biopsies of post-transplant
hearts in men and women (38). Failing hearts had fourfold higher
levels of myocardial TG compared with nonfailing hearts. The
buildup of TG within the cytosol of cardiomyocytes was associ-
ated with dysfunctional expression of genes related to free fatty
acid (FFA) metabolism, contractile dysfunction, and inflammation
(38). It has been suggested that accumulation of TG in the failing
human heart is due to a preferential substrate shift (14); that is,
unlike the healthy myocardium, which converts chemical energy
primarily from FFA (3), the ischemic myocardium preferentially
oxidizes glucose, leaving FFA unoxidized. This surplus of unoxi-
dized FFA is converted to TG droplets in the cytosol of cardio-
myocytes (28, 38). Given that each of our WISE cases had
established CMD, we speculate that a similar ischemic metabolic
shift likely explains the accumulation of myocardial TG found in
the present investigation. Hankiewicz et al. (19) demonstrated that
in mice with high myocardial TG content, early impairment of
diastolic strain occurs primarily in the endocardium, a region that
is hypoperfused in patients with CMD (33). However, a prior 1H
MRS and stress CMR study of 42 subjects with type 2 diabetes
revealed that although myocardial TG content was inversely

associated with diastolic strain rate, no association was found
between myocardial TG content and myocardial perfusion reserve
index (22); the subjects with type 2 diabetes in that study did not
have clinical symptoms of angina or heart failure, and we suspect
that the pathophysiology of myocardial steatosis in diabetes is
different from the pathophysiology of myocardial steatosis in
myocardial ischemia.

It remains unclear from this cross-sectional investigation
whether myocardial TG accumulation contributes to the devel-
opment of HFpEF in women with CMD or whether it is simply
a marker of disease progression. In the Zucker diabetic fatty
rat, cardiac steatosis has been unequivocally linked to myocel-
lular apoptosis and adverse LV remodeling (51). In human
volunteers, Hammer et al. (18) showed that acute elevation of
myocardial TG content not only reduced diastolic function but
that pharmacological inhibition of the myocardial TG accumu-
lation prevented the cardiac impairment. We believe that myo-
cardial TG accumulation not only marks disease progression
but that it also independently contributes to the development of
diastolic dysfunction in women with CMD.

Myocardial steatosis and hepatic steatosis were not directly
associated in our study, suggesting that the development of myo-
cardial steatosis in the setting of myocardial ischemia is different
from the development of myocardial steatosis in the setting of
systemic metabolic diseases. In systemic metabolic disease like
obesity and type 2 diabetes, the development of myocardial
steatosis tends to mirror the development of steatosis in other
organs (e.g., liver, pancreas) due to elevated circulating FFA (23,
26, 32, 43). We interpret this dichotomy to reflect differences in
disease origin. For example, although ischemic heart disease
primarily involves reduced myocardial capacity for FFA oxida-
tion, resulting in steatosis exclusively in the heart, metabolic
diseases like obesity and type 2 diabetes reflect systemic FFA
overload and thus more global organ steatosis (45, 50).

Our proof-of-concept study has several limitations, including a
small number of cases and reference controls. Further investiga-
tion is warranted to confirm the present results in a larger cohort
of women and men with CMD with comparison with controls
matched for age and cardiovascular risk factors. Our inclusion
criteria for subclinical HFpEF was met primarily by elevated
LVEDP, since our cases had normal NT-proBNP; since the
completion of this pilot study, we have performed analysis on
NT-proBNP and invasive parameters in the WISE cohort and
found that NT-proBNP did not correlate with LVEDP (21). We
did not measure plasma metabolic profiles or perform glucose
tolerance testing to exclude pre-diabetes. However, we do not
believe that such limited metabolic information could have influ-
enced our interpretation of the present results, since neither group
had elevated hepatic TG content Or grossly abnormal fasting
metabolic parameters or visceral fat percentages.

Another potential limitation is limited number of diastolic
end-points used in this investigation. Conventional (Doppler de-
rived) diastolic measurements include mitral inflow velocities,
annular tissue velocities, and pulmonary venous flow velocities,
which were not assessed in this investigation. Instead we focused
on circumferential diastolic strain rate, using gold-standard MR
tissue tagging. Indeed, we have previously shown this metric
differentiates patients with ischemic syndrome, from healthy age-,
sex-, and BMI-matched controls (29). We have also shown that
this metric is more sensitive than other traditional MR derived
metrics of diastolic function, such as peak volumetric filling rate
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(29). Like other measures of diastolic function, however, circum-
ferential diastolic strain rate is likely load dependent and thus
would be influenced by pseudo-normalization. We do not believe
that this influenced our interpretation of the present results, how-
ever, since circumferential diastolic strain rate was lower than our
healthy controls, despite all of our patients having significantly
elevated LV filling pressures.

Myocardial TG content was measured in the septum. As
such, one cannot exclude the possibility of regional differ-
ences. Although CMD is considered to be a diffuse phenom-
enon, it may have regional heterogeneity (39); nevertheless,
none of the subjects had asymmetric septal hypertrophic car-
diomyopathy, and we do not suspect regional differences in
CMD or myocardial steatosis in our subject population.

Finally, many of our patients were on 	-blockers and/or
calcium-channel blockers. We do not believe these medica-
tions influences our present results, however, since these med-
ications were held for at least 24 h before imaging.

The data herein suggest that myocardial steatosis may play
an important mechanistic role in the development of diastolic
dysfunction in women with CMD and no obstructive CAD.
Detailed longitudinal studies are warranted to explore specific
treatment strategies targeting myocardial steatosis.
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