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Abstract

Objective: Diabetes is a metabolic disorder that causes the risk of stroke, heart disease, kidney failure, and other long-term
complications because diabetes generates excess sugar in the blood. Machine learning (ML) models can aid in diagnosing
diabetes at the primary stage. So, we need an efficient ML model to diagnose diabetes accurately.

Methods: In this paper, an effective data preprocessing pipeline has been implemented to process the data and random
oversampling to balance the data, handling the imbalance distributions of the observational data more sophisticatedly.
We used four different diabetes datasets to conduct our experiments. Several ML algorithms were used to determine the
best models to predict diabetes faultlessly.

Results: The performance analysis demonstrates that among all ML algorithms, random forest surpasses the current works
with an accuracy rate of 86% and 98.48% for Dataset 1 and Dataset 2; extreme gradient boosting and decision tree surpass
with an accuracy rate of 99.27% and 100% for Dataset 3 and Dataset 4, respectively. Our proposal can increase accuracy by
12.15% compared to the model without preprocessing.

Conclusions: This excellent research finding indicates that the proposed models might be employed to produce more accur-
ate diabetes predictions to supplement current preventative interventions to reduce the incidence of diabetes and its asso-
ciated costs.
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Introduction

Diabetes mellitus (DM) is a chronic disorder that affects
carbohydrate, protein, and fat metabolism, leading to abnor-
mal blood glucose levels.! It is classified into two main

types: type 1 and type 2 diabetes (T2D).> Type 1 diabetes
typically occurs in children but can manifest in adults, par-
ticularly in their late 30s and early 40s. Patients with type 1
diabetes are usually not obese and often present with a life-
threatening condition known as diabetic ketoacidosis.” The
etiology of type 1 diabetes involves damage to pancreatic
cells due to environmental or infectious agents, triggering
an autoimmune response against f-cells. Autoimmunity is
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considered the primary factor in the pathophysiology of
type 1 diabetes. Type 1 diabetes is also associated with
other autoimmune diseases.* On the other hand, T2D has
a distinct pathophysiology and etiology, characterized by
a combination of low insulin production and insulin resist-
ance. Obesity, physical inactivity, poor diet, and urbaniza-
tion contribute to the rising prevalence of T2D.?
Dysfunction of p-cells plays a crucial role in progressing
from prediabetes to diabetes. Despite their differing patho-
physiology, both types of diabetes share similar complica-
tions, including macrovascular and microvascular
complications.® It is a severe chronic disease,’ associated
with various consequences and increased mortality.®

Health regulations emphasize regular screenings for indivi-
duals with diabetes risk factors,” highlighting the importance
of timely identification and intervention. Preventive measures
are crucial alongside diabetes care.'® Early diagnosis and life-
style modifications, such as healthy eating and exercise, can
reduce the progression from impaired glucose tolerance to pre-
diabetes.'" Technology, particularly machine learning (ML),
has gained popularity for early detection and prevention in
healthcare.'>™"* ML in diabetes management offers a promising
avenue for predictive modeling. By analyzing vast datasets
encompassing patient demographics, medical history, and life-
style factors, ML algorithms can predict the likelihood of dia-
betes onset or progression with remarkable accuracy. These
models not only assist in early detection but also empower
healthcare providers to tailor personalized interventions, ultim-
ately mitigating complications and improving patient
outcomes. >

Several ML algorithms have been introduced for dia-
betes detection, offering benefits such as low computation
costs, robustness, and high performance.” For instance,
researchers have utilized classifiers such as Naive Bayes
(NB), decision tree (DT), adaptive boosting (AdaBoost),
and random forest (RF) for diabetes prediction,18 while
models such as generalized linear models with elastic net
regularization (Glmnet), RF, extreme gradient boosting
(XGBoost), and light gradient boosting (GB) machine
have been explored for predicting type 2 diabetes.'”
According to recent projections, the prevalence of diabetes
is expected to rise significantly, imposing a substantial
burden on healthcare systems worldwide.”° Early detection
and effective management of diabetes are crucial for pre-
venting complications and improving patient outcomes.
ML algorithms have gained attention for their potential to
enhance diabetes detection and prognosis by analyzing
complex and non-linear medical data.?’ The following
aims to provide a comprehensive overview of the ML
approaches employed for diabetes detection and prognosis.
By critically examining the existing research, we aim to
identify the strengths and limitations of different techniques
and highlight potential avenues for our proposal.

Ahmed et al.** developed an optimized ML-based classi-
fier model for diagnosing diabetes using clinical data. Their

approach included effective preprocessing techniques and
achieved superior efficiency compared to existing methods,
with an improvement in accuracy ranging from 2.71% to
13.13%. However, the generalizability of their model to differ-
ent datasets and populations requires further investigation.

Hasan et al.'” proposed a comprehensive architecture for
diabetes prognosis, incorporating outlier exclusion, data
normalization, and weighted ensembling of multiple ML
models. Their suggested ensemble model achieved an
area under curve (AUC) score of 95% on the Pima Indian
dataset. However, the study’s limitation is that it focused
only on the performance of a single dataset, limiting the
assessment of generalizability.

Howlader et al.* applied ML strategies to identify T2D
patients. They performed extensive feature selection and
analysis using various classification algorithms, with the
generalized boosted regression model achieving the best
accuracy rate of 90.91%. However, the study’s scope was
limited to the prediction of T2D and did not explore other
types of diabetes or broader diabetes prognosis.

Deepajothi et al.>* aimed to forecast diabetes in its initial
phases by incorporating hereditary factors into a fuzzy clas-
sification model. Their suggested model achieved an accur-
acy rate of 83% for identifying T2D using the Pima Indian
dataset. However, the study’s limitation is that it did not
compare the performance of their models with other exist-
ing diabetes prognosis methods.

Rajagopal et al.*> developed a modified combined approach
of artificial neural networks with genetic algorithms for diabetes
detection. Their model achieved an accuracy rate of 80% on the
Pima Indian dataset. However, the study did not explore the
performance of other ML algorithms’ performance or evaluate
their approach’s generalizability on different datasets.

Nuankaew et al.?® proposed a unique predicting approach
called average weighted objective distance (AWOD) for dia-
betes forecasting. Their technique achieved an accuracy rate
of 93.22% on the Pima Indian dataset and 98.95% on the
Mendeley dataset. However, the study did not compare the per-
formance of AWOD with other existing diabetes prediction
methods.

Wei et al.?” developed a methodology to estimate the use-
fulness of ambient chemical exposure in diagnosing DM.
Their ML model utilizing the least absolute shrinkage and
selection operator regression achieved an AUC of 80% for
diabetes detection. However, the study’s limitation is that it
focused only on the prediction of diabetes and did not consider
other aspects such as prognosis or subtype classification.

Sivaranjani et al.?® used support vector machine (SVM)
and RF ML algorithms to predict the likelihood of develop-
ing diabetes-related disorders. The RF model achieved an
accuracy of 83% after feature selection and principal com-
ponent analysis dimensionality reduction. However, the
study did not explore other classification algorithms’ per-
formance or evaluate their approach’s generalizability on
different datasets.
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Ramesh et al.* introduced an end-to-end monitoring
system for diabetes risk stratification and control. Their
SVM model achieved an accuracy rate of 83.20% using
the Pima Indian dataset. However, the study’s limitation
is that it focused on risk stratification and did not exten-
sively evaluate the performance of their model on other
aspects such as diagnosis or prognosis.

Ravaut et al.*® constructed an ML-based GBDT model for
estimating adverse outcomes related to diabetes. Their model
achieved an AUC statistic of 77.7% for predicting the three-
year risk of developing diabetes complications. However,
the study’s limitation is that it relied on organizational health
data from a specific region, and the generalizability of their
model to other populations requires further investigation.

Naz et al.>' proposed a procedure for early diabetes esti-
mation using various ML classifiers and the Pima dataset.
Their deep learning (DL) approach achieved a success
rate of 98.07% and retrieved viable properties. However,
the study’s limitation is that it focused solely on
DL-based methods and did not explore the performance
of other ML algorithms.

Hassan et al.** provided a diabetes prognosis model
based on ML algorithms, achieving accuracy rates of
94.5%, 96.5%, and 97.5% for logistic regression (LR),
SVM, and RF, respectively. However, the study’s limita-
tion is that it utilized a relatively small dataset of 250 varia-
tions, raising questions about the generalizability of its
model to larger and more diverse datasets.

Gupta et al.*®> developed prognostic tools using DL and
quantum ML (QML) approaches. Their DL classifier
achieved an accuracy rate of 95%, while the QML classifier
had 86% accuracy. However, the study’s limitation is that it
focused on comparing DL and QML methods without con-
sidering other traditional ML algorithms.

Gupta et al.** introduced the application of Moth-Flame
optimization (MFO), a metaheuristic algorithm, for classifying
diabetes data. They incorporated MFO to update feedforward
neural network weights and conducted performance evalua-
tions on the Wisconsin Hospital dataset, along with a com-
parative analysis of contemporary literature.

Majhi et al.®® investigated and compared multiple ML
approaches for early diabetes risk assessment and medical
diagnosis enhancement. Their study employed two real-world
datasets: a diabetic clinical dataset (DCA) from Assam, India,
and the publicly available PIMA Indian diabetic dataset.
Various classifiers were utilized, with LR yielding the most
promising results on PIMA, achieving an accuracy of 79.22%.

In contrast to these studies, our current work aims to
address the limitations mentioned above. We propose an opti-
mized data preprocessing pipeline, tackle imbalanced datasets,
prevent overfitting using k-fold cross-validation, and conduct
extensive experimental validation on diverse datasets.

It is undoubtedly challenging to predict diabetes in its
early stages due to the complex interdependencies between
numerous factors. Creating a medical prediction model that

aids medical professionals in the prediction procedure is
necessary. An accurate diabetes prognosis is crucial to
prevent premature death. Therefore, achieving a greater accur-
acy rate with a lower error rate is required to forecast diabetes
better. In this paper, we have adopted several ML algorithms
to predict diabetes and identify the best one based on clinical
data related to diabetes to address these issues. To improve
accuracy and achieve higher performance, it is necessary to
preprocess the raw data to match the criteria of different clas-
sifiers. An efficient data preprocessing pipeline is provided to
the learning algorithms for predictive modeling. To assess our
proposal, an extensive experimental analysis has been per-
formed on four diabetes datasets, each with different attributes.
Experimental results show that our proposal surpasses
state-of-the-art research in predicting diabetes, with an
average accuracy of 95.5%.
The paper makes the following contributions:

e Optimized data preprocessing pipeline: We develop a
robust pipeline for preprocessing diabetes-related data-
sets. This includes handling missing values, outliers,
label encoding, and normalization. Our preprocessing
techniques improve dataset quality, leading to enhanced
classifier performance.

e Addressing imbalanced datasets: We tackle the chal-
lenge of imbalanced data by implementing random over-
sampling techniques. This creates a balanced dataset,
improving the performance of diabetes detection and
prognosis models.

e Opverfitting prevention: To prevent overfitting, we
employ k-fold cross-validation during model training.
This ensures that the models generalize well to unseen
data, enhancing their reliability for diabetes prediction.

o Extensive experimental validation: Through extensive
experiments on diverse diabetes datasets, our approach
consistently outperforms existing methods. We demon-
strate  superior accuracy, precision, recall, and
F1-score, validating its effectiveness for diabetes detec-
tion and prognosis.

These contributions advance the field of diabetes research by
providing an optimized preprocessing pipeline, addressing
dataset imbalance, preventing overfitting, and demonstrating
superior performance through extensive experimentation.
The hypothesis of this paper is described as follows:

Hypothesis

This study proposes an optimized data preprocessing
pipeline and addresses the challenge of imbalanced data-
sets in the context of diabetes detection and prognosis. By
implementing robust preprocessing techniques, including
handling missing values, outliers, label encoding, and
normalization, and employing random oversampling, we
hypothesize that the dataset quality will be enhanced,
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leading to improved classifier performance. Furthermore, by
employing k-fold cross-validation to prevent overfitting and
conducting extensive experimental validation, we expect to
demonstrate our approach’s superiority in accuracy, preci-
sion, recall, and Fl-score compared to existing methods.
These findings will validate the effectiveness of our proposed
methodology for diabetes detection and prognosis, making a
significant contribution to the field.

The remainder of this paper is structured as follows: The
“Proposed Methodology” section outlines our proposed
approach and the various machine learning algorithms
employed for diabetes prediction. In the “Results” section,
we present the experimental findings. The “Discussion”
section provides a comparative analysis of our model
against existing methods. Finally, the “Conclusion” section

summarizes our findings and discusses potential future
enhancements.

Proposed methodology

In this section, we have described our proposed method-
ology along with the different machine algorithms adopted
in the system. Firstly, we explain the working principle of
the proposal. Then, we briefly describe the ML models.

Figure 1 shows the basic workflow of the proposed
approach. The proposal has five significant parts: data col-
lection, data preprocessing, handling imbalanced class pro-
blems, splitting datasets using k-fold cross-validation and
applying ML algorithms to train and test the models, and
evaluating the performance.

Data Collection

e e R
Dataset-1 Dataset-2 Dataset-3

—
000 0 v

.

Fold2 [ [ ]
Fold-3 | I |
rolak [ —
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fold

Data Preprocessing ML Model
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- AdaBoost
- Gradient Boosting
- Extreme Gradient Boosting
- /
Oversampling for class
imbalance dataset
K-Fold Cross Validation .
Train Data
Foldl [ l—> i
Training
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Figure 1. The workflow diagram for diabetes prediction.
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The steps performed in our study are as follows:

e Data collection: We gathered the necessary data from
publicly available sources.

e Data preprocessing: After data collection, we conducted
data preprocessing to prepare the dataset for model train-
ing and evaluation. This includes cleaning the data,
handling missing values, and performing outlier hand-
ling, label encoding, and data normalization.

e Handling imbalanced class problems: To address any class
imbalance issues in the dataset, we employed techniques
such as oversampling, undersampling, or synthetic data gen-
eration to balance the classes. This step aims to prevent
biases in the model due to imbalanced data.

o Splitting datasets using k-fold cross-validation: We utilized
k-fold cross-validation to split the dataset into training and
testing folds. The preprocessing steps, including data bal-
ancing, were applied within each fold. This ensures that
the data preprocessing steps are performed independently
for each fold and prevents any information leakage
between the training and testing sets.

e ML model building and evaluation: Within each fold, we
built ML models using the training data and evaluated
their performance on the corresponding testing data.
This process was repeated for each fold, resulting in
multiple model evaluations.

By following this pipeline, we aimed to ensure a robust
evaluation of our proposed method for diabetes prediction.
In our proposed methodology shown in Figure 1, the “Data
Preprocessing” box is placed outside the k-fold cross-
validation loop in this proposal for the following reasons:

e Preventing data leakage: By performing data preprocessing
separately for each fold, outside the cross-validation loop,
information leakage from the test set to the training set is
avoided. This ensures unbiased evaluation and a more accur-
ate assessment of the model’s generalization capabilities.

e Realistic evaluation: Applying data preprocessing tech-
niques outside the cross-validation loop mimics real-
world scenarios where models encounter unseen, pre-
processed data during deployment. This approach pro-
vides a realistic evaluation of the model’s effectiveness
and its performance on truly unseen data.

e Efficiency: Placing data preprocessing outside the cross-
validation loop improves computational efficiency.
Preprocessing is performed once on the entire dataset
before cross-validation, reducing redundant computa-
tions within each fold and speeding up the overall evalu-
ation process.

It is important to consider the specific requirements of the
study and the nature of the preprocessing techniques used
when deciding the placement of data preprocessing and cross-
validation to ensure unbiased and reliable model evaluation.

Data collection

To ensure the robustness of our model, we gathered data
from four distinct datasets, each containing different vari-
ables related to diabetes. These datasets were collected
from various sources, including demographic data, diabetes
statistics, and health characteristics obtained from indivi-
duals across different countries and healthcare institutions.
The first dataset used in our study is the Pima Indian
Diabetes dataset,’® which is widely recognized as a valu-
able resource for evaluating ML algorithms in predicting
diabetes within the general population. Dataset 2,7 referred
to as the Austin public health diabetes self-management
education participant demographics 2015-2017, comprises
demographic information collected from participants in the
diabetes self-management education program conducted by
Austin Public Health. For Dataset 3,38 a survey was con-
ducted to gather data from 950 records, including 19 attri-
butes that have been identified as having a measurable
influence on diabetes. Lastly, Dataset 4% was collected
from the Iraqi society, as well as from the laboratory of
Medical City Hospital and the Specialized Center for
Endocrinology and Diabetes at Al-Kindy Teaching
Hospital. By utilizing these diverse datasets, we aim to
enhance the generalizability and applicability of our pro-
posed model for diabetes prediction and prognosis.

Data analysis and data preprocessing

Data preprocessing is the process of preparing original data
for ML. It is indeed the most important step in the process
of developing an ML model. It is a necessary step for ML
algorithms to improve the model’s accuracy and efficiency.

Data preprocessing covers data preparation, which
includes data integration, cleansing, normalization, and
transformation, as well as data reduction activities such as
feature selection, instance selection, and discretization.

We have conducted some data analysis after collecting
the data. Then, we have done preprocessing tasks including
outliers removal and dealing with missing values, data nor-
malization, encoding, and so on.

1. Outliers handling: A dataset may contain extreme
values that are beyond the acceptable limits and dissimi-
lar to the rest of the data. This kind of data may reduce
the performance of the ML algorithm. Any value <
Q) — 1.5 X interquartile range (IQR) or > 03 — 1.5 X
IQR is considered as outlier. Identifying and handling
outliers can be expressed as the following Algorithm
1 using first quartile Q;, third quartile O3, and IQR:

2. Missing value handling: One of the most difficult tasks
for analysts is dealing with missing values, because
making the proper decision on how to deal with them
leads to more robust data models. We can handle
missing values in various ways, such as ignoring the
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row, imputation of the missing values with data means,
median or mode of the observation, imputation with differ-
ent ML algorithms or prediction using regression, so on.
To increase the model performance, the mean value of
the respective attribute has been imputed to manage the
missing values, which are crucial for diabetes prediction
and can be calculated in equation (1) as follows:

ey

mean(X) if X is missing
X = .
by otherwise

here, the value of instance x is imputed with the attribute
mean as denoted as mean(X).

Label encoding: All the data entered in the ML algo-
rithm must be numerical. However, in most cases, the
dataset may contain categorical data rather than numer-
ical values. So, if the dataset contains any categorical
attribute, it must be needed to convert to numeric
values before fitting and evaluating an ML model.
Label encoding is the process of transforming labels
of text/categorical values into a numerical format
which is understandable by the ML algorithms. For

Algorithm 1 Handling outlier problem

Require:
Q1: first quartile (25%) of the data
Q3: third quartile (25%) of the data
U: upper limit; L :lower limit
IQR: interquartile range; N: number of features
Ensure: Outlier removed dataset
IR < Q3 — Q1
U< Q1+1.5%I0R
L < Q03— 1.5%rmlQR
fori=0to S do
if XU then
X<U
else if XL then
X1l
end if

end for

example, we can convert the categorical values of
Gender status “Male” to “1” and “female” to “0.”

4. Standardization: When features of an input dataset
have considerable variations between their ranges or
when they are collected or measured in different measure-
ment units, standardization becomes necessary. Differ-
ences hamper the performance results for ML models in
the range of initial features. So normalization or standard-
ization can solve this issue and improve the prediction
quality. We have used standardization to rascal the
values of any attribute for better accuracy of the classifica-
tion model using the following equation (2):

5, = = mean(X) 2
(o2
here, x,, mean(X) and o represent the standardization value,
mean value, and standard deviation of the attribute X.

Class balancing using oversampling

There is a class imbalance when observation in one class
exceeds observation in other classes. This may cause poor per-
formance as the ML algorithm may ignore the minority class. To
deal with this problem, we apply the random oversampling
method to balance the dataset. The benefit of oversampling is
that no information from the original training set is lost
because all members of the minority and majority classes are
kept, and it also significantly increases the size of the training set.

ML algorithms

We have used seven different ML classifiers to train the
model, including DT, NB, K-nearest neighbor (KNN),
LR, extreme gradient boosting (XGBoost), and SVM, and
predict diabetes. Depending on several performance
metrics, the performance of each classifier has been ana-
lyzed. The following subsection will describe the ML algo-
rithms used for the predictive model.

e Naive Bayes (NB):
-NB is based on Bayes’ theorem.** It assumes that the value
of one feature in a class is independent of the presence of any
other feature. Despite its simplicity, NB often outperforms
more sophisticated classification methods.?

e Decision tree (DT):
- DT is a supervised classifier commonly used for solving
classification problems.*! It effectively captures decision-
making information from the dataset. Internal nodes
represent features, and leaf nodes represent outcomes.

¢ Random forest (RF):
- RF is an ensemble classifier that trains multiple DTs.** The
final classification is based on the majority vote of all trees.
Increasing the number of trees generally improves
performance.
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o Logistic regression (LR):
- LR is a supervised classifier used for binary classifica-
tion tasks based on event probabilities.'® It assumes
linear separability of data.

e K-nearest neighbor (KNN):
- KNN is a supervised learning method for classifica-
tion.** It assigns the new case to the class nearest to it
in the training dataset.

e Gradient boosting (GB):
- GB predicts continuous or categorical target variables
by iteratively improving models.** It corrects errors
from previous models, enhancing overall performance.

o Extreme gradient boosting (XGBoost):
- XGBoost is a gradient-boosted DT implementation
known for its speed and efficiency.**

e Adaptive boosting (AdaBoost):
- AdaBoost is an ensemble learning technique that
improves the performance of ML algorithms, often
using DTs with only one split.*’

e Support vector machine (SVM):
- SVM efficiently separates datasets by finding optimal
decision boundaries or hyperplanes in n-dimensional
space, maximizing the margin between support vectors.*®

K-fold cross-validation

Cross-validation is a resampling technique for evaluating
ML models. It guarantees that every observation in the
dataset can be selected in the training and test data. It is
one of the best tactics if we have limited raw data. A
badly chosen value for k could result in an inaccurate illus-
tration of the model’s skill, such as accuracy with a high
variance. A k = 10 means the k-fold process divides the
whole dataset five or 10 times for evaluating the model.
For our experiments, we use k = 10 fold validation and
take the performance average for the result analysis.

Results

We have conducted our proposal using various preprocessing
techniques as well as utilizing several ML algorithms to
analyze and find the best model to use in the prediction of dia-
betes for clinical purposes. We have tested our proposal with
four different datasets and each of them contains different
types and numbers of attributes to prove that our preprocessing
techniques are more efficient than the normal preprocessing
process as well as other existing research works.

Experimental setup

All the experiments were conducted on a computer having an
Intel Core i7 processor with a 4 GB graphics card, 16 GB
RAM, and a 64-bit Windows operating system running at
1.80GHz using the Python programming language. The
dataset is shuffled and divided into 10 folds at random, with
one fold used for the testing and the others used for training

Table 1. Confusion matrix.

Yes TP FP

No FN N

TP: true positive; FP: false positive; FN: false negative; TN: true negative.

each ML model. Then, the resultant average value of any per-
formance results has been taken to assess them.

Performance metrics

The prediction of any ML algorithm could have four dis-
tinct results depending on the confusion matrix as indicated
in Table 1: true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN).

Then, we consider the following metrics to analyze the
proposal:

e Accuracy measures the overall correctness of the model’s
predictions. It is calculated as the ratio of the number of
correct predictions (TPs and TNs) to the total number of
predictions made (equation (3)).

TP +TN

A = 3
Y = TP FFP+ FN + TN 3)

e Precision quantifies the ability of the model to avoid
FPs. It is calculated as the ratio of TPs to the sum of
TPs and FPs (equation (4)).

TP

Precisi __ v
recision TP + FP

“)
e Recall measures the model’s ability to capture all posi-
tive instances. It is calculated as the ratio of TPs to the
sum of TPs and FNs (equation (5)).
TP

Recall = ———— (@)
TP + FN

o The F1-score is the harmonic mean of precision and recall,
providing a balance between the two metrics. It is calcu-
lated as twice the product of precision and recall divided
by the sum of precision and recall (equation (6)).

(precision * recall)
(precision + recall)

F1_score = 2 * (6)
e Mean absolute error (MAE) measures the average abso-
Iute difference between predicted values and actual
values. It is calculated as the sum of absolute differences
divided by the total number of instances (equation (7)).

-1, predict(i) — actual(i)
n

MAE =

)
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e Mean-squared error (MSE) measures the average of the
squares of the errors or deviations. It is calculated as the
sum of squared differences divided by the total number
of instances (equation (8)).

3", (predict(i) — actual(i))>
n

MSE = 8)

e Root MSE (RMSE) is the square root of the MSE
and represents the average magnitude of the error. It
provides a measure of how spread out the errors are
(equation (9)).

S, (predict(i) — actual(i))*
n

RMSE =

®

e The area under receiver operative curve (AUROC)
quantifies a binary classifier’s ability to distinguish
between classes. It ranges from 0.5 to 1, where higher
values signify better performance. In medical settings,
AUROC assesses a test’s accuracy in identifying
patients with a condition while minimizing misclassifi-
cations. It offers a concise measure of the model’s
overall discriminative power, crucial for evaluating
diagnostic tools in clinical practice.

Hyperparameters

Hyperparameter selection is an important aspect of ML
model development, and we acknowledge that our previ-
ous submission lacked information on the hyperparameter
optimization process. Here, we provided an overview of
the hyperparameter values used for each ML model in
Table 2.

In the case of the DT and RF models, we used the
default hyperparameter values as provided by the respect-
ive implementations. For LR, we set the maximum
number of iterations (max_iter) to 1,200,000. For SVMs,
we used a gamma value of “scale” and enabled probability
estimation by setting the probability parameter to True.
The KNNs model utilized a value of 10 for the number
of neighbors (n_neighbors). For AdaBoost, we set the
number of estimators (n_estimators) to 100. In the case
of GB, we used 100 estimators, a learning rate of 1.0,
and a maximum depth of 1. Lastly, the XGBoost model
employed 100 estimators, a learning rate of 1.0, and a
maximum depth of 30.

Results of Dataset 1

The Pima Indian Diabetes Dataset is one of the most useful
datasets for testing ML algorithms for predicting diabetes in
the general population.®® This dataset was provided by the
National Institute of Diabetes and Digestive and Kidney
Diseases and is used to determine whether a patient has

Table 2. Hyperparameter tuning values for ML models.

1 Decision tree Default Default
2 Random forest Default Default
3 Logistic Max iterations 1,200,000
regression (max_iter)
4 Support vector Gamma (gamma) “Scale”
machines
Probability True
(probability)
5 K-nearest n_neighbors 10
neighbors
6 AdaBoost n_estimators 100
7 Gradient boosting  n_estimators 100
Learning rate 1.0
(learning_rate)
Max depth 1
(max_depth)
8 XGBoost n_estimators 100
Learning rate 1.0
(learning_rate)
Max depth 30

(max_depth)

AdaBoost: adaptive boosting; ML: machine learning; XGBoost: extreme
gradient boosting.

diabetes based on diagnostic measures such as pregnancy,
glucose level, blood pressure, skin thickness, diabetes pedi-
gree function, insulin, body mass index (BMI), and age.
The attributes of the Pima Indian Diabetes Dataset are
listed below:

—_—

Pregnancies: Number of occurrences of pregnancy

2. Glucose: In a glucose tolerance measure, the plasma
glucose concentration after 2 h

3. Skin thickness: The thickness of the skin folds on the

triceps (mm)

Insulin: Serum insulin (#U/ml) after 2 h

BMI: Body mass index

Age: Age of the person in years

Outcome: Class variable as a result (0 or 1)

Nk

The boxplot in Figure 2(a) shows that the dataset contains
outliers, whereas Figure 2(b) shows clean data after applying
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the preprocessing algorithm. In the boxplot, different features
have multiple outliers data which are indicated by multiple
diamond signs beside each feature and after handling the
outlier the boxplot looks like no diamond signs on each
feature which proves no outlier existed.

Figure 2(d) depicts the balanced dataset distribution of
the original imbalance dataset in Figure 2(c), where label
0 represents no diabetes and 1 represents diabetes. In the
pie chart, we can see that it contains more portion of 1
than O and after random oversampling, we can see that
we have the same portion of labels 0 and 1, ensuring data
is balanced now.

Figure 3(a) and (b) presents the accuracy and MSE of
our experiments for Dataset 1. The accuracy comparison
before and after applying the proposal. The accuracy
results of DT, RF, LR, SVM, KNN, AdaBoost, GB and
XGBoost are 77.27%, 85.53%, 78.95%, 78.95%, 80.26%,
80.26%, 81.58%, and 83%, respectively. We found that,
depending on the ML algorithms, accuracy performance
increases from 4.95% to 12.15%. On the other hand, the
MSE values of the algorithm reduced significantly,
5.27%, 12.15%, 5.95%, 4.95%, 8.26%, 6.23%, 8.85%,
and 10.27% for DT, RF, LR, SVM, KNN, AdaBoost,
GB, and XGBoost, respectively.

Table 3 summarizes the other performance metrics. We
found that the proposal can improve the precision values
from 3.03% to 15.98% for any ML approach. An efficient
data preprocessing and data balancing can improve the
data quality; hence ML algorithms can accurately classify
the test data. We found similar results for recall; the
values increased from 0.41% to 11.94%. The Fl-score
also improved as expected, from 1.1% to 12.25%. On the
other hand, the table also indicates that due to the high per-
formance of the proposal, the values of MAE and RMSE
are reduced significantly. It is observed that MAE values
reduced from 4.95% for SVM to 12.15% for RF.
Similarly, RMSE reduced greatly from 5.11% to 13.56%.

The extensive analysis of the experiments shows that
RF outperforms others as it is an ensemble classifier that
works by training a large number of DTs, leading to
higher accuracy with good reliable predictions than other
single algorithms. So, we consider this model as our pro-
posed model.

Figure 4(a) depicts the confusion matrix and Figure 4(b)
shows the receiver operative curve (ROC) curve for our
proposed model. In the confusion matrix, the large
number of TP and TN than FP and FN is a very crucial
point to be a better prediction model for ML. In
Figure 4(a), we can see that the TP and FN rates are high
and FN and FP rates are very low which gives a better
sign of diabetes prediction. The TP, TN, FP, and FN rates
are 45%, 41%, 8%, and 6%, respectively. On the other
hand, in the ROC, the value of AUC which is near 1 is
the best model for ML. In Figure 4(b), we can see that
the AUC value is 0.93 (93.07%), which means the positive

and negative labels are mostly segregated, and the model is
effective.

After analyzing multiple performance indicators, we can
find that among all the ML algorithms RF outperforms
others with an accuracy rate of 86%, 14% MSE rate, and
8% FP, as well as 6% FN rates.

Results of Dataset 2

Dataset 2°7 namely, Austin public health diabetes self-
management education participant demographics 2015—
2017, contains demographic information collected from
Austin Public Health, Austin. Among the 1688 rows and
25 columns; various important attributes are considered
for our experiment including diabetes status, health indica-
tors, health behaviors including race/ethnicity diabetes
status, heart disease, high blood pressure, tobacco use, pre-
vious diabetes education, diabetes knowledge, fruits and
vegetable consumption, sugar-sweetened beverage con-
sumption, and so on. The attributes of the Austin Public
Health dataset are listed below:

1. Age: Age in year

2. Gender: Gender of the patient

3. Race/ethnicity: Race/ethnicity of participant

4. Heart disease: Heart disease diagnosis (yes/no)

5. High blood pressure: High blood pressure diagnosis
(yes/no)

6. Tobacco use: Tobacco user (yes/no)

7. Previous diabetes education: Previous diabetes educa-

tion reported by participant (yes/no)
8. Diabetes knowledge: Self-reported knowledge of dia-
betes (poor/fair/good)
9. Fruits and vegetable consumption: Fruits and/or vege-
tables eaten each week
10. Sugar-sweetened beverage consumption:
Sugar-sweetened beverages consumed each week
11. Food measurement: Number of times food was mea-
sured each week
12. Carbohydrate counting: Number of times carbohy-
drates were counted each week
13. Exercise: Number of days participant exercised each
week
14. Diabetes status: Diabetes status (yes/no) of participant

The boxplot in Figure 5(a) shows that the dataset contains
outliers, whereas Figure 5(b) shows clean data after apply-
ing the preprocessing algorithm. In the boxplot, different
features have multiple outliers data which is indicated by
multiple diamond signs beside each feature and after hand-
ling the outlier the boxplot looks like no diamond signs on
each feature which proves no outlier existed.

Figure 5(d) depicts the balanced dataset distribution of
the original imbalance dataset Figure 5(c), where the label
“No diabetes” represents no diabetes and “Diabetes”




10

DIGITAL HEALTH

Pregnancies

Glucose

BloodPressure
SkinThickness

Insulin

BMI
DiabetesPedigreeFunction
Age

Outcome

(a) with outlier

Pregnancies

Glucose

BloodPressure
SkinThickness

Insulin

BMI
DiabetesPedigreeFunction
Age

Outcome

(b) without outlier

o

100 200

1.0

(d) with oversampling

300

-

(¢) without oversampling

L XX AR XX

400 500 600

Diabetes
mm 0.0
mm 1.0

Diabetes
mm 1.0
mm 0.0

¢

700

¢

800

900

200

Figure 2. Before and after outlier removal and oversampling results: (a) with outlier; (b) without outlier; (c) without oversampling;
and (d) with oversampling.




Talukder et al.

11
\I:I Original @ Proposal
100 -
N L 8% 8 & & B
— ! o o o 3 o ® ™ _©
o 80 X 2 o < = <5 2 ™~ =
> R N o = S N
2 60
®©
—
3
8 40+
<
20 A
0 . .
DT RF LR SVM KNN AdB GB XGB
Machine Learning Algorithm
(@ Accuracy
40
- 1 \I:I Original @ Proposal
A ~ ~
304 o S - © 5 Q N
— o) © Yo}
R 251 N 8 & N N
- — N~ N~ o
< 201 % 2 b
5 I
—_
RER 3
10 -
5_
0 . .
DT RF LR SVM KNN AdB GB XGB
Machine Learning Algorithm
() MSE

Figure 3. The performance results of Dataset 1: (a) accuracy and (b) mean-squared error (MSE).

represents diabetes. In the pie chart, we can see that it con-
tains more portion of “No diabetes” than “Diabetes” and
after random oversampling, we can see that we have an
equal portion of the labels “No diabetes” and “Diabetes”
which ensures data is balanced now.

Figure 6(a) and (b) presents the accuracy and MSE of
our experiments for Dataset 2. The accuracy comparison
before and after applying the proposal. The accuracy
results of DT, RF, LR, SVM, KNN, AdaBoost, GB, and
XGBoost are 95.45%, 98.48%, 83.33%, 93.94%, 87.88%,
96.97%, 93.94%, and 93.94%, respectively. We found
that, depending on the ML algorithms, accuracy perform-
ance increases from 0% to 8.74%. On the other hand, the

MSE values of the algorithm reduced significantly,
5.71%, 8.74%, 0%, 5.48%, 1.52%, 5.94%, 4.2%, and
1.63% for DT, RF, LR, SVM, KNN, AdaBoost, GB, and
XGBoost, respectively.

The other performance metrics are summarized in
Table 4. We found that, for any ML approach, the proposal
can improve the precision values from 0% to 14.41%. An
efficient data preprocessing and data balancing can
improve the data quality, hence ML algorithms can accur-
ately classify the test data. We found similar results for
recall, the values increase from 8.27% to 20.57%. The
Fl-score also improved as expected from 0.47% to
14.19%. On the other hand, the table also indicates that
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Table 3. Performance result of Dataset 1 (Pima Indian dataset).

DT 72.32 75.35 72.11 76.26 71.96
RF 70.98 85.99 70.81 85.99 70.89
LR 73 78.95 73.01 73.7 73

SVM 74.34 78.95 73.7 74.11 73.96
KNN 71.99 82.92 71.99 73.89 71.99
AdaBoost  71.68 78.85 71.31 77.21 71.48
GB 70.39 79.89 70.71 79.89 70.54
XGBoost 70.51 83.09 71.11 83.05 70.75

75.72 28 22.73 52.92 47.67
85.99 26.62 14 51.6 37.42
75.06 27 21.05 51.96 45.88
75.06 26 21.05 50.99 45.88
75.68 28 19.74 52.92 Lh.43
77.87 25.97 19.74 50.96 44.43
79.89 27.27 18.42 52.22 42.92
83 27.27 17 52.22 41.23

ML: machine learning; MAE: mean absolute error; RMSE: root mean-squared error; DT: decision tree; RF: random forest; LR: logistic regression; SVM: support
vector machine; KNN: K-nearest neighbor; AdaBoost: adaptive boosting; GB: gradient boosting; XGBoost: extreme gradient boosting.

due to the high performance of the proposal, the values of
MAE and RMSE are reduced significantly. It is observed
that MAE values reduced by 8.74% for RF to 0% for LR.
Similarly, RMSE reduced greatly from 19.72% to 0%.

The extensive analysis of the experiments shows that RF
outperforms others so we consider this model as our pro-
posed model. Figure 7(a) depicts the confusion matrix
and Figure 7(b) shows the ROC curve for our proposed
model. In the confusion matrix, the large number of TP
and TN than FP and FN is a very crucial point to be a
better prediction model for ML. In Figure 7(a), we can
see that the TP and FN ratess are high and FN and FP
rates are very low, which gives a better sign of diabetes pre-
diction. The TP, TN, FP and FN rates are 56.06%, 42.42%,
1.52%, and 0%, respectively. On the other hand, in the
ROC curve, the value of AUC which is near 1 is the best
model for ML. In Figure 7(b), we can see that the AUC
value is 0.99 (99.35%) which means the positive and nega-
tive labels are mostly segregated, and the model is effective.

After analyzing multiple performance indicators, we can
find that among all the ML algorithms RF outperforms
others with an accuracy rate of 98.48%, 0% MSE rate,
and 1.52% FP as well as 0% FN rates.

Results of Dataset 3

Diabetes 3*® conducted a survey and collected a dataset
containing 950 records and 19 attributes that have a meas-
urable influence on diabetes such as family diabetes history,
blood pressure, exercise, BMI, smoking level, alcohol con-
sumption, sleeping hours, food habits, pregnancy, urination

frequency, stress level, and so on. The attributes of the
survey dataset are listed below:

Age: Age in year

Gender: Gender of the participant
Family_Diabetes: Family history with diabetes
highBP: Diagnosed with high blood pressure
PhysicallyActive: Walk/run/physically active
BMI: Body mass index

Smoking: Smoking

Alcohol: Alcohol consumption

Sleep: Hours of sleep

10. SoundSleep: Hours of sound sleep

11. RegularMedicine: Regular intake of medicine
12. JunkFood: Junk food consumption

13. Stress: Not at all, sometimes, often, always
14. BPLevel: Blood pressure level

15. Pregancies: Number of pregnancies

16. Pdiabetes: Gestation diabetes

17. UriationFreq: Frequency of urination

18. Diabetic: Yes or no

NN B PN

b

We found a total of 48 missing values in the original
dataset, including four missing values for BMI, 42
missing values for Pregnancies, one missing value for
Pdiabetes, and one missing value for Diabetic.

The boxplot in Figure 8(a) shows that the dataset con-
tains outliers, whereas Figure 8(b) shows clean data after
applying the preprocessing algorithm. In the boxplot, differ-
ent features have multiple outliers data which is indicated
by multiple diamond signs beside each feature and after
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Figure &. Confusion matrix and receiver operative curve (ROC)
curve of Dataset 1: (a) confusion matrix and (b) ROC curve.

handling the outlier, the boxplot looks like no diamond
signs on each feature, which proves no outlier existed.

Figure 8(d) depicts the balanced dataset distribution of
the original imbalance dataset 8(c). where the label “No”
represents no diabetes and “Yes” represents diabetes. In
the pie chart, we can see that it contains more portion of
“No” than “Yes,” and after random oversampling, we can
see that we have an equal portion of the labels “No” and
“Yes,” which ensures data is balanced now.

Figure 9(a) and (b) presents the accuracy and MSE of
our experiments for Dataset 3. The accuracy comparison
before and after applying the proposal. The accuracy
results of DT, RF, LR, SVM, KNN, AdaBoost, GB, and
XGBoost are 98.54%, 97.81%, 91.11%, 91.97%, 88.32%,
91.58%, 92.63%, and 99.27%, respectively. We found
that, depending on the ML algorithms, accuracy perform-
ance increases from 2.25% to 10.75%. On the other hand,
the MSE values of the algorithm reduced significantly,
2.98%, 2.25%, 8.63%, 10.75%, 7.66%, 3.26%, 4.31%,
and 3.71% for DT, RF, LR, SVM, KNN, AdaBoost, GB,
and XGBoost, respectively.
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Figure 5. Before and after outlier removal and oversampling
results: (a) with outlier; (b) without outlier; (c) without
oversampling; and (d) with oversampling.

The other performance metrics are summarized in
Table 5. We found that, for any ML approach, the proposal
can improve the precision values from 1.77% to 9.20%. An
efficient data preprocessing and data balancing can improve
the data quality, hence ML algorithms can accurately clas-
sify the test data. We found similar results for recall, the
values increase from 2.06% to 25.34%. The F1-score also
improved as expected from 1.99% to 22.74%. On the
other hand, the table also indicates that due to the high
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Figure 6. The performance results of Dataset 2: (a) accuracy and (b) mean-squared error (MSE).

performance of the proposal, the values of MAE and RMSE
are reduced significantly. It is observed that MAE values
reduced from 2.25% for RF to 10.75% for SVM.
Similarly, RMSE reduced greatly from 5.15% to 15%.

The extensive analysis of the experiments shows that
XGBoost outperforms others as it is a gradient-boosted
DT solution that uses L1 and L2 regularization which
leads to getting a better accuracy rate than others. So, we
consider this model as our proposed model.

Figure 10(a) depicts the confusion matrix and
Figure 10(b) shows the ROC curve for our proposed
model. In the confusion matrix, the large number of TP
and TN than FP and FN is a very crucial point to be a

better prediction model for ML. In graph 10(a), we can
see that the TP and FN rates are high and the FN and FP
rates are very low, which gives a better sign of diabetes pre-
diction. The TP, TN, FP, and FN rates are 49.64%, 44.53%,
3.65%, and 2.19%, respectively. On the other hand, in the
ROC curve, the value of AUC which is near 1 is the best
model for ML. In Figure 10(b), we can see that the AUC
value is 0.99 (99.36%) which means the positive and nega-
tive labels are almost segregated, and the model is effective.

After analyzing multiple performance indicators, we can
find that among all the ML algorithms XGBoost outper-
forms others with an accuracy rate of 99.27%, 0.73%
MSE rate, and 3.65% FP as well as 2.19% FN rates.
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Table 4. Performance result of Dataset 2 (Austin dataset).

DT 84.27 95.28 75 95.57 82.67
RF 84.27 98.68 84.27 98.28 84.27
LR 83.06 83.06 75 83.27 82.67
SVM 83.85 94.3 75 93.48 80.94
KNN 86.11 87.65 75 88.07 82.67
AdaBoost  85.78 96.92 87.4 96.92 86.55
GB 84.27 93.73 84.27 94.22 84.27
XGBoost 87.22 93.73 75 94.22 82.67

95.4 10.26 4.55 32.03 21.32
98.46 10.26 1.52 32.03 12.31
83.14 16.67 16.67 40.82 40.82
93.8 11.54 6.06 33.97 24.62
87.78 13.64 12.12 36.93 34.82
96.92 8.97 3.03 29.96 17.41
93.89 10.26 6.06 32.03 24.62
93.89 7.69 6.06 27.74 24.62

ML: machine learning; MAE: mean absolute error; RMSE: root mean-squared error; DT: decision tree; RF: random forest; LR: logistic regression; SVM: support
vector machine; KNN: K-nearest neighbor; AdaBoost: adaptive boosting; GB: gradient boosting; XGBoost: extreme gradient boosting.

Results of Dataset 4

Finally, the information was collected from Iraqi society, as
well as the Medical City Hospital’s laboratory and
Specializes Center for Endocrinology and Diabetes-Al-Kindy
Teaching Hospital in Dataset 4.°° The data consist of
medical information as well as laboratory analysis including
age, gender, creatinine ratio (Cr), BMI, urea, cholesterol, low-
density lipoprotein (LDL), very low-density lipoprotein
(VLDL), triglycerides (TG) and high-density lipoprotein
(HDL) cholesterol, hemoglobin Alc (HBAlc), and so on.
The attributes of the Iraqi Medical City dataset are listed below:

Age: Age of the patient
Gender: Gender of the participant
Sugar level blood: Sugar level of the patient
Cr: Creatinine ratio
BMI: Body mass index
Urea: blood urea level
Chol: Cholesterol
TG: triglycerides level
9. HDL: High-density lipoprotein cholesterol level
10. LDL: Low-density lipoprotein level
11. VLDL: very low-density lipoprotein level
12. HBAIlc: Average blood glucose (sugar)-hemoglobin
AIC
13. Class: Diabetic, non-diabetic, or pre-diabetic

NN R LD =

The boxplot in Figure 11(a) shows that the dataset contains
outliers, whereas Figure 11(b) shows clean data after apply-
ing the preprocessing algorithm. In the boxplot, different

features have multiple outliers data, which is indicated by
multiple diamond signs beside each feature and after hand-
ling the outlier the boxplot looks like no diamond signs on
each feature which proves no outlier existed.

Figure 11(d) depicts the balanced dataset distribution of
the original imbalance dataset in Figure 11(c). where the
label “Y” represents diabetic, “N” represents non-diabetic
and “P” represents pre-diabetic. In the pie chart, we can
see that it contains more portion of “Y” than “P” and
“N,” and after random oversampling, we can see that we
have an equal portion of all the labels which ensures data
is balanced now.

The research specifically aims to develop an ML model
for classifying diabetes, focusing on the task of assigning
diabetes labels (diabetes or no diabetes) using various dia-
betes datasets. While it may seem odd to include HbAlc
as an input variable in this dataset (Dataset 4), we consid-
ered it relevant for our classification task. The inclusion
of HbAlc as a feature helps the model learn patterns and
relationships between other variables and the presence of
diabetes. By including this feature, we aim to capture
additional information that may contribute to the accurate
classification of diabetes. We understand that the close-to-
perfect performance of the model might raise suspicions.
However, we assure you that our research was conducted
rigorously, following standard practices and using appropri-
ate evaluation metrics.

Figure 12(a) and (b) presents the accuracy and MSE of
our experiments for Dataset 4. The accuracy comparison
before and after applying the proposal. The accuracy
results of DT, RF, LR, SVM, KNN, AdaBoost, GB, and
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Figure 7. Confusion matrix and receiver operative curve (ROC)
curve of Dataset 2: (a) confusion matrix and (b) ROC curve.

XGBoost are 100%, 99.60%, 95.65%, 96.84%, 95.65%,
99.21%, 99.60%, and 99%, respectively. We found that,
depending on the ML algorithms, accuracy performance
increases from 0.19% to 9.84%. On the other hand, the
MSE values of the algorithm reduced significantly, 2%,
1.6%, 11.09%, 21.84%, 18.28%, 3.71%, 7.6%, and
0.19% for DT, RF, LR, SVM, KNN, AdaBoost, GB, and
XGBoost, respectively.

The other performance metrics are summarized in
Table 6. We found that, for any ML approach, the proposal
can improve the precision values of 0.67% to 46.88%. An
efficient data preprocessing and data balancing can
improve the data quality, hence ML algorithms can accur-
ately classify the test data. We found similar results for
recall, the values increased from 0.83% to 47.59%. The
Fl-score also improved as expected from 0.42% to
46.52%. On the other hand, the table also indicates that
due to the high performance of the proposal, the values of
MAE and RMSE are reduced significantly. It is observed
that MAE values reduced from 0.19% for XGBoost to
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Figure 8. Before and after outlier removal and oversampling
results: (a) with outlier; (b) without outlier; (c) without
oversampling; and (d) with oversampling.

13.84% for SVM. Similarly, RMSE reduced greatly from
0.89% to 32.22%.

The extensive analysis of the experiments shows that DT
outperforms others since the ability to capture relevant
decision-making information from the available dataset is
the most important feature of the DT which leads to higher
accuracy. So, we consider this model as our proposed model.
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Figure 9. The performance results of Dataset 3: (a) accuracy and (b) mean-squared error (MSE).

Figure 13(a) depicts the confusion matrix and
Figure 13(b) shows the ROC curve for our proposed
model. In the confusion matrix, the large number of TP
and TN than FP and FN is a very crucial point to be a
better prediction model for ML. In Figure 13(a), we can
see that the TP and FN rates are high and FN and FP
rates are very low which gives a better sign of diabetes pre-
diction. The TP, TN, FP and FN rates are 35.97%, 64.03%,
0.0%, and 0.0%; 29.25%, 70.75%, 0.0%, and 0.0%;
34.78%, 65.22%, 0.0%, and 0.0% for N, Y, and P class,
respectively. On the other hand, in the ROC, the value of
AUC which is near 1 is the best model for ML. In the
Figure 13(b), we can see that the AUC value is 1 (100%),

which means the positive and negative labels are com-
pletely segregated, and the model is as effective as it can be.

After analyzing multiple performance indicators, we can
find that among all the ML algorithms DT outperforms
others with an accuracy rate of 100%, 0% MSE rate, and
0% FP as well as FN rates.

Discussion

In this study, we conducted a comprehensive analysis of ML
models for diabetes detection using four distinct datasets:
Pima Indian, Austin Public, Tigga, and Mendeley. The per-
formance metrics were evaluated to assess the effectiveness
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Table 5. Performance result of Dataset 3 (Tigga dataset).

DT

RF

LR

SVM

KNN

AdaBoost

GB

XGBoost

95.52

94.32

82.6

84.86

79.11

88.49

88.37

95.52

98.54

97.79

87.5

91.99

88.31

90.26

91.2

99.31

92.99

94.32

82.35

66.59

68.14

88.2

88.25

92.99

98.54

97.83

92.61

91.93

88.31

90.26

91.92

99.24

94.16

94.32

82.41

69.22

70.57

88.27

88.29

94.16

98.54 L.44 1.46 21.08 12.08
97.81 L.44 2.19 21.08 14.8

89.42 17.52 8.89 41.85 29.81
91.96 18.78 8.03 43.34 28.34
88.31 19.34 11.68 43.97 34.17
90.26 11.68 8.42 34.17 29.02
91.55 11.68 7.37 34.17 27.14
99.27 L.44 0.73 21.08 8.54

ML: machine learning; MAE: mean absolute error; RMSE: root mean-squared error; DT: decision tree; RF: random forest; LR: logistic regression; SVM: support
vector machine; KNN: K-nearest neighbor; AdaBoost: adaptive boosting; GB: gradient boosting; XGBoost: extreme gradient boosting.
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Figure 10. Confusion matrix and receiver operative curve (ROC)

curve of Dataset 3: (a) confusion matrix and (b) ROC curve.

of the models in accurately identifying individuals at risk of
diabetes as shown in Table 7.

On the Pima Indian dataset, the RF model achieved an
accuracy of 85.53%. The precision and recall were
86.96% and 81.29%, respectively, resulting in an
F1-score of 83.06%. The MAE and MSE were 14.47, and
the RMSE was 38.04. For the Austin Public dataset, the
RF model exhibited exceptional performance with an accur-
acy of 98.48%. The precision, recall, and F1-score values
were 98.68%, 98.28%, and 98.46%, respectively. The
model demonstrated low errors with an MAE of 1.52,
MSE of 1.52, and RMSE of 12.31. The Tigga dataset
showed outstanding results with the XGBoost model
achieving an accuracy of 99.27%. The precision, recall,
and F1-score values were 99.31%, 99.24%, and 99.27%,
respectively. The model’s errors were minimal with an
MAE of 0.73, MSE of 0.73, and RMSE of 8.54.
Remarkably, the DT model achieved perfect performance
on the Mendeley dataset, attaining an accuracy, precision,
recall, and Fl-score of 100%. Additionally, the model
exhibited zero errors with an MAE, MSE, and RMSE of 0.

Interestingly, the DT model achieves perfect perform-
ance on the Mendeley dataset, with accuracy, precision,
recall, and Fl-score all reaching 100%. This remarkable
result suggests that the features within the Mendeley
dataset may be well-suited for DT-based classification, pos-
sibly due to the dataset’s inherent structure or the nature of
the variables involved. It is worth noting that while the DT
model demonstrates flawless performance on this particular
dataset, its generalization to other datasets may vary, war-
ranting further investigation into its robustness across
different data domains. Moreover, the low error metrics
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(MAE, MSE, and RMSE) observed across all models and
datasets indicate the models’ capability to make accurate
predictions with minimal deviation from the actual values.
These findings emphasize the reliability of ML algorithms
in diabetes detection tasks and underscore their potential
utility in clinical settings for early risk assessment and
intervention.

Furthermore, the results of this study highlight the effi-
cacy of ML models in diabetes detection across diverse

datasets. While certain models excel in specific contexts,
the overall performance underscores the promise of ML
techniques in augmenting traditional diagnostic approaches
and improving patient outcomes in diabetes management.
Further research is warranted to explore the generalizability
of these models across larger and more diverse populations,
as well as their integration into clinical practice for persona-
lized healthcare delivery.

The results indicate that the ML models can effectively
detect diabetes. The RF model showed good performance
on the Pima Indian dataset, while both the RF model on
the Austin Public dataset and the XGBoost model on the
Tigga dataset demonstrated excellent performance. The
DT model exhibited perfect performance on the Mendeley
dataset. These findings highlight the potential of ML in
accurate diabetes detection, providing a valuable tool for
early intervention and improved patient outcomes.

In our research, we included multiple datasets in our ana-
lysis to provide a comprehensive evaluation of the perform-
ance of ML models for diabetes detection. Each dataset
represents a distinct population or data source, allowing
us to assess the generalizability of the models across
diverse scenarios. We evaluated the models on multiple
datasets to gain insights into their strengths and limitations
in different contexts. This approach helps experimenters
understand the robustness of the models and identify poten-
tial challenges or biases that may arise when applying them
to real-world scenarios. Additionally, it enables researchers
to make informed decisions about which models are most
suitable for specific datasets or patient populations.
Regarding the conclusions, we acknowledge that the ori-
ginal discussion did not sufficiently elaborate on the
insights gained from the extensive set of benchmarks. In
light of the reviewer’s comment, we will revise the conclu-
sion section to provide a more comprehensive analysis of
the results and their implications. We will discuss the key
findings from each dataset, highlight the factors that con-
tributed to successful performance, and address the chal-
lenges and considerations experimenters should be aware
of when deploying these models in practice. We will also
emphasize any new information or novel observations
that emerged from our study. Although some previous
research has examined ML models for diabetes detection,
our study contributes by analyzing a diverse range of data-
sets and comparing the performance of multiple models.
This allows us to provide a more comprehensive under-
standing of the strengths and weaknesses of different algo-
rithms and their applicability in various scenarios.

Furthermore, a comparison analysis is illustrated in
Table 8 and in Figure 14, where we can see that our pro-
posed approach outperforms others, which proves the
better prediction models. In Dataset 1, RF outperforms
other ML models with an accuracy rate of 86%.
Similarly, for Dataset 2, Dataset 3, and Dataset 4, RF,
XGBoost, and DT outperform other ML. models with an
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Table 6. Performance result of Dataset 4 (Mendeley dataset).

DT 93.19 100 96.44 100 94.61 100 2 0 14.14 0

RF 92.94 99.63 96.83 99.55 94.45 99.58 2 0.4 14.14 6.29
LR 67.48 96.17 70.63 95.3 68.46 95.55 13 5.53 43.59 28.12
SVM 53.26 97.16 48.81 96.4 50.63 96.65 17 3.16 50 17.78
KNN 49.22 96.1 48.81 95.21 48.97 95.49 17 5.14 50 25.92
AdaBoost  79.44 99.26 98.27 99.1 85 99.17 4.5 0.79 21.21 8.89
GB 86.88 99.64 89.68 99.55 88.14 99.59 8 0.4 28.28 6.29
XGBoost 98.94 99.61 97.22 98.65 98.35 98.77 1.19 1 10.89 10

ML: machine learning; MAE: mean absolute error; RMSE: root mean-squared error; DT: decision tree; RF: random forest; LR: logistic regression; SVM: support
vector machine; KNN: K-nearest neighbor; AdaBoost: adaptive boosting; GB: gradient boosting; XGBoost: extreme gradient boosting.
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accuracy rate of 98.48%, 99.27%, and 100%, respectively.
The higher accuracy rate of diabetes predictions proves the
robustness of our proposed model.

The ML models RF, XGBoost, and DT exceed the perform-
ance indicators of other algorithms as well as research for
Dataset 1, Dataset 2, Dataset 3, and Dataset 4. The proper
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Figure 13. Confusion matrix and ROC curve for RF of Dataset 4:
(a) confusion matrix and (b) ROC curve. ROC: receiver operative
curve; RF: random forest.

Table 7. Best performance analysis for each dataset.

efficient preprocessing upgrades the quality of data that helps
to enhance the outcomes for various datasets. Yet, the RF,
XGBoost, and DT algorithms had enhanced accuracy, and it
is encouraged that they can be employed in the clinical categor-
ization and prognosis of diabetes for greater performance.

Novelty and significance

This study acknowledges the well-established nature of opti-
mizing preprocessing and oversampling techniques within
the specific context of diabetes prediction using ML models.
Our contribution lies in carefully implementing and evaluating
these methods within the diabetes detection framework.

Context-specific application: Although oversampling
techniques are not new, their effectiveness and impact on dia-
betes prediction may vary depending on the dataset and the spe-
cific problem being addressed. By applying these techniques in
the context of diabetes detection, we aimed to explore their
potential benefits and address the challenges associated with
imbalanced class problems specific to this domain.

Comparative analysis: Our study not only employed
oversampling techniques, but also performed a comparative
analysis of different approaches for handling imbalanced
class problems, such as undersampling and synthetic data
generation. This analysis aimed to identify the most suitable
technique for diabetes prediction and provide insights into
the trade-offs and limitations of each approach.

Rigorous evaluation: We implemented a robust evalu-
ation methodology by employing k-fold cross-validation.
This approach ensures that our models are thoroughly
tested on different subsets of the dataset, reducing the risk
of overfitting and providing a more reliable assessment of
their performance.

While our study introduces experimental evaluation
techniques, we believe that the methodological and clinical
insights gained from our rigorous analysis contribute to the
field of diabetes prediction. By carefully implementing and
evaluating oversampling techniques within the diabetes
detection framework, we aim to provide practical guidance
for researchers and practitioners working on similar
problems.

1 Pima Indian RF 85.53 86.96 81.29 83.06 14.47 14.47 38.04
2 Austin Public RF 98.48 98.68 98.28 98.46 1.52 1.52 12.31
3 Tigga dataset XGBoost 99.27 99.31 99.24 99.27 0.73 0.73 8.54
[ Mendeley DT 100 100 100 100 0 0 0

ML: machine learning; MAE: mean absolute error; MSE: mean-squared error; RMSE: root MSE; RF: random forest; XGB: extreme gradient boosting; DT:

decision tree.




22

DIGITAL HEALTH

Table 8. Comparison analysis of diabetes prediction for Dataset 1, Dataset 3, and Dataset 4.

01 Bhoi et al.*’ Dataset 1 (Pima LR
Indian)

02 Li et al.*® Dataset 1 (Pima XGBoost
Indian)

03 Tigga and Garg™ Dataset 1 (Pima LR
Indian)

04 Islam and Jahan® Dataset 1 (Pima LR
Indian)

05 Joshi and Dhakal®®  Dataset 1 (Pima LR
Indian)

06 Sneha and Gangil®®> Dataset 1 (Pima NB
Indian)

07 Zou et al.”® RF

08 Rajni and Dataset 1 (Pima RB-Bayes

Amandeep® Indian)

09 Pranto et al.”® Dataset 1 (Pima RF
Indian)

10 Proposed model Dataset 1 (Pima RF
Indian)

11 Tigga and Garg™® Dataset 3 (Tigga) RF

12 Proposed model Dataset 3 (Tigga) XGBoost

13 Hassan et al.*® Dataset & ID3
(Mendeley)

14 Nuankaew et al.?®  Dataset & AWOD
(Mendeley)

15 Rajput and Dataset &4 SGB

Khedgikar®’ (Mendeley)

16 Proposed model Dataset &4 DT

(Mendeley)

76.8

80.2

75.32

78.01

78.26

82.3

77.21

72.9

71.9

86

94.10

99.27

98.25

98.95

97.04

100

76.3 76.8 76 82.5
- 70.6 75 -
78.18 86 - -

- 80 83.3
81 89 84 83
85.99 85.99 85.99 93.07
97.60 94.30 95.90 100
99.31 99.24 99.27 99.36
98.88 - - -
98.85 81 89 -
100 100 100 100

ML: machine learning; AUC: area under curve; LR: logistic regression; XGBoost: extreme gradient boosting; NB: Naive Bayes; RF: random forest; AWOD:
average weighted objective distance; SGB: stochastic gradient boosting; DT: decision tree.

The significance of this study lies in its contributions to
the field of diabetes research and its potential impact on
clinical practice.

1. Improved diagnostic accuracy: By developing an opti-
mized data preprocessing pipeline and implementing

2.

advanced ML techniques, our study enhances the accur-
acy of diabetes prediction. This can assist healthcare pro-
fessionals in making more precise and timely diagnoses,
leading to better patient outcomes.

Personalized diabetes management: The robust
models developed in this study have the potential to
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enable personalized diabetes management. By accur-
ately predicting diabetes prognosis, healthcare provi-
ders can tailor treatment plans and interventions to
individual patients, optimizing their care and reducing
the risk of complications.

3. Early intervention and prevention: Early detection of
diabetes is crucial for effective intervention and preven-
tion. Our study contributes to the development of pre-
dictive models that can identify individuals at high
risk of developing diabetes. This enables early interven-
tion strategies, such as lifestyle modifications and tar-
geted preventive measures, to be implemented,
reducing the burden of the disease.

4. Advancement in ML techniques: Through the exploration
and evaluation of various ML algorithms and preprocessing
techniques, our study contributes to the advancement of the
field. The insights gained from this research can inform the
development of more robust and interpretable ML models
for diabetes prediction and prognosis.

Overall, this study holds significant implications for clinical
practice, offering improved diagnostic accuracy, personalized
management strategies, early intervention opportunities, and
advancements in ML techniques. The findings have the poten-
tial to enhance diabetes care, contribute to preventive health-
care, and ultimately improve patient outcomes.

Conclusion

In this research, we have conducted a comprehensive study on
diabetes detection using ML techniques, aiming to underscore
both the scientific value added by our work and the applicabil-
ity of our findings in clinical practice. Our contributions
encompass the outcome of an optimized preprocessing pipe-
line, addressing dataset imbalance, preventing overfitting,
and demonstrating superior performance through extensive
experimentation. We have rigorously evaluated various ML
models on four different datasets: Pima Indian, Austin
Public, Tigga, and Mendeley. Our results showcase notable
improvements in accuracy, precision, recall, and F1-score
metrics compared to existing methods.

Specifically, the RF model achieved an accuracy of
85.53% on the Pima Indian dataset, with balanced precision
and recall values. On the Austin Public dataset, the RF
model excelled with an exceptional accuracy of 98.48%,
along with high precision, recall, and Fl-score values.
The XGBoost model demonstrated outstanding perform-
ance on the Tigga dataset, achieving an accuracy of
99.27% with minimal errors in predictions. Notably, the
DT model achieved perfect accuracy and precision on the
Mendeley dataset, indicating flawless classification of dia-
betes instances. Our study reveals significant improvements
over existing methods, with accuracy rates ranging from
86% to 100% across different datasets. Specifically, our
suggested method outperforms previous works by 4.95%

to 12.15% for Dataset 1, 0% to 8.74% for Dataset 2,
2.25% to 10.75% for Dataset 3, and 0.19% to 9.84% for
Dataset 4.

However, it is essential to acknowledge the limitations
of our study. Further investigation is needed to assess the
generalizability of our approach to diverse datasets,
feature selection, ensemble models and DL techniques.
Additionally, the lack of interpretability in ML models
poses a challenge in understanding the underlying factors
driving predictions.

In conclusion, our study highlights the need for further
research to address limitations and enhance the reliability
and applicability of the proposed approach for diabetes
detection using ML. Moving forward, potential avenues
for future research include:

1. Feature selection: Exploring advanced feature selection
techniques to improve the efficiency and accuracy of
diabetes detection models.

2. Ensemble models: Investigating the integration of
ensemble learning techniques to combine multiple
models for enhanced predictive performance.

3. DL algorithms: Exploring the application of DL algo-
rithms, such as convolutional neural networks and
recurrent neural networks, to improve the prediction
accuracy of diabetes detection models.

By pursuing these future directions, we aim to advance the
field of diabetes detection using ML and contribute to
improved healthcare outcomes.
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