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Abstract
Motivated by prior data on local cortical shrinkage and intracortical myelination, we predicted age-related changes in
topological organization of cortical structural networks during adolescence. We estimated structural correlation from
magnetic resonance imaging measures of cortical thickness at 308 regions in a sample of N = 297 healthy participants,
aged 14–24 years. We used a novel sliding-window analysis to measure age-related changes in network attributes
globally, locally and in the context of several community partitions of the network. We found that the strength of
structural correlation generally decreased as a function of age. Association cortical regions demonstrated a sharp
decrease in nodal degree (hubness) from 14 years, reaching a minimum at approximately 19 years, and then levelling off
or even slightly increasing until 24 years. Greater and more prolonged age-related changes in degree of cortical regions
within the brain network were associated with faster rates of adolescent cortical myelination and shrinkage. The brain
regions that demonstrated the greatest age-related changes were concentrated within prefrontal modules. We conclude
that human adolescence is associated with biologically plausible changes in structural imaging markers of brain network
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organization, consistent with the concept of tuning or consolidating anatomical connectivity between frontal cortex and
the rest of the connectome.

Key words: adolescence, connectome, development, graph theory, MRI

Human adolescence is known to be a major phase of cortical
development. In particular, cerebral cortex becomes thinner
(Wierenga et al. 2014) and more densely myelinated (Miller
et al. 2012) in the transition from puberty to young adulthood.
Adolescent decreases in cortical thickness (CT) (thinning) are
variable between different areas of cortex (Raznahan et al.
2011), for example, thinning is greater in association cortical
areas than primary sensory areas (Whitaker, Vértes et al. 2016).

Motivated by these and other results, we predicted that
human adolescence should be associated with changes in the
architecture of structural brain networks. There are currently
only two experimental techniques, both based on magnetic res-
onance imaging (MRI), that are capable of providing data to test
this prediction: diffusion tensor imaging followed by tractogra-
phy; or structural MRI followed by structural covariance or cor-
relation analysis. Here we focused on the latter, measuring the
thickness of a set of predefined cortical regions in each individ-
ual MRI dataset and then estimating the correlation of thick-
ness between each possible pair of regions across participants.
Similar methods have been widely used and validated (Lerch
et al. 2006) in a range of prior studies (Alexander-Bloch, Giedd
et al. 2013; Evans 2013).

In particular, structural correlation (covariance) measures have
been used as a basis for graph theoretical modeling of the human
connectome (Bullmore and Sporns 2009; Fornito et al. 2016).
Considerable evidence has accumulated in support of the general
view that human brain structural correlation networks have a
complex topological organization, characterized by nonrandom
features such as the existence of highly connected (high degree)
hub nodes and a modular community structure (Alexander-Bloch,
Giedd et al. 2013; Evans 2013). Topological metrics on structural
correlation networks have demonstrated changes associated with
disease, development, and ageing (Alexander-Bloch, Giedd et al.
2013; Evans 2013). However, only two studies have investigated
adolescent changes in structural correlation networks. Zielinski
et al. (2010) demonstrated that the anatomical extent of structural
correlation networks, assessed using seed-based correlation of
voxel-wise grey matter intensity, changes in adolescence in a spa-
tially patterned manner. Specifically, primary visual and sensori-
motor networks, as well as the default mode network, expanded
in early childhood before being “pruned” in adolescence, while
higher-order cognitive networks showed a gradual monotonic
gain in spatial extent. Subsequently, Khundrakpam et al. (2013)
applied graph-theoretical analyses to a subset of the same data,
reporting childhood increases in topological integration (global effi-
ciency) and decreases in topological segregation (local efficiency
and modularity), as well as increases in regional integration in
paralimbic and association regions. While these studies constitute
interesting initial investigations, their ability to precisely describe
developmental changes is limited by their segregation of partici-
pants into four discrete age-defined strata, resulting in relatively
coarse-grained resolution of brainmaturational trajectories.

Here, we aimed to obtain a more precise description of adoles-
cent maturational trajectories of structural network architecture,
which were hypothesized to vary as a smooth and potentially
nonlinear function of age. We used a sliding-window analysis to
estimate structural correlations and structural network properties

for each of an overlapping series of nine age-defined windows or
strata of the sample (N ≈ 60 participants per window). We identi-
fied the cortical regions (nodes) and connections (edges) which
showed the most significant age-related changes in structural cor-
relation. We tested the related hypotheses that parameters of ado-
lescent change in structural correlation would be greater and
occur later in regions of association cortex, which show faster
rates of local cortical shrinkage and myelination. In addition, we
explored whether greater and later changes in structural correla-
tion during adolescence would be concentrated within or between
specific communities of regions. Specifically we mapped adoles-
cent changes in structural correlation to three brain community
structures: the topological modular partition of the age-invariant
structural correlation network; an atlas of cytoarchitectonic classes
(von Economo and Koskinas 1925); and functional intrinsic con-
nectivity or resting state networks (Yeo, Krienen et al. 2011).

Materials and Methods
Participants

A demographically balanced cohort of 297 healthy participants
(149 females) aged 14–24 years was included in this study, with
approximately 60 participants in each of 5 age-defined strata:
14–15 years inclusive, 16–17, 18–19, 20–21, and 22–24 years.
Participants were excluded if they were currently being treated
for a psychiatric disorder or for drug or alcohol dependence; had
a current or past history of neurological disorders or trauma; or
had a learning disability. Participants provided informed written
consent for each aspect of the study, and parental consent was
obtained for those aged 14–15 years. The study was ethically
approved by the National Research Ethics Service and was con-
ducted in accordance with NHS research governance standards.

MRI Acquisition and Processing

Structural scans were acquired at three sites using multipara-
metric mapping (MPM) implemented on three identical 3 T MRI
scanners (Siemens Magnetom TIM Trio). Intersite reliability of
the sequence was evaluated within a pilot study of 5 healthy
participants each scanned at each site (Weiskopf et al. 2013).
The MPM sequence includes maps of R1 (1/T1) and magnetiza-
tion transfer (MT), indicative of myelination. For details of MRI
acquisition parameters, see Supplementary Information.

Processing of individual scans using FreeSurfer v5.3.0
included skull-stripping, segmentation of cortical grey and
white matter and reconstruction of the cortical surface and
grey-white matter boundary (Fischl et al. 1999). All scans were
stringently quality controlled by re-running the reconstruction
algorithm after the addition of control points and white matter
edits (details in Supplementary Information). The cerebral cor-
tex of each participant was parcellated into 308 regions of inter-
est, based on a sub-division of the Desikan-Killiany anatomical
atlas (Desikan et al. 2006) into parcels of approximately equal
surface area (~5 cm2) (Romero-Garcia et al. 2012).

Regional changes in cortical thickness (CT) and MT (myelina-
tion) were characterized using the rate of change over adoles-
cence, evaluated as the slope of a linear model fitted to the
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cross-sectional values. Following Whitaker, Vértes et al.
(2016), myelination analyses were conducted at 10 fractional
depths between the pial surface and the grey/white matter
boundary, as well as 2 absolute depths into white matter.
Main analyses focused on MT estimates at 70% fractional cor-
tical depth from the pial surface. For details and results
across cortical depths, see the Supplementary Information.

While both CT and myelination maps were averaged within
parcels, for comparison between maturation of structural corre-
lation networks and morphology, only the CT values were used
to construct structural correlation networks.

Age-Invariant Structural Network

An age-invariant structural correlation network was constructed
using Pearson correlations in CT between pairs of regions across
all 297 participants, to serve as a reference for developmental
changes within the age-resolved structural networks (described
below; Fig. 1A). We used raw CT values, uncorrected for age, gen-
der, or intracranial volume. However, correcting for these covari-
ates had no effect on the results. For background reading on
graph theoretical methods and connectomics see Bullmore and
Sporns (2009) and Fornito et al. (2016).

The age-invariant structural network was thresholded using a
bootstrap approach, whereby 1000 sets of participants were
resampled with replacement and used to construct surrogate
structural networks. For each pair of regions, we examined
whether there is evidence of a nonzero correlation across

bootstraps: edges that were consistently positive or negative
across bootstraps (at a two-tailed, false discovery rate [FDR]-
adjusted level of α = 0.01) were retained; the remaining edges
were set to zero. Nodal topological organization of the thre-
sholded network was assessed using degree, defined as the num-
ber of retained correlations for each node, as well as the weighted
degree, or summed weight of retained edges for each node.

Further, the age-invariant network was partitioned into com-
munities of nodes showing higher structural correlations within
than between communities (Sporns and Betzel 2016). The com-
munity structure of the age-invariant network was decomposed
using the Louvain multiresolution algorithm (Blondel et al. 2008)
over the resolution parameter range 0.01 ≤ γ ≤ 4.00. As γ

increases, the community structure is decomposed to a progres-
sively larger number of modules. We used the concept of mini-
mizing versatility to identify those resolution parameter values
which reduce the uncertainty with which any node was affiliated
consistently to the same module (Shinn et al. 2017). The final
community partition was defined as a consensus across 1000
runs of the Louvain modularity algorithm (Lancichinetti and
Fortunato 2012) at the selected value of the resolution parameter
γ. For details regarding module generation, see Figure S1.

Development of Age-Resolved Structural Networks

Sliding Window Network Construction
Development of structural networks between 14 and 24 years was
evaluated using a sliding window method. Regional CT values

Figure 1. Construction of age-invariant and age-resolved structural correlation networks. (A) An age-invariant structural correlation network was constructed by

cross-correlating regional cortical thickness across all participants. This network was probabilistically thresholded using a bootstrap-based method. Network organi-

zation was evaluated using several measures, including the degree (both binary and weighted; respectively the number and sum of weights of retained edges con-

nected to a node) and modular architecture. For details regarding module generation, see Supplementary Information (Fig. S1). (B) Age-resolved structural correlation

networks were constructed using a sliding-window method. Participants were ordered by age, and structural networks were constructed by estimating correlations

between regional cortical thickness values across participants within overlapping windows iteratively slid across the age range. Correlations were probabilistically

thresholded using bootstrap, before developmental trajectories were fitted to summary window-derived measures as a function of the median age of participants

within each window.
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were cross-correlated within windows containing equal numbers
of participants, and incrementally slid across the age-range by
regular increments (Fig. 1B). The two parameters of the method,
the “window width” and the “step size” (in units of number of
participants) determine the number of windows, each of which
generates a structural correlation network. Exploration of the slid-
ing window parameter values suggests that results are qualita-
tively consistent across a range of parameter combinations. For
the (in)dependence of results on sliding window parameters, and
a discussion of the considerations involved in parameter selec-
tion, see the Supplementary Information.

Results presented below correspond to 9 half-overlapping win-
dows of 60 participants each, obtained by interpolating the 5 age
strata of the NSPN study, within which participants were
recruited. Gender was relatively balanced within the interpolated
bins, with the most imbalanced ratio being 34:26 = 57%:43% (M:F).
We investigated the effects of gender separately (see below).

Global maturation of structural networks was characterized
using the mean of the correlation distribution. At the regional
level, an analogous measure was used—nodal strength, the
mean of the pattern of regional correlations (rows, or equally,
columns of the correlation matrices).

Bootstrap Thresholding of Age-Resolved Structural Networks
Estimating structural correlation networks from a small num-
ber of participants is an inherently noisy process; therefore, our
principal analyses focused on networks probabilistically thre-
sholded using bootstrap (Fig. 2B). The bootstrap thresholding
procedure was identical to the one described above for age-
invariant networks, but in this case was applied within win-
dows. From the set of participants included in each window, an
equal number of participants was sampled with replacement
and the correlation structure was re-estimated 1000 times. For
each pair of regions, we examined whether there is evidence
of a nonzero correlation across bootstraps: edges that were
consistently positive across bootstraps (at a two-tailed, FDR-
adjusted level of α = 0.01) were retained (there were no consis-
tently negative edges); the remaining edges were set to zero.

The global topological organization of the thresholded graphs
was assessed using the edge density, defined as the percentage of
retained edges (relative to their possible total), as well as the dis-
tance spanned by retained edges, calculated as the average
Euclidean distance between centroids of corresponding nodes.
Nodal topological organization was assessed using (analogous)
measures of degree, defined as the number of edges connected to
a node, and average Euclidean distance spanned by a node’s
retained edges. We have focused on simple graph-theoretical
measures, such as edge density and node degree, for two reasons:
(1) our bootstrap-thresholded networks display variable edge den-
sity, which many “higher-order” graph-theoretical measures
show a strong dependence on (van Wijk et al. 2010), and (2) even
in correlation-based networks thresholded to fixed edge density,
graph theoretical properties display a dependence on more ele-
mentary statistics such as properties of the correlation distribu-
tion (van den Heuvel et al. 2017).

Fitting and Characterization of Developmental
Trajectories

Developmental trajectories were fitted to both global and local
measures as a function of the median age of participants in
each window. In addition to linear models, we fitted locally
adaptive smoothing splines. The nonparametric smoothing
spline was chosen to model nonlinear trajectories over

parametric alternatives as it was shown to be superior to qua-
dratic fits in studies of brain development (Fjell et al. 2010).
Still, the spline fits were constrained to be (approximately) at
least as smooth as a quadratic fit (i.e., effective degrees of free-
dom, df ≤ 3.5), based on the hypothesis that adolescent devel-
opmental trajectories over a 10-year age range should not
display greater complexity. The specific smoothing spline used
was a weighted sum of 6 cubic b-splines with knots placed at
quantiles of the data and smoothing optimized using restricted
maximum likelihood (REML) (Reiss et al. 2014). The relative
quality of linear and spline fits, given their parsimony, was
assessed using Akaike’s information criterion (AIC).
Classification using the Bayesian information criterion (BIC)
yielded consistent results.

Regional changes were summarized using measures of max-
imum change in degree Δkmax, quantified as the difference
between maximum and minimum degree, and the age at mini-
mum degree age(kmin). Further, we classified regional changes
in degree as linear or nonlinear (using the AIC), and as increas-
ing or decreasing (using the direction of maximum change). As
an alternative measure of the magnitude of regional changes in
structural correlation, we extracted linear rates of change of
degree; the results were qualitatively consistent with the mea-
sure of maximum change, which is more suitable for nonlinear
trajectories (Supplementary Information).

Relationship of Structural Network Development
to Age-Invariant Network Architecture

Given our previous finding, that highly correlated “hub nodes”
of the age-invariant structural network (derived from all parti-
cipants) are regions which thin and myelinate most over ado-
lescence (Whitaker, Vértes et al. 2016), we were interested in
studying the relationship of structural network development to
age-invariant structural network architecture.

We evaluated Spearman’s rank correlations between node
degree in the age-invariant structural network, and parameters
of change in node degree within the age-resolved structural
network—including the amplitude of maximum change in
degree Δkmax as well as the age at minimum degree age(kmin).

Finally, we studied changes in structural network organiza-
tion relative to three sets of node communities, including the
partition of the age-invariant network into modules, the von
Economo atlas of cytoarchitectonic classes (von Economo and
Koskinas 1925), and a set of functional intrinsic connectivity
networks (Yeo, Krienen et al. 2011). For each community tem-
plate and each age-window, we calculated the density of edges,
D, within each community as well as between each pair of com-
munities (within the same template), as the ratio of existing
edges relative to the maximum number of possible edges in
this within or between-community edge set. We then charac-
terized changes in edge density within and between commu-
nities using measures analogous to the nodal trajectories—
maximum change in edge density ΔDmax and age at minimum
density age(Dmin). For details regarding the matching of the
community templates to our 308-region parcellation, see the
Supplementary Information.

Spatial Permutation Test

In several analyses in the current study, measures were related
to each other across regions. While numerous studies have
reported significance based on the assumption that the number
of samples is equal to the number of regions, this is technically
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inaccurate, as the number of regions is both arbitrary (due to
the resolution of the chosen parcellation) and non-independent
(due to spatial autocorrelation amongst neighboring parcels). To
address this issue, spatial permutation tests have been imple-
mented in past studies (Alexander-Bloch, Giedd et al. 2013;
Alexander-Bloch, Raznahan et al. 2013; Vandekar et al. 2015),
which consist in comparing the empirical correlation amongst
two spatial maps to a set of null correlations, generated by ran-
domly rotating the spherical projection of one of the two spatial
maps (as generated in FreeSurfer or Caret) before projecting it
back on the brain surface. Importantly, the rotated projection
preserves spatial contiguity of the empirical maps, as well as
hemispheric symmetry. Such tests were previously implemen-
ted at the vertex level (Alexander-Bloch, Giedd et al. 2013;
Alexander-Bloch, Raznahan et al. 2013; Vandekar et al. 2015);
here we implemented an analogous permutation test at the
regional level. Thus, each analysis correlating values from two
cortical maps is reported with both the P-value corresponding to
the Spearman correlation (PSpearman), as well as a P-value
derived from the spherical permutation (Pperm), obtained by
comparing the empirical Spearman’s ρ to a null distribution of
10 000 Spearman correlations, between one empirical map and
the randomly rotated projections of the other map. For full
details on the spherical permutation test, see Supplementary
Information.

Sensitivity Analyses

To ascertain the robustness of obtained results to sliding win-
dow parameters and other methodological decisions and to
rule out effects of potential artefactual causes, we conducted
several ancillary studies.

We first investigated effects of sliding window parameters
by systematically varying the window width and step size over
ranges of {40,60,80} and {5,10,20} participants, respectively.

Further, we examined potential effects of gender by repeat-
ing sliding window analyses separately for each gender (149
female and 148 male participants). This resulted in 9 windows
of ~30 participants each. Following estimation of global and
nodal sliding window statistics separately for each gender
within both unthresholded and bootstrap-thresholded net-
works (as described for all participants above), we fitted linear
and spline models to the combined data, separately modeling
effects of age, gender, and the age-by-gender interaction.

Finally, we studied the effect of several potential artefacts,
including the presence of regions with low reliability of struc-
tural correlations as well as irregularities in the age distribution
of participants.

For full results and discussion of these additional studies,
see Supplementary Information.

Results
Age-Invariant Structural Network

We first considered the structural correlation network constructed
by thresholding the pairwise inter-regional correlations esti-
mated from CT measurements on all (297) participants, age
range 14–24 years (inclusive). Since this analysis combines data
from all ages in the sample, we can refer to the result as an age-
invariant structural correlation network (Fig. 1A).

The distribution of structural correlations had a positive mean
value and was approximately symmetrical. The structural corre-
lation matrix was thresholded probabilistically, using a bootstrap-
based resampling procedure (Materials and Methods), to control

the edge-wise false positive rate. Since this thresholding opera-
tion entailed approximately 47 000 hypothesis tests, we used
the FDR algorithm to adjust for multiple comparisons. The
resulting graph was densely connected (connection density ≈
90%) and exhibited a modular community structure (Fig. 1A).
The community partition consisted of 7 modules, including
three primary cortex modules: somatosensory (anterior parie-
tal cortex), motor (posterior frontal cortex), and visual (occipi-
tal cortex), as well as an inferior-frontal/temporal module, a
superior frontal module, a superior temporal/insular module
and a parieto-occipital module. For details on this community
structure and other modular partitions comprising different
numbers of modules see Figure S1 and Table S1.

Age-Resolved Structural Networks

To resolve age-related changes in structural networks, we used
a “sliding window” analysis to estimate the structural correla-
tion matrix separately for each of a series of subsets of the
sample defined by overlapping age ranges or windows (Fig. 1B).
The results of this analysis are naturally somewhat dependent
on the sliding window parameters: the age-range spanned by
each window and the incremental step between windows.
Below we focus on results obtained with 9 windows of ~60 par-
ticipants each, ranging from [14.1–16.0 years] to [22.0–25.0
years] with an incremental step of 30 participants (~1 year). We
also explored a range of alternative sliding window parameters
and demonstrated that our key results were robust to this
methodological variation (Supplementary Information).

Globally, over the whole brain, there was a nonlinear trend
of reducing structural correlation from the youngest age win-
dow to the oldest age window (Fig. 2A). Relatively strong posi-
tive correlations at age 14 (>0.31) decreased sharply over the
next few windows, with minimum mean correlation (~0.22)
occurring at 19.59 years (95% confidence interval (CI) [19.37,
19.76] years) and then slightly increasing again towards age 24
(AICspl < AIClin, r

2
adj = 0.52, P = 0.098; Fig. 2Aii). Both the mean

inter-regional covariance, and the mean product of regional
standard deviations (respectively the numerator and denomi-
nator of the Pearson correlation coefficient), showed similar
nonlinear processes of decline in younger windows followed by
levelling off in older windows (Fig. S4).

A potential drawback of the sliding window analysis is that
it inevitably involves estimating inter-regional correlations on
a subset of the sample (N ≈ 60 per window), with commensu-
rately reduced precision of estimation and therefore noisier
graphs. We used a probabilistic threshold to control the edge-
wise FDR at 1%, thus ensuring that the age-resolved graphs
only included edges that were unlikely to represent false posi-
tive noise (Fig. 2B).

Focusing on the most statistically robust subset of edges
(which passed the FDR threshold for significance), we found
similar but clearer evidence for age-related global changes in
structural network organization. The structural correlation dis-
tributions of the bootstrap-thresholded network became
sparser over the course of adolescence (Fig. 2Ci). The edge den-
sity demonstrated a nonlinear decrease (AICspl < AIClin) from
33.9% to a minimum of 8.2% at 19.45 years (95% CI [19.32, 19.59]
years; r2adj = 0.81, P = 0.0069), which was similar in shape to the
global trajectory of unthresholded correlation (Fig. 2Cii).

The global connection distance of the thresholded net-
works (the mean Euclidean distance subtended by bootstrap-
thresholded edges) also demonstrated a nonlinear trajectory
(AIClin < AICspl, r

2
adj = 0.67, P = 0.049) characterized by a phase
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of relatively rapid decrease from 14 years to reach a minimum
at 18.72 years (95% CI [18.68, 18.77] years), followed by a phase
of more stable connection distance (Fig. S7A).

Regional Development of Age-Resolved Structural
Networks

Regional maturation of structural correlation networks was
assessed by estimating the trajectories of changes in node
degree, which is the number of correlations retained at each
node (following bootstrap thresholding). Although there was
regional heterogeneity in the trajectories of node degree
(Fig. 3A), all regions that demonstrated significant evidence of
nonzero change (linear or spline fit PFDR < 0.05; 82 regions) fol-
lowed a nonlinear trajectory (AICspl < AIClin), which for most
regions (75/82) could be summarized by a younger phase (from
14 to 19 years approximately) of more-or-less rapid decrease in
structural correlation followed by a levelling off or slight
increase of structural correlation in an older phase (from 19 to
24 years approximately). This process could be summarized by
two parameters: Δkmax, the difference between maximum and
minimum degree; and age(kmin), the age at which node degree
reached its minimum value (Fig. 3B).

Decreases in node degree were greatest in association cortical
areas, such as bilateral dorsolateral prefrontal cortex, medial fron-
tal cortex and supramarginal gyrus, as well as precentral and post-
central gyri and several temporal cortical regions. Increases in
node degree were less spatially clustered, occurring in isolated
nodes within the right cingulate, superior frontal and parietal cor-
tices as well as left cuneus (Fig. 3Ci). Association cortical areas also
showed more prolonged decreases in structural correlation, reach-
ing the minimum value of node degree later (Fig. 3Cii). Predictably,
it follows that the extent of degree shrinkage Δkmax was negatively
correlated with the age at which degree reached its minimum
value age(kmin), whether considering all regions (Spearman’s
ρ = −0.38, PSpearman < 10−10, Pperm < 10−5) or excluding regions
whose minimum occurred at one of the limits of the age range
(Spearman’s ρ = −0.45, PSpearman < 10−10, Pperm = < 10−5; Fig. 3D).

Age-related nonlinear changes in nodal connection distance
(the mean Euclidean distance of all edges connecting a node
within the bootstrap-thresholded network) were summarized
using analogous parameters to node degree: Δdmax, the difference
between maximum and minimum distance; and age(dmin), the
age at which nodal connection distance reached its minimum
value. Nodes that demonstrated significantly reduced connection
distance (PFDR < 0.05) were located in left dorsolateral prefrontal
cortex, left supramarginal gyrus and right superior parietal cortex

Figure 2. Global trajectories of age-resolved structural correlations and network connection density. (A) Global trajectories of unthresholded structural correla-

tions. (i) Development of the distribution of unthresholded correlations across age windows. Thin lines represent bootstrapped estimates, white lines represent

the bootstrap mean. (ii) Changes in the average correlation. Black markers represent empirical data (error bars indicate the interquartile range across boot-

straps), with corresponding regression line; the white marker indicates the trajectory minimum. Grey lines represent bootstrapped trajectories; the white

dashed line represents the bootstrap mean. (B) Each windowed matrix was thresholded using bootstrap. Within each window, 1000 sets of participants were

resampled (with replacement) and used to construct correlation matrices. For each edge (correlation) within each window, the presence of a significant nonzero

correlation (across bootstraps) was tested at the FDR-adjusted level of αFDR = 0.01. Consistent correlations were retained, while inconsistent correlations were

assigned a value of 0. (C) Global trajectories within thresholded structural correlation networks. (i) Development of the distribution of correlations retained after

probabilistic thresholding across age windows. (ii) The number of edges retained after probabilistic thresholding, or edge density. The shaded area represents

the 95% confidence interval of the spline fit.
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(Fig. S7C). Decreases in node connection distance were negatively
correlated with age at minimum connection distance, whether
considering all nodes (Spearman’s ρ = −0.38, PSpearman < 10−10,
Pperm < 10−5) or excluding nodes whose minimum occurs at one
of the limits of the age range (Spearman’s ρ = −0.25, PSpearman =
0.0027, Pperm = 0.0036) (Fig. S7D). Finally, decreases in node con-
nection distance were positively correlated with decreases in
node degree (Spearman’s ρ = 0.32, PSpearman = 1.9·10−8, Pperm =
<10−5) (Fig. 7E). In other words, nodes that had the greatest
reduction in hubness during adolescence also tended to have
the greatest reduction in connection distance.

To contextualize changes in structural network architecture
with respect to maturation of cortical morphology, we related
regional measures of cortical network development to rates of
change of CT and MT (a measure of myelination), evaluated as
the slope of a linear model fitted to the cross-sectional values.
The maximum change in node degree was (weakly) positively
correlated to the rate of thinning (ΔCT; Spearman’s ρ = 0.16,
PSpearman = 0.0050, Pperm = 0.023; unaffected by excluding 3 out-
lier regions which showed ΔCT > 0, Spearman’s ρ = 0.15,
PSpearman = 0.0070, Pperm = 0.028; Fig. 4Ai), and more strongly
negatively correlated to the rate of intracortical myelination
(ΔMT; Spearman’s ρ = −0.32, PSpearman = 6.6·10−9, Pperm = 7·10−4;
Fig. 4Aii). Following Whitaker, Vértes et al. (2016), myelination
analyses were conducted at 10 fractional depths between the
pial surface and the grey/white matter boundary, as well as 2
absolute depths into white matter. The strength of association
between local adolescent myelination (indexed by ΔMT) and
adolescent decrease of node degree (indexed by Δkmax) was
greatest when ΔMT was measured at about 70% of cortical
depth from the pial surface to the grey/white matter boundary
(Fig. 4B).

Figure 4. Relationship between maturation of cortical morphology and structural

correlation networks. (A) Relationship between regional trajectories of cortical

morphology and node degree. Maximum changes in nodal degree are only very

weakly related to regional rates of (i) thinning and (ii) myelination (PU = percent-

age units). The direction of the relationships is such that cortical regions that

myelinate more during adolescence are more likely to decrease in node degree

and connection distance in the same period. (B) Spearman correlation of rate of

change myelination to maximal change in degree as a function of cortical depth,

including 10 fractional depths from the pial surface to the grey/white matter

boundary (GM/WM), as well as 2 absolute depths into the white matter.

Figure 3. Regional development of structural correlation networks. (A) Cortical maps of node degree at 5 regularly sampled intervals of the developmental trajectories,

showing a regionally heterogeneous decrease from young age. (B) Definition of local measures of maturation, illustrated on a nonlinearly decreasing trajectory (from

the right dorsolateral prefrontal cortex). The maximum change in degree Δkmax corresponds to the (absolute) difference (decrease or increase) in degree between the

maximum and the minimum of the trajectory. The age at minimum degree age(kmin) corresponds to the timing of the minimum of the trajectory. (C) Cortical maps of

regional maturation measures for trajectories showing evidence of nonzero change (at PFDR < 0.05), predominantly located in association cortex: (i) maximum change

in degree, and (ii) age at minimum degree. (D) Regions that show greater decreases in degree tend to reach minima of their trajectories later, whether considering all

regions (grey) or excluding regions where the trajectory minimum occurs at extrema of the age range (black).
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Age-Resolved Network Changes in Relation to the
Age-Invariant Network and its Communities

Given that most densely connected nodes (hubs) of the age-
invariant structural correlation network are predominantly
located in association cortex (Whitaker, Vértes et al. 2016),
which is also the location of greatest age-resolved decreases in
structural correlation, it is not surprising that there is an
inverse relationship between age-invariant (weighted) node
degree and maximum change in degree (ρ = −0.43, PSpearman <
10−10, Pperm = <10−5; Fig. S9Bi). Node degree of the age-invariant
network and age at minimum degree were not strongly related
(Fig. S9Bii).

We further studied adolescent changes in nodal topology in
relation to the community structures of the human brain. Many
community structures have been proposed to partition the cor-
tex into a set of modules or sub-networks, each comprising a
number of functionally and/or anatomically related cortical
areas. Here, we considered three complementary community
structures: (1) the modular decomposition of the age-invariant
structural correlation network (7 modules); (2) the classic von
Economo cytoarchitectonic partition of the cortex into classes
based on cortical lamination (we used a partition into 7 classes
by Vértes et al. (2016), extended from the original partition into
5 classes by von Economo and Koskinas (1925)); and (3) the prior

identification of 7 resting state networks derived from indepen-
dent components analysis of an independent resting state fMRI
dataset (Yeo, Krienen et al. 2011). The three classification sys-
tems had similar but not identical community structures; nor-
malized mutual information (NMI, a measure of correspondence
between two community structures) ranged from NMI = 0.39 for
the relationship between the structural network modules and
the resting state fMRI components to NMI = 0.29 for the relation-
ships between both neuroimaging-based community structures
and the von Economo classification (Fig. 5A).

In the context of (1) the age-invariant structural network
community structure, the greatest decreases in connection
density ΔDmax were concentrated within the superior frontal
module (blue) and within the superior temporal/insular module
(purple); or between the superior frontal module and other
modules (Fig. 5Biii). The age at minimum density age(Dmin)
tends to occur later within the same modules, as well as the
occipito-parietal module (pink; Fig. 5Biv). In the context of (2)
cytoarchitectonic atlas of von Economo and Koskinas (1925),
greatest decreases in edge density were concentrated within
and between association cortical areas with lamination types 2
and 3 (described as granular isocortex; blue and green respec-
tively) and particularly within class 3 (green; Fig. 5Bi).
Association cortical trajectories tended also to reach the age of
minimum edge density latest (Fig. 5Bii). In the context of (3)

Figure 5. Adolescent development of structural networks in relation to human brain communities. The modular partition used consisted of 7 modules, including a

parietal “somatosensory” module (yellow), a frontal “motor” module (orange), an occipital “visual” module (green), an inferior-frontal/temporal module (red), a super-

ior frontal module (blue), a superior temporal/insular module (purple) and a parieto-occipital module (pink). (A) Comparison of the modular architecture of the age-

invariant structural correlation network (middle) to two prior community structures—the von Economo atlas of cytoarchitectonic classes (von Economo and Koskinas

1925; left) and 7 functional intrinsic connectivity networks derived using an independent fMRI data (Yeo and Krienen 2011; right). The alluvial diagrams between sur-

face plots of community architecture indicate the amount of overlap between individual communities across templates. (B) Development of structural correlations

within and between corresponding pairs of communities—cytoarchitectonic classes (i, ii), age-invariant modules (iii, iv) and functional intrinsic connectivity net-

works (v,vi). Left: maximum change in edge density ΔDmax within and between all pairs of communities. Right: age at minimum edge density age(Dmin) within and

between all pairs of communities. Dot markers indicate statistical significance of developmental change; small: PFDR < 0.05, large: PFDR < 0.01.
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fMRI resting state networks outlined by Yeo, Krienen et al.
(2011), the greatest decreases in edge density were concen-
trated within the frontoparietal control network (orange) as
well as between this network and the other networks (Fig. 5Bv).
Minima of the trajectory were reached latest within the default
mode network (salmon red) and the ventral attention network
(pink), as well as between these two functional networks
(Fig. 5Bvi). In summary, across the three community partitions,
the greatest (and latest) decreases in connection density
occurred within association cortical communities, and (to a
lesser extent) between those association cortical communities
and the remainder of the network.

Sensitivity Analyses

While we had no hypotheses about the shape of the matura-
tional trajectories or the direction of the changes, the finding of
a nonlinear decrease in structural correlation (and derived
measures of edge density and degree), globally and locally, was
somewhat surprising. This is one of the reasons why we con-
ducted numerous sensitivity analyses, to ensure that our find-
ings are not caused or inflated by methodological choices or
artefacts.

Our principal findings on bootstrap-thresholded networks
were corroborated by similar results from analysis of unthre-
sholded structural correlation matrices (Fig. S6).

We evaluated robustness of our findings to parameters of
the sliding window method, varying the window width and
step size over ranges of {40,60,80} and {5,10,20} participants
respectively. Results were qualitatively consistent with the
above, showing a nonlinear decrease in structural correlation
both globally and locally (most prominently in association cor-
tex), as well as (weak) relationships of maximum local change
in correlation to regional rates of thinning and myelination
(Table S2 and Fig. S11).

Analysis of gender differences failed to identify effects of gen-
der or age-by-gender interactions in the trajectories of structural
correlation development (Supplementary Information).

We investigated the effect of several potential artefacts,
including the presence of regions with low reliability of struc-
tural correlations (Fig. S12) as well as inhomogeneities in the
age distribution of participants (Fig. S13). We found no substan-
tial evidence that the effect of such artefacts could inflate or
account for our main finding of a nonlinear age-related
decrease in structural correlation.

Finally, we investigated whether subtle nonlinearities in tra-
jectories of cortical thinning and myelination could be driving
nonlinearities in trajectories of structural correlation (Figs
S14–16). Although neither nonlinear CT or MT effects were
especially strong, subtle nonlinearities in trajectories of cortical
myelination appeared somewhat more related to structural
correlation trajectories than subtle nonlinearities in trajectories
of cortical thinning.

Discussion
In the current study we set out to examine the developmental
trajectories of human brain structural networks. To this end,
we used a novel “sliding window” method of network analysis
to resolve age-related changes in human brain structural corre-
lations and probabilistically thresholded brain graphs esti-
mated from MRI data on an age-stratified sample of healthy
adolescents and young adults (N = 297, aged 14–24 years). We
found that global strength of structural correlation and the

related topological property of edge density both decreased
nonlinearly as a function of age: an early phase (14–19.5 years
approximately) of rapid decrease in structural correlation was
followed by a later phase (20–24 years) of stable or slightly
increasing structural correlation. At a regional or nodal level of
analysis, cortical areas varied in the magnitude of age-related
decrease in nodal degree Δkmax and the age at which nodal
degree reached its minimum value age(kmin). The 75 cortical
areas with significantly decreasing degree tended to mature
later, that is, large negative Δkmax was associated with older
age(kmin). Further, cortical areas with the greatest shrinkage of
degree during adolescence also had the greatest shrinkage of
connection distance, that is, large negative Δkmax was associ-
ated with large negative Δdmax. To contextualize these results,
we showed that cortical areas with the greatest adolescent
changes in brain structural connectivity were anatomically
concentrated in regions of association cortex that had fast local
rates of increasing intracortical myelination; and were topologi-
cally concentrated on the edges within frontal communities
(von Economo classes 2 and 3 and the functional frontoparietal
control network) and the edges connecting frontal communi-
ties to the rest of the network. We propose that these results
are consistent with the existence of a developmental window
for tuning of association cortical connectivity by a combination
of parsimoniously pruning some long distance connections
while actively consolidating or myelinating the connections
which survive.

MRI Studies of Adolescent Structural Brain Network
Development

Adolescent changes in structural correlation networks have
previously been investigated, as pairwise changes across four
discrete (nonoverlapping) age-bins spanning the range 5–18
years (Zielinski et al. 2010; Khundrakpam et al. 2013). Zielinski
et al. (2010) reported largely nonlinear changes in the extent of
seed-based structural correlation networks. Both the executive
control network (seeded in the right dorsolateral prefrontal cor-
tex) and the salience network (seeded in the right frontal insu-
la), showed an increase in spatial extent, quantified as the
number of voxels whose grey matter intensity significantly cor-
related with the seed. Conversely, our approach suggests a
decrease in the structural correlation within association areas
and related structural, cytoarchitectonic, and functional com-
munities. Beyond the difference in methods (voxel-wise seed-
based vs. parcel-wise all-to-all regions), this discrepancy could
be due to the different morphometric measures used, known to
show differences in both trajectories of adolescent maturation
(Wierenga et al. 2014; Ducharme et al. 2015), and (age-invariant)
structural correlation (Sanabria-Diaz et al. 2010; Yang et al.
2016). Further, Khundrakpam et al. (2013) reported decreases in
regional efficiency of primary sensorimotor regions, alongside
increases in regional efficiency of paralimbic and association
regions. These results align with our own, through the strong
dependence of the properties of graphs thresholded to fixed
edge densities (as in Khundrakpam et al. (2013)) on the mean of
the correlation distributions from which they were derived.
Networks with lower correlations lead to more random topol-
ogy, exhibiting higher efficiency and lower clustering (Fornito
et al. 2013; van den Heuvel et al. 2017). Therefore, our finding of
decreases in structural correlation within association cortical
areas aligns with reports by Khundrakpam et al. (2013) of
increased regional efficiency in these regions. Beyond develop-
ment of structural networks resolved using distinct age-groups,
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several studies have investigated coordinated maturation of
cortical morphology during adolescence (Raznahan et al. 2011;
Alexander-Bloch, Raznahan et al. 2013; Sotiras et al. 2017).

Adolescent development of structural connectivity has also
been investigated using diffusion imaging and tractography,
although such studies report heterogeneous findings. Lim et al.
(2013) showed decreases in structural connectivity from childhood
(4 years) to adulthood (40 years), concentrated predominantly on
strong tracts, located within modules—which qualitatively agrees
with our findings. However, Chen et al. (2013) reported increases
in the number of streamlines and edge density from childhood (5
years) to adulthood (30 years). Recently, Baum et al. (2017)
reported increases in within-module connectivity, and decreases
in between-module connectivity in tractography-derived white
matter networks. While tractography-derived structural connec-
tomes show some overlap with structural correlation networks
(Gong et al. 2012), interpretation of developmental changes in
white-matter connectivity relative to development of structural
correlations will require concurrent studies of both modalities in
the same datasets. It is worth noting that when grey and white
matter structural networks were both constructed using the same
method (structural correlation), both showed similar patterns of
correlation and similar developmental changes from 7 to 14 years
(Moura et al. 2017).

Adolescent development of brain connectivity has also been
investigated using fMRI. Early functional connectivity studies
have reported increases in the strength of long-range and
within-network functional connections (and decreases in the
strength of short-range functional connections) (Fair et al. 2009;
Supekar et al. 2009; Dosenbach et al. 2010). Later studies have
reported qualitatively similar findings, but with attenuated
effect sizes following control for the effects of motion
(Satterthwaite et al. 2012, 2013). While findings such as increas-
ing within-module functional connectivity may seem to dis-
agree with our findings of decreased within-network structural
correlation, these constitute disparate modalities that have not
always yielded concomitant results (Fornito and Bullmore
2015). Beyond studies concurrently investigating adolescent
development of structural and functional networks using the
same dataset(s), the combination of structural, diffusion, and
functional MRI data using methods such as multimodal fusion
(Calhoun and Sui 2016), computational modeling (Breakspear
2017) or morphometric similarity (Seidlitz et al. 2017) might be
useful to reconcile findings from diverse modalities.

Relationship to Axo-synaptic Connectivity (and its
Adolescent Pruning)

Our results extend previous studies of structural network
development (Zielinski et al. 2010; Khundrakpam et al. 2013) by
reporting smooth and nonlinear trajectories of structural net-
work development during adolescence. The early phase of
major decrease in structural correlation, nodal degree, and
nodal connection distance could represent loss of anatomical
connectivity to association cortical areas. The simplest inter-
pretation is that reduced structural correlation or degree repre-
sents pruning of synaptic connections or attenuation of axonal
projections. There is a large body of prior evidence in support
of the concept of synaptic pruning during adolescence
(Huttenlocher and Dabholkar 1997; Petanjek et al. 2011) and
this mechanism has been suggested to explain age-related cor-
tical shrinkage (Tau and Peterson 2009), which was correlated
with age-related degree shrinkage in these data. However, the
security of this interpretation rests on the more fundamental

assumption that structural correlation measured from MRI
data on multiple subjects is a reasonable proxy marker of the
average weight of axo-synaptic connectivity between regions
(Alexander-Bloch, Giedd et al. 2013). Beyond humans (Gong
et al. 2012), there is evidence of such correspondence from ani-
mal models (Yee et al. 2017).

The identification of structural correlation networks in mice
(Pagani et al. 2016) suggests that they might encompass general
features of cortical architecture. Specifically, up to 35% variance in
structural correlation in mice was explained by a combination of
tract-tracing-derived structural connectivity, gene expression and
distance (Yee et al. 2017), providing a link of the macroscopic
structural networks to underlying microscale cortical organiza-
tion. The relationship of structural correlation networks to gene
expression has also been investigated within humans using
the present data, demonstrating overlap between regional co-
expression of genes (Hawrylycz et al. 2012), particularly of a subset
of genes enriched in supragranular layers of cerebral cortex, and
structural correlation patterns (Romero-Garcia et al. 2017).
Moreover, association cortical hubs of the (age-invariant) struc-
tural correlation network showed the greatest expression of genes
related to synaptic transmission, oligodendroglia as well as
schizophrenia, suggesting a potential pathogenic role in abnormal
consolidation of association cortical regions (Whitaker, Vértes
et al. 2016). Generally, the profound adolescent maturational
changes in cortical architecture are thought to underlie the fre-
quent emergence of psychiatric disease in this period, as a result
of abnormal development (Paus et al. 2008; Silbereis et al. 2016).

Adolescent Maturation of Structural Correlation
and Regional Cortical Structure

We note that the association of changes in structural network
architecture to rates of cortical thinning is relatively weak. Given
that (age-invariant) structural correlation networks are thought to
emerge as a result of synchronized maturation (thinning) of corti-
cal regions over adolescence (Raznahan et al. 2011; Alexander-
Bloch, Raznahan et al. 2013), perhaps the changes in structural
correlation might be more closely related to changes in the “rates
of change” of cortical thinning, which in a longitudinal dataset
were shown to peak in adolescence (Zhou et al. 2015). An addi-
tional possible explanation for the adolescent decrease in struc-
tural correlation is a “decoherence” related to interindividual
differences in the timing of maturation of association areas—
although the verification of such a hypothesis would again
require longitudinal data. On a related note, recent work on func-
tional connectivity has shown an adolescent increase the “dis-
tinctiveness” of individual functional connectomes (Kaufmann
et al. 2017). We further note that the association of changes in
structural network architecture to rates of myelination is stronger
(than to rates of cortical thinning), and that subtle nonlinearities
in trajectories of myelination seem more strongly related to non-
linearities in trajectories of structural correlation, suggestive of
the idea that myelination may be a driver of (changes) in struc-
tural covariance. This could be further investigated through con-
current analysis of (adolescent) changes in structural correlation
and white matter architecture.

Generally, the weakness of association between rates of
change of morphology (ΔCT and ΔMT) and structural network
architecture (Δkmax) suggests that rates of change of structural
network properties explain substantial variation of brain structure
with age, above and beyond the rates of thinning and myelina-
tion. As an intrinsic regional measure, cortical thickness can be
considered less complex than a measure of relationships between
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regions (across participants) such as structural correlation; how-
ever, the biological hierarchy could well be the opposite, whereby
cortical thickness and its changes might be a signature of under-
lying changes in axonal connectivity (which is related to struc-
tural correlation). This hypothesis could be tested, using invasive
studies of concurrent development of axonal connectivity and
cortical thickness in model species. In humans, the differential
variance contained within cortical morphology and structural
network architecture could be investigated through further
within-population comparisons of these measures, in (1) their
ability to discriminate between case–control populations, (2)
their association to behavioral and cognitive measures, and (3)
their heritability. For example, patients with childhood-onset
schizophrenia have shown differences in adolescent trajectories
of both cortical thinning (Alexander-Bloch et al. 2014) and struc-
tural correlation (Zalesky et al. 2015) relative to healthy controls,
but the measures have not been explicitly compared.

Notably, changes in structural network architecture were
more strongly related to the rate of myelination (at 70% depth)
than the rate of cortical thinning, suggesting that layer-specific
intracortical myelination might be a more sensitive marker of
corticocortical connectivity than cortical thickness (assuming, as
above, that structural correlation is a marker of connectivity).
Moreover, this finding echoes our earlier finding of the rate of
myelination being fastest at 70% depth between the pial surface
and the grey/white matter boundary, and the relationship between
rate of cortical thinning and rate of myelination being strongest at
this depth (Whitaker, Vértes et al. 2016). We have previously sug-
gested a link of these changes to histological evidence of greatest
rates of myelination at similar cortical depths in rodents (Mengler
et al. 2014; Tomassy et al. 2014; Hammelrath et al. 2016).

Methodological Considerations

Recently, a number of studies have pointed out effects of partici-
pant motion on the quality of structural MRI scans, including on
estimates of regional morphological measures such as cortical
thickness (Reuter et al. 2015; Alexander-Bloch et al. 2016; Savalia
et al. 2017). While we have carried out stringent quality control of
our structural scans and FreeSurfer reconstructions of cortical
thickness (details in Supplementary Information), we cannot
completely rule out potential artefactual effects of motion on our
results. Thus, further analysis of structural correlation develop-
ment in datasets including estimates of head motion from volu-
metric tracking (Tisdall et al. 2012, 2016) or novel automated
estimates of data quality (Shehzad et al. 2015; Pizarro et al. 2016;
Rosen et al. 2017) will be important in the future.

The estimated changes in structural network organization
are inevitably dependent on parameters of the sliding window
method used. The selection of sliding window parameters,
including window width and step size (in units of number of
participants) involves several trade-offs. On one hand, selecting
a wider window increases the robustness of correlations within
each of those windows, as they are estimated using more parti-
cipants; on the other hand, the median ages of participants
within each window will cover a narrower portion of the overall
age-range. Furthermore, while a smaller step size will provide a
greater density of windows and hence time-points for curve fit-
ting and trajectory characterization, a denser sampling of data
will exacerbate issues with the inevitably uneven distribution
of subjects across the age-range studied, which in effect corre-
sponds to an unevenly sampled time-series. Future develop-
ment of tools for the analysis of unevenly sampled time-series
(Eckner 2014) should help alleviate these issues.

Furthermore, depending on the sliding window parameters,
relatively few summary data points may be obtained. The subse-
quent fitting of nonlinear smoothing splines (with up to ~3.5
degrees of freedom) to such scarce data warrants care when
interpreting evidence of nonlinearity—despite evidence from
both the AIC and BIC that smoothing splines provide a better
quality of fit than linear models. Still, it is reassuring that trajec-
tories remain consistently nonlinear across bootstrapped sam-
ples (within unthresholded correlation networks) and that
evidence of a nonlinear trajectory seems more pronounced after
bootstrap thresholding. Changes in structural network architec-
ture remain qualitatively consistent in both their spatial location
and relationship to changes in morphology when simple, linear
models are used. The scarcity of data points may also lead to
uncertainties in measures used to characterize the maturational
trajectories, including the measures of maximum change and
age at minimum of the trajectory. Finally, it remains ambiguous
whether the tendency of the global trajectory of structural corre-
lation to slightly increase from the minimum around age 19
towards age 24 years is significant, or whether the trajectory can
be seen as levelling-off. It seems reasonable that the few nodes
presenting increases in structural correlation (e.g., within right
cingulate cortex) would be driving this effect. Thus, until these
results are validated in an additional dataset, care is necessary
in some aspects of their interpretation.

Further, practical applicability of structural correlation net-
works is limited by the fact that they represent a group construct.
Still, an advantage of structural correlation networks over struc-
tural connectomes derived from diffusion imaging using tracto-
graphy is the relative simplicity of the structural MRI acquisitions
compared with diffusion imaging, which in light of its longer
acquisition is more prone to motion artefacts (Yendiki et al. 2014),
and within which tractography presents considerable challenges
(Thomas et al. 2014; Reveley et al. 2015; Maier-Hein et al. 2016).
Efforts to derive measures of individual contribution to structural
correlation networks (Saggar et al. 2015) or fully individual net-
works from structural imaging (Tijms et al. 2012; Kong et al. 2014,
2015) including through the combination of multimodal features
(Seidlitz et al. 2017) should increase the practical applicability of
structural correlation network research.

In reporting a late maturation of association cortical
regions, our results are potentially compatible with the devel-
opmental mismatch hypothesis, which proposes that late
maturation of prefrontal regions (involved in cognitive con-
trol), compared with an earlier development of subcortical
regions (implicated in reward processing) results in adoles-
cent increases in risk-taking and sensation-seeking behaviors
(Mills et al. 2014). However, the verification of such a hypothe-
sis will require the inclusion of both subcortical regions and
behavioral data in future analyses.

Finally, structural network architecture is known to mature
across the lifespan (DuPre and Spreng 2017), including during
both early childhood (Geng et al. 2017) and late adulthood
(Hafkemeijer et al. 2014). Our focused age-range prohibits us
from conclusively ascertaining the specificity of these changes
to adolescence. For example, extending the analyses presented
herein to wider age-ranges would help disambiguate whether
the nonlinear decreases in structural correlation level off or
increase in young adulthood. In general, the wide applicability
of the methods used herein should enable investigations of the
maturation of structural brain networks, as well as other net-
works constructed in a similar manner (including for example
networks of relationships between psychopathological symp-
toms; Borsboom and Cramer 2013), across the lifespan.
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Conclusion
During adolescence, human brain structural correlation net-
works demonstrate a nonlinear reduction of connectivity of
association cortical areas, predominantly in frontal cortex, that
is compatible with a developmental process of pruning com-
bined with consolidation of surviving connections.
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Data for this specific article has been uploaded to the
Cambridge Data Repository (https://doi.org/10.17863/CAM.8856)
and password protected. Our participants did not give informed
consent for their questionnaire measures to be made publicly
available, and it is possible that they could be identified from
this data set. Access to the data supporting the analyses pre-
sented in this article will be made available to researchers with
a reasonable request to NSPNdata@medschl.cam.ac.uk. The
code used to conduct analyses is available from F.V.’s github:
https://github.com/frantisekvasa/structural_network_development
(DOI: 10.5281/zenodo.528674).
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