
J Arti Inte & Cloud Comp, 2022 Volume 1(1): 1-6

Review Article Open Access

Designing Distributed Artifact Ingestion Platform for Analytics &
Machine Learning
1Senior Software Engineer, Microsoft, WA, USA
2Lead Integrations Developer , TX, USA
3Principal Software Engineer, CA, USA

Mahidhar Mullapudi1*, Narayana Challa2 and Abhishek Shende3

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Mahidhar Mullapudi, Senior Software Engineer, Microsoft, WA, USA.

Received: March 07, 2022; Accepted: March 15, 2022; Published: March 25, 2022

Keywords: Modern Ingestion Platform, Artifact Analytics, Azure
Event Hub, Azure Synapse, Azure Streaming Service, Azure
Machine Learning

Introduction
Real-time data ingestion and processing systems play a pivotal
role in providing data to analytics and machine learning platforms,
enabling the extraction of invaluable insights. Numerous companies
have developed bespoke systems to address the unique challenges
posed by this dynamic data ingestion ecosystem. In this paper,
we delve into the essential attributes pivotal in the conception
and construction of a near real-time data ingestion platform [1-3].

Ease-of-Use
This criterion assesses the complexity of data requirements, the
need for maintaining data versions for consistency and testing,
and the integration with other services.

Flexibility
Examining the frequency of changing requirements, the existence
of diverse data schemas within the system, dependencies of other
services on the data generated by this platform, and the language-
agnostic nature of the design.

Performance
Evaluating acceptable latency levels, whether in seconds or
minutes and determining the required throughput both per machine
and in aggregate for each service [3].

Scalability
Addressing the scalability requirements of the system, considering
potential traffic doubling at regular intervals, exploring the
possibility of sharding and re-sharding data for parallel processing,
and assessing the adaptability to volume changes.

Reliability
Ensuring the system consistently performs its intended functions,
verifying its capability to handle varying loads and data volumes
without compromising functionality.

Fault Tolerance
Identifying the types of failures the system can tolerate, establishing
guaranteed semantics for the processing or output frequency of
data, and detailing the storage and recovery mechanisms for in-
memory states [3].

ISSN: 2754-6659

ABSTRACT
Demand for efficient large-scale heterogeneous distributed data ingestion pipelines for transforming and publishing data that is essential for advanced
analytics and machine learning models, have gained substantial importance. Services increasingly rely on near-real-time signals to accurately identify or
predict customer behavior, sentiments, anomalies facilitating data-driven decision-making. This paper delves into the forefront of distributed and parallel
computing, examining the latest advancements in storage, query, and ingestion methodologies. Furthermore, it systematically assesses cutting-edge tools
designed for both periodic and real-time analysis of heterogeneous data.

“The data quality is more important than the Machine Learning model itself ”. Achieving precision in decision-making or generating precise output from
the Machine Learning models necessitates a keen focus on input data quality and consistency.

Building a robust ingestion platform for handling hundreds of Gigabytes/Petabytes per day involves a comprehensive understanding of the overarching
architecture, the intricacies of involved components, and the unique challenges within these ecosystems. Building a service platform demands thoughtful
consideration and resolution of key aspects, including a scalable ingestion handler, a flexible and fault-tolerant data processing library, a highly scalable and
resilient event system, an analytics/reporting platform, machine learning platform, and robust application health and security measures.

This paper delves into the overall architecture, explicates design choices, and imparts insights into best practices for implementing and maintaining such a
platform, leveraging contemporary tools. The discussion encompasses critical aspects of the platform's functionality, emphasizing the need for scalability,
fbility, resilience, and security to meet the demands of modern data-driven decision-making scenarios.

Citation: Mahidhar Mullapudi, Narayana Challa, Abhishek Shende (2022) Designing Distributed Artifact Ingestion Platform for Analytics & Machine Learning.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-221. DOI: doi.org/10.47363/JAICC/2022(1)206

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 2-6

Versioning
Versioning is one of the mission critical capabilities that should be
fully supported for iterative artifacts ingestion. It not only allows
us to look at the history of each unique artifact but also leverages
the extensibility that the platform offers to allow customization
of how the version of each ingestion should be described. The
versioning can also tell us if the ingestion is a publish to Production
or an inflight change and yet made it to Production.

Within this paper, we meticulously detail the overarching
architecture, present a comprehensive overview of the involved
components, elucidate the system's design intricacies, and
conscientiously adhere to industry’s best practices while integrating
the considerations into our design decisions.

The structure of this paper is as follows. In Section 2, we provide
a thorough examination of the system's architecture and delineate
the intricate relationships among its integral components and
takes deep dive into some of the key components, delves into
the specifics within the system, shedding light on their roles,
functionalities, and contributions to the overall framework.
Section 3 serves as a reflection on the insights gained during the
design and implementation phases of our large-scale distributed
artifact ingestion platform. By sharing lessons learned, we aim
to contribute valuable knowledge to the broader community
engaged in similar endeavors. Finally, in Section 4, we conclude by
summarizing the impact of these well-designed and developed data
ingestion pipelines on machine learning and advanced analytics.

Systems Overview

Figure 1: An Overview of the Systems Involved in Real-Time
Data Processing: From Data Sources on the Left, Ingestion and
Data Processors in the Middle, to Data Stores for Analysis on
the Right

Designing and building large-scale distributed artifact ingestion
platforms for Machine Learning and advanced analytics involves
a multifaceted system. In this section, we offer a comprehensive
overview of the architecture and diverse components integral to
this ingestion pipeline, leveraging Azure services and other tools.

Illustrated in Figure 1 is the holistic architecture, depicting
individual components and services. This depiction showcases
the process of capturing data from diverse sources, ingesting and
storing streaming data for real-time analytics, responding to events
in real-time, and subsequently transporting the data across various
processors based on specific use cases. Finally, the processed
data is seamlessly fed into dependent systems for advanced data
analytics and machine learning applications.

Data Sources
The exponential growth of data in contemporary ecosystems from
various sources contributes to this expanding data landscape,
encompassing structured and unstructured formats.

Structured data, often originating from relational databases like
Oracle database, SQL server, Azure SQL etc., transactional
systems, and organized datasets, poses unique challenges in terms
of schema variability and evolving data structures.

In contrast, unstructured data, derived from sources like social
media, sensor logs, and textual documents, presents challenges
related to the lack of predefined data models. Additionally, the
influx of streaming data from real-time sources like mobile devices
and IOT devices further complicates the data ingestion process.

These diverse data sources demand a sophisticated ingestion
platform capable of seamlessly assimilating data in its varied
forms, ensuring consistency, and enabling effective utilization for
machine learning and advanced analytics applications. The focus,
therefore, lies in devising a versatile artifact ingestion platform
capable of handling the intricacies posed by the heterogeneity and
dynamic nature of data from diverse sources.

Ingestion
In the realm of building a robust artifact ingestion platform, the
utilization of streaming libraries such as Apache Kafka, Apache
Flink, and analogous frameworks plays a pivotal role in seamlessly
capturing data from diverse sources and channeling it towards
Azure Event Hubs. These libraries provide a powerful foundation
for real-time data processing, ensuring reliability, scalability, and
fault tolerance [4].

Apache Kafka
Apache Kafka is a scalable, fault tolerant and highly available
distributed platform for processing and storing data streams
[5]. It consists of three main components: the Kafka cluster,
the Connect framework with the Connect API and the Streams
stream processing library with the Streams API. The data ingestion
capabilities are achieved by utilizing both Streams and Connect
APIs, creating pipelines between heterogeneous data sources and
the data storage using publish/subscribe model based on Kafka
topics. Renowned for its distributed and fault-tolerant nature, it
proves instrumental in handling high-throughput data streams. It’s
publish-subscribe model facilitates the integration of data from
multiple sources into Azure Event Hubs.

Example Code

Apache Flink
Apache Flink excels in stream processing, offering stateful
computations and event time processing. It seamlessly integrates
with Azure Event Hubs, enabling efficient and scalable data
streaming workflows [6].

Citation: Mahidhar Mullapudi, Narayana Challa, Abhishek Shende (2022) Designing Distributed Artifact Ingestion Platform for Analytics & Machine Learning.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-221. DOI: doi.org/10.47363/JAICC/2022(1)206

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 3-6

Example Code

Apache Spark
Spark is a cluster computing solution and an intra-memory
software framework for data processing based on the MapReduce
model for the purpose of supporting operations such as interactive
queries and data flow processing [1]. It is based on the Resilient
Distributed Datasets (RDD) memory abstraction that enables a
wide range of intra-memory computations with fault tolerance
and provides a programming interface for performing operations.
Apache Spark is based on Spark Core and four processing
components. Spark Core contains RDD and is responsible for
application scheduling, distribution and execution. Spark SQL
component allows structured data processing based on RDD and
contains Dataset API that extends data types with datasets and data
frames. Spark Streaming contains framework for stream processing
based on micro batches and utilizes discretized stream abstraction
DStream responsible for splitting data streams into smaller batches
inside small fault tolerant windows. MLLib programming library
provides machine learning capabilities over data streams. GraphX
library enables graph datasets creation using RDD API, which
allows the data storage into graph nodes and edges.

Apache Spark Streaming, an extension of the Spark core, provides
a micro-batch processing model, allowing for near-real-time
processing of streaming data. It seamlessly integrates with Azure
Event Hubs, offering fault tolerance and ease of use. Azure also
supports Databricks integration where all these data processing
and machine learning jobs using Spark can run on Spark cluster.

Example Code

Comparative Analysis
Scalability
Kafka's partitioning mechanism allows for horizontal scalability,
while Flink's parallelism can be adjusted dynamically, catering
to varying workloads.

Processing Semantics
Flink's event time processing ensures accurate results even in the
presence of delayed or out-of-order events, offering a nuanced
advantage over Kafka. Spark Streaming's micro-batch model
contrasts with the continuous processing paradigm of Flink,
offering a different approach based on processing small, periodic
batches of data. Spark's unified platform simplifies development
with a consistent API for batch and stream processing, promoting
ease of use.

Fault Tolerance
Both Kafka and Flink provide fault-tolerant mechanisms, Kafka
relying on replication and Flink utilizing distributed snapshots.
There are other valuable mentions and provide greater benefits in
certain use cases like Apache Storm, Apache Samza etc.,

Azure Event Hubs
Azure Event Hubs is a cloud native data streaming service that
can stream millions of events per second, with low latency, from
any source to any destination. Azure Event Hubs is the preferred
event ingestion layer of any event streaming solution that you build
on top of Azure. It seamlessly integrates with data and analytics
services inside and outside Azure to build your complete data
streaming pipeline [7,8].

Ensure proper configuration of Azure Event Hubs credentials,
connection strings, and policies for secure and reliable data
transfer.

Example Code

Schema Registry in Azure Event Hubs

Azure Schema Registry in Event Hubs provides a centralized
repository for managing schemas of events streaming applications.
It ensures data compatibility and consistency across event
producers and consumers. Schema Registry enables seamless
schema evolution, validation, and governance, and promoting
efficient data exchange and interoperability [9,10].

Data Processing
Once, the data is ingested and is emitted as an event from the
event hubs, that can be processed by several types of tools or
services depending on the specific use case. We discuss some
common types:

Real-Time Processing of Streaming Events with Azure Stream
Analytics
Event Hubs integrates seamlessly with Azure Stream Analytics
to enable real-time stream processing. With the built-in no-code
editor, you can effortlessly develop a Stream Analytics job using
drag-and-drop functionality, without writing any code.

Citation: Mahidhar Mullapudi, Narayana Challa, Abhishek Shende (2022) Designing Distributed Artifact Ingestion Platform for Analytics & Machine Learning.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-221. DOI: doi.org/10.47363/JAICC/2022(1)206

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 4-6

Figure 2: Process Event Hub Data with Stream Analytics

Alternatively, developers can use the SQL-based Stream Analytics
query language to perform real-time stream processing and take
advantage of a wide range of functions for analyzing streaming
data.

Azure Stream Analytics and Integration with Azure Machine
Learning Services
Azure Stream Analytics is a fully managed, real-time analytics
service designed to help you analyze and process fast moving
streams of data that can be used to get insights, build reports
or trigger alerts and actions. Machine Learning models can be
implemented as a user-defined function (UDF) in Azure Stream
Analytics jobs to do real-time scoring and predictions on the
streaming input data. Azure Machine Learning supports use of
any popular open-source tools, such as TensorFlow, scikit-learn,
or PyTorch, to prep, train, and deploy models. Adding machine
learning model as a function to the Stream Analytics pipeline
involves the following:

Deploy ML Model as a Web Service
Utilize Azure Machine Learning's capabilities to deploy the trained
model as a web service, enabling seamless integration with other
Azure services. Emphasize the crucial role of the associated
Swagger documentation in defining the input and output schemas
for Stream Analytics comprehension [11].

Data Format Adherence
Ensure the web service's adherence to JSON serialization for
both input and output data, aligning with Stream Analytics
requirements.

Scalable Production Deployment
Underscore the significance of deploying the model on Azure
Kubernetes Service (AKS) to cater to high-scale production
environments. Highlighting the potential performance degradation
and latency concerns if the web service's capacity is insufficient
to handle the incoming request volume.

Integrate the Machine Learning Service with Streaming
Analytics Service
Navigate your Stream Analytics job in the Azure portal, select
Functions under Job topology and then select Azure Machine
Learning Service from the dropdown [9].

Invoking Azure Machine Learning UDF from Stream Analytics
Query
In the context of Stream Analytics queries that interact with Azure
Machine Learning (AML) UDFs, the process involves the creation
of a JSON serialized request to be sent to the associated machine
learning web service. This request is meticulously crafted based
on a model-specific schema, which Stream Analytics intelligently
deduces from the endpoint's Swagger definition. This integration
ensures seamless communication between the Stream Analytics
job and the Azure Machine Learning model, enabling real-
time inference within the data processing pipeline. Below is an
illustrative example of a Stream Analytics query demonstrating
how to invoke an Azure Machine Learning UDF:

Create Pandas or PySpark Data Frame
You can use the WITH clause to create a serialized JSON Data
Frame that can be passed as input to your Azure Machine Learning
UDF as shown below. The following query creates a Data Frame
by selecting the necessary fields and uses the Data Frame as input
to the Azure Machine Learning UDF [9].

Citation: Mahidhar Mullapudi, Narayana Challa, Abhishek Shende (2022) Designing Distributed Artifact Ingestion Platform for Analytics & Machine Learning.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-221. DOI: doi.org/10.47363/JAICC/2022(1)206

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 5-6

Exploring Streaming Data with Azure Data Explorer
Azure Data Explorer (also called kusto) is a fully managed
platform for big data analytics that delivers high performance
and allows for the analysis of large volumes of data in near real
time. By integrating Event Hubs with Azure Data Explorer, you
can easily perform near real-time analytics and exploration of
streaming data [9].

Figure 4: Azure Data Explorer Cluster

Capture Streaming Data for Long Term Retention and Batch
Analytics
Capture your data in near-real time in an Azure Blob storage or
Azure Data Lake Storage for long-term retention or micro-batch
processing. You can achieve this behavior on the same stream
you use for deriving real-time analytics. Setting up capture of
event data is fast.

Model and Serve
The processed data can be fed to reporting systems like PowerBI
or stored and can be consumed by other systems to represent that
analyzed data for other use cases.

Lessons Learned
While designing and building these large-scale distributed data
ingestion pipelines there are different things that come into
play which become more complex. Providing the same level
of experience for the services at an exponential level of growth
involves solving problems related to the underlying infrastructure
and horizontal scaling of resources to serve the needs.

Latency
The system should be able to scale horizontally to maintain similar
latency with exponential growth in data. So, designing the system
to be able to parallelize and run across multiple nodes, stream the

data and get consistent results will be important.

Ease of Debugging
In traditional applications, iterative development is facilitated by
storing data and rerunning queries as needed. However, in this
stream processing system, where data is maintained in different
formats, iterating becomes challenging, and updating operators
may yield different results on new data streams. So, maintaining
different versions of data and being able to use that to test the
outputs that the transformation pipeline generates helps a lot with
debugging for any scenarios.

Ease of Monitoring and Operations
Monitoring and operation of deployed apps are vital. We use alerts
to detect processing lag, ensuring timely adjustments. Creating
dashboards and monitoring key metrics to check the overall health
and functionality of the system plays a crucial role.

Conclusion
In this paper, we proposed and implemented a distributed data
ingestion platform using Azure stack for extracting valuable
insights and actionable knowledge from different data streams. Our
proposed architecture supports both real-time and historical data
analytics using flexible data processing model. This architecture
used Azure cloud services and open-source tools optimized for
large scale distributed ingestion pipelines.

We implemented a large-scale distributed data ingestion and
processing platform that collaborates with multiple systems
for analytics and machine learning jobs. This demonstrates the
amenability of our architecture that can scale depending on the
load and can be applied in different scenarios for batch processing
or stream processing to feed reporting or further analysis using
Machine Learning algorithms [12-18].

References
1. Shayna Joubert (2019) Beyond The Buzzword: What Does

Data-Driven Decision-Making Really Mean? Northeastern
University Graduate Program https://graduate.northeastern.
edu/resources/data-driven-decision-making./.

2. Mahak Agarwal (2020) Why the Data You Use Is More
Important Than the Model Itself. Medium https://medium.
com/swlh/why-the-data-you-use-is-more-important-than-the-
model-itself-4a49736ea70c.

3. (2017) Is Data More Important Than Algorithms In AI? Forbes
https://www.forbes.com/sites/quora/2017/01/26/is-data-
more-important-than-algorithms-in-ai/?sh=111664a542c1.

4. Guoqiang JC, Janet LW, Shridhar Ir, Anshul J, Ran L (2016)
Realtime Data Processing at Facebook. ACM 1087-1098.

5. Kleppmann M (2017) Designing Data-Intensive Applications.
O'Reilly Media https://www.oreilly.com/library/view/
designing-data-intensive-applications/9781491903063/.

6. Tomislav H; Josip P (2021) An Overview of Current Trends in
Data Ingestion and Integration. 44th International Convention
on Information, Communication and Electronic Technology
(MIPRO), Opatija, Croatia 1265-1270.

7. Azure Event Hubs - how it works. Microsoft https://
learn.microsoft.com/en-us/azure/event-hubs/event-hubs-
about#how-it-works.

8. A Flink. Apache Flink https://flink.apache.org/.
9. Azure Event Hubs. Microsoft https://learn.microsoft.com/

en-us/azure/event-hubs/event-hubs-about.
10. Process data from your event hub using Azure Stream

Analytics. Microsoft https://learn.microsoft.com/en-us/azure/

Citation: Mahidhar Mullapudi, Narayana Challa, Abhishek Shende (2022) Designing Distributed Artifact Ingestion Platform for Analytics & Machine Learning.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-221. DOI: doi.org/10.47363/JAICC/2022(1)206

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 6-6

Copyright: ©2022 Mahidhar Mullapudi, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

event-hubs/process-data-azure-stream-analytics.
11. Deploy and score a machine learning model by using an online

endpoint. Microsoft https://learn.microsoft.com/en-us/azure/
machine-learning/how-to-deploy-online-endpoints.

12. Tim Stobierski (2019) ADVANTAGES OF DATA-DRIVEN
DECISION-MAKING. HBS https://online.hbs.edu/blog/post/
data-driven-decision-making.

13. Apache Kafka. Kafka https://kafka.apache.org/.
14. What is Apache Spark? Apache Spark https://spark.apache.

org/.
15. Use Azure Schema Registry in Event Hubs from Apache

Kafka and other apps. Microsoft https://learn.microsoft.com/
en-us/azure/event-hubs/schema-registry-overview.

16. Integrate Azure Stream Analytics with Azure Machine Learning.
Microsoft https://learn.microsoft.com/en-us/azure/stream-
analytics/machine-learning-udf?source=recommendations.

17. Chandan Prakash (2018) Spark Streaming vs Flink vs
Storm vs Kafka Streams vs Samza : Choose Your Stream
Processing Framework. Medium https://medium.com/@
chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-
kafka-streams-vs-samza-choose-your-stream-processing-
91ea3f04675b.

18. Paula TS, Adnan A, Guy GG, Guy H, Francois C (2018) An
Ingestion and Analytics Architecture for IoT Applied to Smart
City Use Cases. IEEE Internet of Things Journal 5: 765-774.

