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Introduction
Real-time data ingestion and processing systems play a pivotal 
role in providing data to analytics and machine learning platforms, 
enabling the extraction of invaluable insights. Numerous companies 
have developed bespoke systems to address the unique challenges 
posed by this dynamic data ingestion ecosystem. In this paper, 
we delve into the essential attributes pivotal in the conception 
and construction of a near real-time data ingestion platform [1-3].

Ease-of-Use
This criterion assesses the complexity of data requirements, the 
need for maintaining data versions for consistency and testing, 
and the integration with other services.

Flexibility
Examining the frequency of changing requirements, the existence 
of diverse data schemas within the system, dependencies of other 
services on the data generated by this platform, and the language-
agnostic nature of the design.

Performance
Evaluating acceptable latency levels, whether in seconds or 
minutes and determining the required throughput both per machine 
and in aggregate for each service [3].

Scalability
Addressing the scalability requirements of the system, considering 
potential traffic doubling at regular intervals, exploring the 
possibility of sharding and re-sharding data for parallel processing, 
and assessing the adaptability to volume changes.

Reliability
Ensuring the system consistently performs its intended functions, 
verifying its capability to handle varying loads and data volumes 
without compromising functionality.

Fault Tolerance
Identifying the types of failures the system can tolerate, establishing 
guaranteed semantics for the processing or output frequency of 
data, and detailing the storage and recovery mechanisms for in-
memory states [3].
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ABSTRACT
Demand for efficient large-scale heterogeneous distributed data ingestion pipelines for transforming and publishing data that is essential for advanced 
analytics and machine learning models, have gained substantial importance. Services increasingly rely on near-real-time signals to accurately identify or 
predict customer behavior, sentiments, anomalies facilitating data-driven decision-making. This paper delves into the forefront of distributed and parallel 
computing, examining the latest advancements in storage, query, and ingestion methodologies. Furthermore, it systematically assesses cutting-edge tools 
designed for both periodic and real-time analysis of heterogeneous data.

“The data quality is more important than the Machine Learning model itself ”. Achieving precision in decision-making or generating precise output from 
the Machine Learning models necessitates a keen focus on input data quality and consistency.

Building a robust ingestion platform for handling hundreds of Gigabytes/Petabytes per day involves a comprehensive understanding of the overarching 
architecture, the intricacies of involved components, and the unique challenges within these ecosystems. Building a service platform demands thoughtful 
consideration and resolution of key aspects, including a scalable ingestion handler, a flexible and fault-tolerant data processing library, a highly scalable and 
resilient event system, an analytics/reporting platform, machine learning platform, and robust application health and security measures.

This paper delves into the overall architecture, explicates design choices, and imparts insights into best practices for implementing and maintaining such a 
platform, leveraging contemporary tools. The discussion encompasses critical aspects of the platform's functionality, emphasizing the need for scalability, 
fbility, resilience, and security to meet the demands of modern data-driven decision-making scenarios.
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Versioning
Versioning is one of the mission critical capabilities that should be 
fully supported for iterative artifacts ingestion. It not only allows 
us to look at the history of each unique artifact but also leverages 
the extensibility that the platform offers to allow customization 
of how the version of each ingestion should be described. The 
versioning can also tell us if the ingestion is a publish to Production 
or an inflight change and yet made it to Production.

Within this paper, we meticulously detail the overarching 
architecture, present a comprehensive overview of the involved 
components, elucidate the system's design intricacies, and 
conscientiously adhere to industry’s best practices while integrating 
the considerations into our design decisions. 

The structure of this paper is as follows. In Section 2, we provide 
a thorough examination of the system's architecture and delineate 
the intricate relationships among its integral components and 
takes deep dive into some of the key components, delves into 
the specifics within the system, shedding light on their roles, 
functionalities, and contributions to the overall framework. 
Section 3 serves as a reflection on the insights gained during the 
design and implementation phases of our large-scale distributed 
artifact ingestion platform. By sharing lessons learned, we aim 
to contribute valuable knowledge to the broader community 
engaged in similar endeavors. Finally, in Section 4, we conclude by 
summarizing the impact of these well-designed and developed data 
ingestion pipelines on machine learning and advanced analytics.

Systems Overview

Figure 1: An Overview of the Systems Involved in Real-Time 
Data Processing: From Data Sources on the Left, Ingestion and 
Data Processors in the Middle, to Data Stores for Analysis on 
the Right

Designing and building large-scale distributed artifact ingestion 
platforms for Machine Learning and advanced analytics involves 
a multifaceted system. In this section, we offer a comprehensive 
overview of the architecture and diverse components integral to 
this ingestion pipeline, leveraging Azure services and other tools.

Illustrated in Figure 1 is the holistic architecture, depicting 
individual components and services. This depiction showcases 
the process of capturing data from diverse sources, ingesting and 
storing streaming data for real-time analytics, responding to events 
in real-time, and subsequently transporting the data across various 
processors based on specific use cases. Finally, the processed 
data is seamlessly fed into dependent systems for advanced data 
analytics and machine learning applications.

Data Sources
The exponential growth of data in contemporary ecosystems from 
various sources contributes to this expanding data landscape, 
encompassing structured and unstructured formats. 

Structured data, often originating from relational databases like 
Oracle database, SQL server, Azure SQL etc., transactional 
systems, and organized datasets, poses unique challenges in terms 
of schema variability and evolving data structures. 

In contrast, unstructured data, derived from sources like social 
media, sensor logs, and textual documents, presents challenges 
related to the lack of predefined data models. Additionally, the 
influx of streaming data from real-time sources like mobile devices 
and IOT devices further complicates the data ingestion process. 

These diverse data sources demand a sophisticated ingestion 
platform capable of seamlessly assimilating data in its varied 
forms, ensuring consistency, and enabling effective utilization for 
machine learning and advanced analytics applications. The focus, 
therefore, lies in devising a versatile artifact ingestion platform 
capable of handling the intricacies posed by the heterogeneity and 
dynamic nature of data from diverse sources.

Ingestion
In the realm of building a robust artifact ingestion platform, the 
utilization of streaming libraries such as Apache Kafka, Apache 
Flink, and analogous frameworks plays a pivotal role in seamlessly 
capturing data from diverse sources and channeling it towards 
Azure Event Hubs. These libraries provide a powerful foundation 
for real-time data processing, ensuring reliability, scalability, and 
fault tolerance [4].

Apache Kafka
Apache Kafka is a scalable, fault tolerant and highly available 
distributed platform for processing and storing data streams 
[5]. It consists of three main components: the Kafka cluster, 
the Connect framework with the Connect API and the Streams 
stream processing library with the Streams API. The data ingestion 
capabilities are achieved by utilizing both Streams and Connect 
APIs, creating pipelines between heterogeneous data sources and 
the data storage using publish/subscribe model based on Kafka 
topics. Renowned for its distributed and fault-tolerant nature, it 
proves instrumental in handling high-throughput data streams. It’s 
publish-subscribe model facilitates the integration of data from 
multiple sources into Azure Event Hubs.

Example Code

Apache Flink
Apache Flink excels in stream processing, offering stateful 
computations and event time processing. It seamlessly integrates 
with Azure Event Hubs, enabling efficient and scalable data 
streaming workflows  [6].
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Example Code

Apache Spark
Spark is a cluster computing solution and an intra-memory 
software framework for data processing based on the MapReduce 
model for the purpose of supporting operations such as interactive 
queries and data flow processing [1]. It is based on the Resilient 
Distributed Datasets (RDD) memory abstraction that enables a 
wide range of intra-memory computations with fault tolerance 
and provides a programming interface for performing operations. 
Apache Spark is based on Spark Core and four processing 
components. Spark Core contains RDD and is responsible for 
application scheduling, distribution and execution. Spark SQL 
component allows structured data processing based on RDD and 
contains Dataset API that extends data types with datasets and data 
frames. Spark Streaming contains framework for stream processing 
based on micro batches and utilizes discretized stream abstraction 
DStream responsible for splitting data streams into smaller batches 
inside small fault tolerant windows. MLLib programming library 
provides machine learning capabilities over data streams. GraphX 
library enables graph datasets creation using RDD API, which 
allows the data storage into graph nodes and edges. 

Apache Spark Streaming, an extension of the Spark core, provides 
a micro-batch processing model, allowing for near-real-time 
processing of streaming data. It seamlessly integrates with Azure 
Event Hubs, offering fault tolerance and ease of use. Azure also 
supports Databricks integration where all these data processing 
and machine learning jobs using Spark can run on Spark cluster.

Example Code

Comparative Analysis
Scalability
Kafka's partitioning mechanism allows for horizontal scalability, 
while Flink's parallelism can be adjusted dynamically, catering 
to varying workloads.

Processing Semantics
Flink's event time processing ensures accurate results even in the 
presence of delayed or out-of-order events, offering a nuanced 
advantage over Kafka. Spark Streaming's micro-batch model 
contrasts with the continuous processing paradigm of Flink, 
offering a different approach based on processing small, periodic 
batches of data. Spark's unified platform simplifies development 
with a consistent API for batch and stream processing, promoting 
ease of use.

Fault Tolerance
Both Kafka and Flink provide fault-tolerant mechanisms, Kafka 
relying on replication and Flink utilizing distributed snapshots.
There are other valuable mentions and provide greater benefits in 
certain use cases like Apache Storm, Apache Samza etc., 

Azure Event Hubs
Azure Event Hubs is a cloud native data streaming service that 
can stream millions of events per second, with low latency, from 
any source to any destination. Azure Event Hubs is the preferred 
event ingestion layer of any event streaming solution that you build 
on top of Azure. It seamlessly integrates with data and analytics 
services inside and outside Azure to build your complete data 
streaming pipeline [7,8].

Ensure proper configuration of Azure Event Hubs credentials, 
connection strings, and policies for secure and reliable data 
transfer.

Example Code

Schema Registry in Azure Event Hubs

Azure Schema Registry in Event Hubs provides a centralized 
repository for managing schemas of events streaming applications. 
It ensures data compatibility and consistency across event 
producers and consumers. Schema Registry enables seamless 
schema evolution, validation, and governance, and promoting 
efficient data exchange and interoperability [9,10].

Data Processing
Once, the data is ingested and is emitted as an event from the 
event hubs, that can be processed by several types of tools or 
services depending on the specific use case. We discuss some 
common types:

Real-Time Processing of Streaming Events with Azure Stream 
Analytics
Event Hubs integrates seamlessly with Azure Stream Analytics 
to enable real-time stream processing. With the built-in no-code 
editor, you can effortlessly develop a Stream Analytics job using 
drag-and-drop functionality, without writing any code.
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Figure 2: Process Event Hub Data with Stream Analytics

Alternatively, developers can use the SQL-based Stream Analytics 
query language to perform real-time stream processing and take 
advantage of a wide range of functions for analyzing streaming 
data.

Azure Stream Analytics and Integration with Azure Machine 
Learning Services
Azure Stream Analytics is a fully managed, real-time analytics 
service designed to help you analyze and process fast moving 
streams of data that can be used to get insights, build reports 
or trigger alerts and actions. Machine Learning models can be 
implemented as a user-defined function (UDF) in Azure Stream 
Analytics jobs to do real-time scoring and predictions on the 
streaming input data. Azure Machine Learning supports use of 
any popular open-source tools, such as TensorFlow, scikit-learn, 
or PyTorch, to prep, train, and deploy models. Adding machine 
learning model as a function to the Stream Analytics pipeline 
involves the following:

Deploy ML Model as a Web Service
Utilize Azure Machine Learning's capabilities to deploy the trained 
model as a web service, enabling seamless integration with other 
Azure services. Emphasize the crucial role of the associated 
Swagger documentation in defining the input and output schemas 
for Stream Analytics comprehension [11]. 

Data Format Adherence
Ensure the web service's adherence to JSON serialization for 
both input and output data, aligning with Stream Analytics 
requirements.

Scalable Production Deployment
Underscore the significance of deploying the model on Azure 
Kubernetes Service (AKS) to cater to high-scale production 
environments. Highlighting the potential performance degradation 
and latency concerns if the web service's capacity is insufficient 
to handle the incoming request volume.

Integrate the Machine Learning Service with Streaming 
Analytics Service
Navigate your Stream Analytics job in the Azure portal, select 
Functions under Job topology and then select Azure Machine 
Learning Service from the dropdown [9].

Invoking Azure Machine Learning UDF from Stream Analytics 
Query
In the context of Stream Analytics queries that interact with Azure 
Machine Learning (AML) UDFs, the process involves the creation 
of a JSON serialized request to be sent to the associated machine 
learning web service. This request is meticulously crafted based 
on a model-specific schema, which Stream Analytics intelligently 
deduces from the endpoint's Swagger definition. This integration 
ensures seamless communication between the Stream Analytics 
job and the Azure Machine Learning model, enabling real-
time inference within the data processing pipeline. Below is an 
illustrative example of a Stream Analytics query demonstrating 
how to invoke an Azure Machine Learning UDF:

Create Pandas or PySpark Data Frame
You can use the WITH clause to create a serialized JSON Data 
Frame that can be passed as input to your Azure Machine Learning 
UDF as shown below. The following query creates a Data Frame 
by selecting the necessary fields and uses the Data Frame as input 
to the Azure Machine Learning UDF [9].
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Exploring Streaming Data with Azure Data Explorer
Azure Data Explorer (also called kusto) is a fully managed 
platform for big data analytics that delivers high performance 
and allows for the analysis of large volumes of data in near real 
time. By integrating Event Hubs with Azure Data Explorer, you 
can easily perform near real-time analytics and exploration of 
streaming data [9].

Figure 4: Azure Data Explorer Cluster

Capture Streaming Data for Long Term Retention and Batch 
Analytics
Capture your data in near-real time in an Azure Blob storage or 
Azure Data Lake Storage for long-term retention or micro-batch 
processing. You can achieve this behavior on the same stream 
you use for deriving real-time analytics. Setting up capture of 
event data is fast.

Model and Serve
The processed data can be fed to reporting systems like PowerBI 
or stored and can be consumed by other systems to represent that 
analyzed data for other use cases.

Lessons Learned
While designing and building these large-scale distributed data 
ingestion pipelines there are different things that come into 
play which become more complex. Providing the same level 
of experience for the services at an exponential level of growth 
involves solving problems related to the underlying infrastructure 
and horizontal scaling of resources to serve the needs.

Latency
The system should be able to scale horizontally to maintain similar 
latency with exponential growth in data. So, designing the system 
to be able to parallelize and run across multiple nodes, stream the 

data and get consistent results will be important.

Ease of Debugging
In traditional applications, iterative development is facilitated by 
storing data and rerunning queries as needed. However, in this 
stream processing system, where data is maintained in different 
formats, iterating becomes challenging, and updating operators 
may yield different results on new data streams. So, maintaining 
different versions of data and being able to use that to test the 
outputs that the transformation pipeline generates helps a lot with 
debugging for any scenarios.

Ease of Monitoring and Operations
Monitoring and operation of deployed apps are vital. We use alerts 
to detect processing lag, ensuring timely adjustments. Creating 
dashboards and monitoring key metrics to check the overall health 
and functionality of the system plays a crucial role.

Conclusion
In this paper, we proposed and implemented a distributed data 
ingestion platform using Azure stack for extracting valuable 
insights and actionable knowledge from different data streams. Our 
proposed architecture supports both real-time and historical data 
analytics using flexible data processing model. This architecture 
used Azure cloud services and open-source tools optimized for 
large scale distributed ingestion pipelines.

We implemented a large-scale distributed data ingestion and 
processing platform that collaborates with multiple systems 
for analytics and machine learning jobs. This demonstrates the 
amenability of our architecture that can scale depending on the 
load and can be applied in different scenarios for batch processing 
or stream processing to feed reporting or further analysis using 
Machine Learning algorithms [12-18].
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