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A B S T R A C T   

Over the past decade, there is increasing interest in the ways in which environmental unpredictability shapes 
human life history development. However, progress is hindered by two theoretical ambiguities. The first is that 
conceptual definitions of environmental unpredictability are not precise enough to be able to express them in 
statistical terms. The second is that there are different implicit hypotheses about the proximate mechanisms that 
detect unpredictability, which have not been explicitly described and compared. The first is the ancestral cue 
perspective, which proposes that humans evolved to detect cues (e.g., loss of a parent, residential changes) that 
indicated high environmental unpredictability across evolutionary history. The second is the statistical learning 
perspective, which proposes that organisms estimate the level of unpredictability from lived experiences across 
development (e.g., prediction errors encountered through time). In this paper, we address both sources of 
ambiguity. First, we describe the possible statistical properties of unpredictability. Second, we outline the an
cestral cue and statistical learning perspectives and their implications for the measurement of environmental 
unpredictability. Our goal is to provide concrete steps toward better conceptualization and measurement of 
environmental unpredictability from both approaches. Doing so will refine our understanding of environmental 
unpredictability and its connection to life history development.     

I saw those Djakarta markets for what they were: fragile, precious 
things. The people who sold their goods there might have been poor, 
poorer even that the folks in Altgeld. They hauled 50 pounds of 
firewood on their back every day, they ate little, they died young. 
And yet for all that poverty, there remained in their lives a dis
cernable order, a tapestry of trading routes and middle men, bribes 
to pay, and customs to observe, the habits of a generation played out 
every day. It was the absence of such coherence that made a place 
like Altgeld so desperate, I thought to myself; it was the loss of 
order. 

Barack Obama (1995). Dreams from my Father.  

Barack Obama spent part of his childhood living in Jakarta, 
Indonesia, and his emerging adulthood working as a community orga
nizer in Altgeld Gardens, a public housing project on Chicago's South 
Side. In his memoir, Obama described both Jakarta and Altgeld as 
tough environments in which people died young. Indeed, Jakarta and 
Altgeld seemed similar on a fundamental dimension of environmental 
risk—harshness—which Ellis, Figueredo, Brumbach, and Schlomer 
(2009) defined as age-specific rates of morbidity-mortality. At the same 
time, Jakarta and Altgeld appeared very different on a second key di
mension of environmental risk: unpredictability. The challenges and 

struggles of life in Jakarta were tough but similar from day-to-day. In 
Altgeld, life was chaotic, haphazard, and disordered. 

For decades, scholars have examined the link between environ
mental conditions, evolution, and the development of life-history stra
tegies (Belsky, Steinberg, & Draper, 1991; Chisholm, 1993; Draper & 
Harpending, 1982). Recently, evolutionary-developmental theory and 
research have identified a unique role for environmental unpredict
ability in regulating human development (Ellis et al., 2009). For in
stance, studies have shown associations between environmental un
predictability and life history traits in humans, such as sexual behavior 
(Belsky, Schlomer, & Ellis, 2012; Simpson, Griskevicius, Kuo, Sung, & 
Collins, 2012), mating and relationship outcomes (Szepsenwol et al., 
2017; Szepsenwol, Zamir, & Simpson, 2019), and parenting 
(Szepsenwol, Simpson, Griskevicius, & Raby, 2015). Studies have also 
linked environmental unpredictability to behavior and cognition, in
cluding risk-taking and temporal discounting (Griskevicius et al., 
2013), executive functions and working memory (Mittal, Griskevicius, 
Simpson, Sung, & Young, 2015; Young, Griskevicius, Simpson, Waters, 
& Mittal, 2018), and decision-making (Griskevicius, Delton, Robertson, 
& Tybur, 2011; White, Li, Griskevicius, Neuberg, & Kenrick, 2013). 
Together, these findings appear to tell a convincing story: growing up in 
an unpredictable environment uniquely predicts human life history 
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traits, even after controlling for other factors, such as poverty. 
Although the empirical literature on environmental unpredictability 

has grown substantially in the past 10 years, this body of work faces 
theoretical and methodological challenges. The most visible challenge 
is the wide range of measures used to quantify unpredictability, which 
makes it difficult to compare findings and assess replicability. We be
lieve this is a symptom of two major theoretical ambiguities. The first 
focuses on the definition of environmental unpredictability as a selec
tion pressure across evolutionary time. Specifically, unpredictability 
has been defined as the level of spatial-temporal variation in environ
mental harshness (Ellis et al., 2009). However, current definitions do 
not specify the pattern of variation in statistical terms. In addition, 
current definitions do not address stationarity in environmental un
predictability. Stationarity refers to whether the statistical properties of 
an environment (e.g., mean, variance, autocorrelation etc.) remain 
constant across lifetimes. The statistical properties of a non-stationary 
environment change across the lifetime (e.g., changes in the mean, 
variance, or autocorrelation etc.). Whether environmental unpredict
ability is stationary or non-stationary affects environmental un
predictability as a selection pressure. 

Even with precise concepts at the ultimate level, a second theore
tical ambiguity concerns the proximate mechan
isms—adaptations—that evolved to detect and respond to environ
mental unpredictability. Specifically, there are at least two conceptually 
distinct frameworks. The first is the ancestral cue perspective, which 
proposes that humans evolved to detect and respond to cues that re
liably indicated high environmental unpredictability across evolu
tionary history. The second is the statistical learning perspective, which 
suggests that organisms estimate the level of unpredictability by in
tegrating differences in lived experiences across development. Because 
these approaches imply different proximate mechanisms for detecting 
environmental unpredictability, drawing on one or the other has con
sequences for measurement. 

Our goal is to highlight–and attempt to clarify–these theoretical 
ambiguities while also proposing some steps forward. We restrict our 
focus to two questions. First, what is environmental unpredictability 
and how can it be described in formal statistical terms? Second, how do 
organisms detect environmental unpredictability and what information 
triggers a response once detected? We do not address questions about 
the selection pressures posed by the developmental timing of exposures 
to environmental unpredictability (e.g., juvenile versus adult life stage), 
sensitive periods of development for responding to unpredictability, 
specific biological or cognitive mechanisms that mediate responses to 
unpredictability (e.g., stress physiology, mental representations, 
learning mechanisms), or adaptive responses to unpredictability (e.g., 
accelerating or decelerating life history development). In addition, we 
focus on how organisms estimate environmental unpredictability in a 
general sense and not on whether or how they estimate the environ
mental conditions in which an individual will reproduce (even if these 
variables may be related, for instance, when estimates of the former can 
inform estimates of the latter). With this narrow scope in mind, we 
proceed in four steps. First, we provide a brief overview of research on 
environmental unpredictability and illustrate the widespread incon
sistency in its measurement. Second, we analyze environmental un
predictability at the ultimate level of explanation and identify possible 
statistical definitions, depending on whether the environment is sta
tionary or non-stationary. Third, we outline the ancestral cue and sta
tistical learning approaches that might characterize the proximate 
mechanisms for detecting environmental unpredictability and discuss 
their implications for the measurement of environmental unpredict
ability. Fourth, we propose ways in which the ancestral cue and sta
tistical learning approaches could be integrated and outline future di
rections for research. 

1. Environmental unpredictability: the past decade 

In a foundational paper, Ellis et al. (2009) proposed a conceptual 
framework of unpredictability based on life history theory (Charnov, 
1993; Roff, 1993; Stearns, 1992). Life history theory seeks to explain 
the way organisms allocate limited time and energy to the various ac
tivities during the life cycle. Natural selection favors organisms that 
optimize the timing of developmental activities based on the local 
ecology. Ellis et al. (2009) identified environmental unpredictability as 
a key influence on the evolution and development of life history stra
tegies and defined it as variation in environmental harshness (age- 
specific rates of morbidity-mortality) over space and time. The central 
thesis is that, over evolutionary time, humans were exposed to en
vironments that varied both in mean levels of harshness and in the 
degree of stochastic variation in harshness within and across genera
tions. Variation in harshness affected fitness-relevant outcomes (e.g., 
survival and reproduction) of our ancestors over developmental time. In 
response, humans may have developed conditional adaptions that en
abled accelerated life history development if exposed to environmental 
unpredictability. 

The Ellis et al. (2009) analysis inspired empirical studies that, to
gether, have generated a body of knowledge about the developmental 
effects of environmental unpredictability (Belsky et al., 2012;  
Brumbach, Figueredo, & Ellis, 2009; Doom, Vanzomeren-Dohm, & 
Simpson, 2016; Mittal et al., 2015; Simpson et al., 2012; Szepsenwol 
et al., 2015; Szepsenwol et al., 2017; Szepsenwol et al., 2019; Young 
et al., 2018). However, despite a common frame, empirical studies have 
measured environmental unpredictability in many different ways. For 
example, evolutionary-developmental psychologists tend to count the 
number of residential changes, family disruptions, or changes in par
ental financial status (Belsky et al., 2012; Brumbach et al., 2009; Ellis 
et al., 2009; Simpson et al., 2012). Evolutionary social psychologists 
tend to employ self-report questionnaires that quantify (retrospectively) 
individual differences in the perception of environmental unpredict
ability while growing up (Maner, Dittmann, Meltzer, & McNulty, 2017;  
Mittal et al., 2015; Young et al., 2018). Finally, other behavioral sci
entists typically measure household chaos, inconsistency in parental 
discipline/nurturance, and/or inconsistent routines (Evans, Gonnella, 
Marcynyszyn, Gentile, & Salpekar, 2005; Kolak, Van Wade, & Ross, 
2018; Ross & Hill, 2002; Ross, Hood, & Short, 2016). 

To illustrate the diversity in measures, we reviewed all studies citing  
Ellis et al. (2009) on Web of Science (search completed on February 8, 
2020). Of the 422 studies citing Ellis et al. (2009), we identified 21 
empirical studies that measured environmental unpredictability (see 
supplemental Table 1) but at least 15 different measures. Moreover, 
studies using the same measures do so because they report findings 
from the same dataset. Specifically, eight of the 21 studies come from 
either the Study of Early Childcare and Youth Development (NICHD 
Early Child Care Research Network, 2005) or the Minnesota Study of 
Risk and Adaptation (Sroufe, Egeland, Carlson, & Collins, 2005). This 
means almost half of the studies on environmental unpredictability 
have used just two data sources. In addition, the psychological litera
ture also employs many different methods for capturing environmental 
unpredictability. For example, studies vary in report formats (e.g., self- 
reports, interviews), informants (e.g., target participant or caregiver), 
and report types (e.g., retrospective, prospective) to name only a few 
(see supplementary Table 1). As such, there is little overlap across 
studies in measures of environmental unpredictability. Moreover, to our 
knowledge, there are no studies that explore whether distinct measures 
are correlated with each other, indicate the same underlying construct, 
and predict the same outcomes in a dataset. 

Diversity in measurement is not inherently bad but makes it difficult 
to compare findings and assess replicability. One solution would be to 
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conduct largescale psychometric analyses to evaluate the construct 
validity of measures. However, psychometric work only gets us so far; 
we also need to remove ambiguities in our conceptual definition of 
environmental unpredictability. At the ultimate level, we need to 
identify the potential statistical properties of environmental un
predictability that could impose a selection pressure. In addition, at the 
proximate level, we need clearer hypotheses about the design features 
of the mechanisms that may have evolved to detect and respond to 
environmental unpredictability. Are organisms detecting discrete 
events that indicated environmental unpredictability over evolutionary 
time, or are they integrating over differences in their lived experiences 
over the course of ontogeny, or both? 

2. Statistical properties of unpredictable environments 

Current definitions of environmental unpredictability focus on 
spatial and temporal variation in environmental harshness (Ellis et al., 
2009). Although not always explicit, work in this area specifically fo
cuses on stochastic (e.g., random) variation in harshness. We attempt to 
refine this definition in two ways. First, we identify the patterns of 
variation that make environments more or less predictable. For ex
ample, some patterns of variation are predictable, such as seasonal 
variation. After accounting for predictable variation (e.g., seasons or 
trends), any remaining variability (e.g., leftover noise) can be still be 
predictable if it is autocorrelated. The degree of autocorrelation in re
sidual variation is sometimes referred to as the color of environmental 
noise, with white noise reflecting no autocorrelation and pink, red, and 
brown noise reflecting lower to higher degrees of autocorrelation 
(Burgess & Marshall, 2014; Frankenhuis, Nettle, & Dall, 2019; Marshall 
& Burgess, 2015; Vasseur & Yodzis, 2004; Wieczynski, Turner, & 
Vasseur, 2018). Second, we address stationarity, which refers to whether 
or not the statistical structure of an environment itself changes over a 
lifetime. For example, if environmental harshness is stationary in a 
lifetime, its mean, variance, and/or autocorrelation over the first 5 
years of life (or any other arbitrary period of time) are equal to any 
other 5-year window across the life course. In contrast, non-stationary 
environments have a statistical structure that changes over time. If 
environmental harshness is non-stationary in a lifetime, its mean, var
iance, and/or autocorrelation over the first 5 years of life are different 
from other 5-year periods across the life course. Whether environ
mental unpredictability is stationary or non-stationary has implications 
for evolution and development, formal modeling, and measurement 
(Frankenhuis, Panchanathan, & Nettle, 2016). 

In stationary environments, there are at least three relevant statis
tical properties for describing environmental unpredictability: variance, 
autocorrelation, and cue reliability (see Fig. 1a). Variance refers to 
average deviations from the mean. For example, high temporal variance 
in harshness means that the environment can vary widely from safe to 
dangerous (around a mean value) across time. However, whether or not 
high variance is unpredictable depends on whether it is autocorrelated. 
Autocorrelation refers to the degree to which current conditions are 
related to future conditions (e.g., are conditions today correlated with 
conditions tomorrow). Even when variance is high, such variation can 
be predictable if it is autocorrelated. Finally, cue reliability refers to the 
extent to which experiences or events provide information about cur
rent or future environmental conditions (Fawcett & Frankenhuis, 2015). 
For example, witnessing a fight could be a reliable cue to current or 
future levels of harshness, whereas seeing people lock their doors could 
be a less reliable cue to harshness (e.g., this happens in both safe en
vironments and dangerous ones). Cues may provide information about 
current or future states of the environment, even if states of the en
vironment are not autocorrelated. For instance, if a leader in your vil
lage, whom you trust, tells you that a gang, which you are a part of, will 
raid a neighboring village, it indicates a likely increase in the rates of 
morbidity and mortality in your environment, even if this increase 
could not be predicted based on past levels of animosity (i.e., 

autocorrelation), without the social cue. 
In non-stationary environments, the underlying statistical structure 

of the environment changes over time. However, some types of non- 
stationary patterns are more predictable than others. For example, non- 
stationary environments could have a trend (e.g., slope), seasonal 
variation, and/or cyclic variation. A trend describes changes in the 
overall mean across time or space. Seasonal and cyclic variation refer to 
patterns of variation that repeat. Seasonal patterns repeat over regular 
intervals whereas cyclic variation repeat over irregular patterns (Jebb & 
Tay, 2017; Jebb, Tay, Wang, & Huang, 2015). Trend, seasonality, and 
cycles describe predictable patterns of change. For example, an upward 
trend in the mean level of harshness across time is predictable (e.g., 
tomorrow will be more dangerous than today). Likewise, a seasonal 
pattern is also predictable (e.g., winter is harsher than summer). 
However, non-stationary environments might be unpredictable if they 
contain random change points, or abrupt changes in one or more sta
tistical properties of the environment (see Fig. 1b). For example, a 
change point could precede a sudden increase in mean levels of 
harshness (e.g., a natural disaster) or sudden increase in the variance of 
resource distribution (e.g., the stock market crashing). 

If change points occur at irregular intervals (e.g., no seasonal or 
cyclic pattern), the environment is more unpredictable in at least two 
ways. First, the probability of another change point occurring at any 
given time might change, compared to what it was before the change 
point occurred. Second, experiences that happened prior to the change 
point are less informative about environmental conditions after the 
change point. Thus, after a change point occurs, organisms have a 
limited ability to predict future outcomes without gathering more in
formation and experience in the new statistical structure of the en
vironment. However, like unpredictable stationary environments, reli
able cues could make the environment more predictable, even if 
random change points occur. For example, cues could indicate a change 
point has occurred or will occur, even if they do not indicate the type or 
direction of change. Similarly, if both the relevant cues and cue reli
abilities do not shift as a function of a change point (e.g., cue reliability 
itself is unaffected and/or the same cues are still informative), cues can 
still provide reliable information about the state of the environment. 

Our discussion highlights the need for formal models that explore 
the effects of stationary and non-stationary environmental unpredict
ability on evolution and development. For stationary unpredictability, 
models could compare the adaptive strategies for all combinations of 
variance (high, low) and autocorrelation (high, low). For non-sta
tionary unpredictability, models could explore which strategies are 
adaptive when random change points occur in the mean, variance, or 
autocorrelation, or their combination. Models should also consider 
whether unpredictability has a different impact on different age classes 
(juveniles versus adults), affects all individuals in a population, or only 
a subset (Ellis et al., 2009). The statistical definition of unpredictability 
an empirical researcher adopts should inform the measures used to test 
hypotheses (e.g., measure mean levels, variance, and autocorrelation, 
or change points in these parameters). Finally, we have focused on 
environmental harshness (i.e., age-specific rates of mortality and mor
bidity) because this is a primary focus in evolutionary psychology. 
However, our discussion of concepts, measures, and proximate me
chanisms could apply to any dimension of the environment. For ex
ample, social (e.g., rate of violence, parenting, etc.) and/or non-social 
(e.g., food availability) dimensions of the environment may vary across 
space and/or time in more or less predictable patterns (Frankenhuis 
et al., 2019). Quantifying patterns of unpredictability in these social 
and non-social variables in diverse human populations would be an 
interesting direction for future theoretical and empirical research. 

3. Proximate mechanisms for detecting unpredictability 

Clarifying and refining our conceptual definition of environmental 
unpredictability raises interesting questions about the types of 
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proximate mechanisms that may be favored under different types of 
unpredictability. For example, does natural selection favor the same 
proximate mechanisms for detecting and responding to stationary un
predictability as non-stationary unpredictability? The answer is unclear 
without future research and formal models that explicitly address this 
question. However, even before such models are developed, there are at 
least two distinct (but not mutually exclusive) hypotheses about the 
proximate mechanisms that may have evolved to detect environmental 
unpredictability. 

The first is the ancestral cue approach to unpredictability (Ellis et al., 
2009), which is anchored in the more general ‘ancestral cue’ perspec
tive in evolutionary psychology (Buss, 1995; Tooby & Cosmides, 1990). 
The core assumption of this perspective is that our ancestral environ
ments contained cues that were associated with fitness-relevant en
vironmental conditions. As a consequence, natural selection may have 
shaped the brain to treat these cues as privileged sources of informa
tion. Thus, ancestral cues enable organisms to adjust development 
based on limited information; they do not need extended experience 
with these cues to interpret their meaning and respond to them quickly 
and effectively. For instance, female parasitic wasps start laying more 
eggs on low-quality hosts (i.e., increase their reproductive effort) in 
response to barometric pressure, which was (and is) associated with 
approaching and potentially fatal thunderstorms (Roitberg, Sircom, 
Roitberg, Vanalphen, & Mangel, 1993). Ancestral cues to environmental 
unpredictability could indicate either stationary or non-stationary en
vironmental unpredictability. For example, cues to stationary environ
mental unpredictability may indicate environmental harshness is highly 
variable and shows no autocorrelation. Cues to non-stationary en
vironmental unpredictability may indicate that change points occur 
randomly or that one has or will occur and, therefore, the statistical 
structure of the environment has or will change. In either case, a core 
(but untested) assumption of the ancestral cue approach is that, over 
our evolutionary history, cues were informative regarding the levels of 

environmental unpredictability within individual lifetimes. 
The second perspective is the statistical learning approach 

(Frankenhuis et al., 2019; Frankenhuis, Gergely, & Watson, 2013). This 
approach suggests that natural selection shaped developmental me
chanisms to track the statistical structure of the environment by in
tegrating differences in lived experiences across development 
(Frankenhuis et al., 2013, 2019), without privileging particular sources 
of information per se. The organism uses its experience as raw data to 
build a model of the statistical structure of the environment. It then uses 
these models to ‘estimate’ (i.e., adapt to) the overall (e.g., mean) level, 
variance, and autocorrelation in harshness. For example, blue jays can 
weight recent versus past experiences differentially according to the 
rate of changing conditions in their environment, suggesting that they 
can detect and respond to patterns of change in the environment 
(Dunlap & Stephens, 2012). Organisms might also learn new cues (e.g., 
police sirens) or update estimates of the reliability of cues. For instance, 
people may learn to use police sirens as cues to danger, and experi
mental studies show that humans are good at learning about cue re
liability through repeated exposures over short timescales (Behrens, 
Hunt, & Rushworth, 2009; Behrens, Woolrich, Walton, & Rushworth, 
2007). Both of these abilities might involve, but do not require, high- 
level cognition. For example, rats are able to make causal inferences 
through experience and observations (Blaisdell, Sawa, Leising, & 
Waldmann, 2006). Importantly, the statistical learning approach as
sumes that individuals are able to track, store, and use experiences to 
build predictive models about the current and future state of the en
vironment. The approach also assumes that past experience over de
velopmental time – unlike the ancestral cue approach, not necessarily 
over evolutionary time – is informative about the current conditions, 
even if past experience has taught the individual that future conditions 
cannot be predicted with much accuracy. 

The ancestral cue and statistical learning perspectives target the 
same process—estimating environmental unpredictability—but differ 

Fig. 1. Visual depiction of stationary and non-stationary environmental unpredictability. The x-axis depicts developmental time; the y-axis environmental harshness. 
A) Ignoring cue reliability, the predictability of a stationary distribution depends on its variance and autocorrelation. When variance is high, harshness fluctuates 
more than when variance is low. When autocorrelation is high, harshness in one time period is more related to harshness in future time periods. Even if variance is 
high, fluctuations might still be predictable, if autocorrelation is high. On the flip side, if autocorrelation is low, fluctuations might deviate only little from the mean, 
if the variance is low. An environment is the most unpredictable when autocorrelation is low and variance is high. B) Ignoring cue reliability, non-stationary 
environmental unpredictability may be characterized by random change points. Change points are abrupt shifts in the statistical distribution of the environment. 
Such shifts may occur in the mean, variance, or autocorrelation, or all of them. The timing of change points may itself be predictable or unpredictable (not depicted). 
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in the types of information that trigger a response. Ancestral cues carry 
information about ancestral environments. If particular cues, for ex
ample geographic relocations (i.e., moving into a new territory), were 
reliably associated with environmental unpredictability, then natural 
selection may have equipped the mind to detect and respond directly to 
the cue (see Fig. 2). Thus, a developmental response may be triggered 
by only limited exposure to the cue. This type of proximate mechanism 
is efficient; organisms do not have to invest much time and energy in 
learning new cues and their reliability. However, it is also relatively 
inflexible because organisms are constrained in their abilities to learn 
new cues, extinguish associations with ancestral cues, or update their 
knowledge about cue reliability. If a geographic relocation happens to 
be unrelated to environmental unpredictability for a particular in
dividual in their lifetime, that individual may develop a mismatched 
phenotype. In addition, relying solely on ancestral cues precludes the 
use of other sources of information for detecting environmental un
predictability. In this case, if an individual is never exposed to an an
cestral cue (e.g., they never move), but there are other cues that are 
related to environmental unpredictability (e.g., stochastic fluctuations 
over time in police sirens), the individual may not detect environmental 
unpredictability. 

In contrast, a statistical learning proximate mechanism responds 
directly to the statistical patterns of change in its environment. 
Specifically, the organism responds to environmental unpredictability 
when it detects a prediction error (see Fig. 2). For example, a geo
graphic relocation will not trigger a response unless it renders past 
experience uninformative (e.g., the previous environment was safe and 
now it is dangerous). If the level of danger does not change after a 
relocation, the statistical learning mechanism will not make a predic
tion error, and therefore it will not trigger a response to unpredict
ability. This type of mechanism is less efficient than ancestral cues 
because it requires some amount of accumulated experience to first 
build a model and then produce predictions. In addition, it must com
pare its predictions to its current experience to evaluate ‘model fit’. If 
the organism's model fit is continuously poor (e.g., prediction errors 
remain large throughout extended periods of time), the organism may 
then conclude the environment is highly unpredictable. However, this 
type of proximate mechanism is flexible. For example, it can use any 
source of information or experience that is associated with harshness 
and variability in harshness to fit any type of statistical model to predict 
future levels of harshness, but such models may be costly to build and 
fit. For example, an organism could use time series analysis to estimate 

autocorrelation or use a moving average to predict current or future 
harshness; it could also use contingency analysis or directly learn new 
(non-ancestral) cue reliabilities to learn about the causal relations in the 
environment (Frankenhuis et al., 2013). 

In summary, the central difference between the ancestral cue and 
statistical learning perspectives lies in the type of information that 
triggers responses to environmental unpredictability. An ancestral cue 
mechanism is designed to look for and respond to cues (or categories of 
cues) that were reliably associated with environmental unpredictability 
in our evolutionary past. Statistical learning mechanisms need accu
mulated lived experience and triggers a response when it detects pre
diction errors. Importantly, our goal was to highlight possible ways 
organism might detect environmental unpredictability. Formal models 
will need to consider when organisms should implement one me
chanism, the other, or both, depending on the statistical properties of 
environments over evolutionary and developmental timescales. 

4. Implications for measurement 

The ancestral cue and statistical learning perspectives have different 
implications for the measurement of environmental unpredictability. 
Studies drawing on the ancestral cue perspective need to select and 
measure the cues that are hypothesized to have indicated environ
mental unpredictability in our evolutionary past. However, identifying 
relevant cues is no easy task, especially because it is difficult (if not 
impossible) to empirically link a proposed ancestral cue or category of 
cues to (measured) spatial-temporal variation in harshness over evo
lutionary time. Although ancestral cues cannot be directly verified, the 
design of psychological mechanisms for responding to ancestral cues 
can be inferred by examining relations between exposures to hy
pothesized cues and relevant outcomes (i.e., life history-related traits 
and underlying biological systems), as per standard scientific methods 
(Ketelaar & Ellis, 2000). 

One way to guide the selection of measures is to map potential cues 
on to the particular conceptual definition of environmental unpredict
ability at the ultimate level. For example, assuming environmental 
unpredictability was stationary, cues should map on to environments 
characterized by high variance and low autocorrelation in harshness. In 
this scenario, relevant cues could be related to the level of chaos or 
family conflict in the home environment. Likewise, there could also be 
ancestral cues to non-stationary unpredictability. For example, if un
predictability in our evolutionary past involved random change points 

Fig. 2. The ancestral cue and statistical 
learning approaches. According to the an
cestral cue approach, proximate mechan
isms detect cues that carry ancestral in
formation about environmental 
unpredictability. If an ancestral cue is de
tected, the organism ‘estimates’ environ
mental unpredictability is high and triggers 
an adaptive response. According to the 
statistical learning approach, proximate 
mechanisms use experience to develop 
predictions that guide behavior (not ne
cessarily consciously or explicitly). 
Organisms compare their experience-based 
predictions to new experiences to evaluate 
‘model fit’. If model fit is poor, the or
ganism detects a prediction error, ‘esti
mates' environmental unpredictability is 
high, and triggers an adaptive response. 
Note that the two approaches are not mu
tually exclusive. We depict them separately 
to highlight their differences, however, it is 
possible that organisms integrate across 
both sources of information to estimate 
unpredictability (see Section 5). 
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in the levels or degree of variation in harshness, relevant cues could be 
disruptive events that cause shifts in environmental conditions. For 
example, a parental transition could be a cue to unpredictability be
cause a change in family composition is hypothesized to have been 
reliably associated with change points in harshness over evolutionary 
time. There are many potential ancestral cues that map on to stationary 
or non-stationary unpredictability. Examination of the ethnographic 
record would be an invaluable source of information about such cues, 
as it could shed light on potential ancestral cues that were present in 
hunter-gatherer societies. 

In contrast to ancestral cues, studies drawing on the statistical 
learning perspective need to measure lived experiences across time and 
compile enough observations to model patterns of variation (e.g., var
iance, autocorrelation, change points etc.). To do so, researchers could 
use time series data and analytical techniques for characterizing pat
terns of change over time (Jebb et al., 2015; Jebb & Tay, 2017). For 
example, these techniques can decompose variation into predictable 
and more unpredictable components. Researchers could also calculate 
autocorrelation in time series data and/or detect change points. Similar 
to the ancestral cue approach, the key challenge for researchers is se
lecting the relevant variables to measure over time. Whatever the di
mension, the selected variables should relate to environmental harsh
ness. For example, some researchers have analyzed socioeconomic data 
over time to simultaneously measure harshness and unpredictability 
(Li, Liu, Hartman, & Belsky, 2018). Specifically, these researchers cal
culated an individual intercept and slope for each participants' income- 
to-needs ratio across six time-points. Then, they used individual-level 
intercepts to measure overall harshness and residual variance (e.g., 
variance around individual regression lines) to measure unpredict
ability. This approach is more closely aligned with the statistical 
learning perspective but residual variance could show different patterns 
of autocorrelation across individuals. Thus, from a statistical learning 
perspective, it would also be important to calculate autocorrelation in 
the data. However, using time series techniques is a double-edged 
sword—properly leveraging time series data requires many more ob
servations per person than is typical of standard longitudinal designs, 
which can create practical limitations. Daily diary studies, experience 
sampling, or long-term longitudinal studies with relatively frequent 
measurements may be the best study designs to measure unpredict
ability from a statistical learning perspective. 

5. Toward consilience and future directions 

The ancestral cue and statistical learning perspectives are not mu
tually exclusive. In fact, they may operate in parallel. For example, 
organisms could leverage both sources of information (e.g., ancestral 
cues and statistical patterns of change) and use them to build a pre
dictive model to estimate unpredictability. The organism could use 
lived experience as raw data where each experience is weighted equally 
and accumulates to reveal underlying patterns. If exposed to an an
cestral cue, organisms could add them to their predictive models, using 
weights to account for the ancestral knowledge (i.e., information pri
vileged by natural selection) associated with ancestral cues. 
Alternatively, individuals may track the statistical patterns of ancestral 
cues themselves. For example, an ancestral cue may itself be an im
portant environmental dimension that can be tracked over time or 
space. Imagine that geographic relocations function as an ancestral cue. 
Organism could track the probability, the frequency, and/or the reg
ularity of moving (e.g., moves occur regularly or irregularly). Thus, 
ancestral cues could both indicate environmental unpredictability and 
be integrated together with lived experience to estimate environmental 
unpredictability. 

Another possibility is that ancestral cues indicate when the in
dividual should recalibrate their model of the environment. For ex
ample, an organism's environment may be autocorrelated across many 
dimensions (e.g., level of danger, family conflict, economic conditions). 

Over the course of development, the organism integrates experiences to 
estimate the environmental unpredictability (e.g., conditions today will 
be similar tomorrow). However, upon detection of an ancestral cue, 
such as a geographic relocation, it may be adaptive to re-estimate these 
statistics because a move could mean that past conditions are no longer 
informative for predicting future conditions. As a result, the individual 
might throw out “old data” in favor of using “new data” (and poten
tially more representative of current conditions) after a transition oc
curs. In this scenario, ancestral cues more likely indicate non-stationary 
unpredictability; they were associated with change points that render 
older experiences less informative. However, the cue aids prediction by 
triggering statistical learning to pay attention to new environmental 
data. 

The degree to which we should expect ancestral cues and statistical 
learning to operate together can be explored theoretically using formal 
models. For example, a formal model could examine the environmental 
and somatic conditions under which it is adaptive to use ancestral cues, 
integrate across current cues, or leverage some combination of both. 
Likewise, the degree to which ancestral cues and lived experiences are 
correlated can be tested empirically by measuring both. For example, 
future studies could measure to what extent geographic relocations 
across development correlate with stationary environmental un
predictability. If relocations are a reliable cue, they should be asso
ciated, on average, with high variance and low autocorrelation in 
measures of harshness across time. If relocations are a reliable cue to 
non-stationary unpredictability, researchers could measure harshness 
over time and track when ancestral cues appear. If ancestral cues in
dicate non-stationary unpredictability, the statistical properties of 
harshness should abruptly change after an ancestral cue is detected. For 
example, imagine that a researcher measures exposure to violence 
many times across development and calculates its mean, variance, and 
autocorrelation while also measuring residential moves. One prediction 
is that one or more statistical properties of violence exposure should 
abruptly change after the move occurs. 

The above discussion highlights the need for studies that measure 
environmental unpredictability from both the ancestral cue and statis
tical learning perspectives. Ideally, future studies would include tradi
tional measures of environmental unpredictability (e.g., residential 
changes, parental transitions, job changes, self-report questionnaires) 
alongside time series data of environmental variables from which the 
mean, variance, trend, seasonality, and autocorrelation can be esti
mated. This would allow researchers to explore how measures derived 
from both approaches operate, covary, and predict outcomes. To 
measure ancestral cues most appropriately, researchers will need to 
think carefully about which cues to measure and the type of un
predictability those cues are hypothesized to indicate. To measure un
predictability from a statistical learning perspective, researchers will 
also need to think carefully about which environmental dimensions to 
measure and acquire as many observations as possible over time, per
haps using daily diary or experience sampling techniques. 

6. Conclusion 

Research on environmental unpredictability has progressed rapidly 
over the past decade. We have argued that theoretical ambiguity at 
both the ultimate and proximate levels impedes progress. Our goal was 
to expose ambiguity at both levels and offer potential ways forward. At 
the ultimate level, we need to be explicit about how we describe the 
pattern of spatial-temporal variation that defines environmental un
predictability. This means precisely describing the patterns of varia
bility in harshness and explicitly addressing stationarity (as well as 
what segments of a population environmental unpredictability pri
marily affects). At the proximate level, we need clear ideas about how 
organisms might detect environmental unpredictability. Organisms 
could use ancestral cues, statistical patterns of change, or both, and the 
specific measures of environmental unpredictability that we employ in 
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empirical studies should depend on the proximate mechanisms we 
hypothesize have evolved to detect it. Regardless of these challenges, 
we believe future research is well-situated to collect measures derived 
from both approaches and integrate insights. Doing so will refine our 
understanding of environmental unpredictability and its connection to 
life history development. 
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