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Prediction of white blood cell count 
during exercise: a comparison 
between standalone and hybrid 
intelligent algorithms
Shirin Asadi 1*, Bakhtyar Tartibian 1, Mohammad Ali Moni 2 & Rasoul Eslami 1

Decades of research in exercise immunology have demonstrated the profound impact of exercise on 
the immune response, influencing an individual’s disease susceptibility. Accurate prediction of white 
blood cells (WBCs) count during exercise can help to design effective training programs to maintain 
optimal the immune system function and prevent its suppression. In this regard, this study aimed 
to develop an easy-to-use and efficient modelling tool for predicting WBCs count during exercise. 
To achieve this goal, the predictive power of a range of machine-learning algorithms, including six 
standalone models (M5 prime (M5P), random forest (RF), alternating model trees (AMT), reduced 
error pruning tree (REPT), locally weighted learning (LWL), and support vector regression (SVR)) 
were assessed along with six types of hybrid models trained with a bagging (BA) algorithm (BA-M5P, 
BA-RF, BA-AMT, BA-REPT, BA-LWL, and BA- SVR). A comprehensive database was constructed 
from 200 eligible people. The models employed post-exercise training WBCs counts as the output 
parameter and seven WBCs-influencing factors, including intensity and duration of exercise, pre-
exercise training WBCs counts, age, body fat percentage, maximal aerobic capacity, and muscle mass 
as input parameters. Comparing the prediction results of the models to the observed WBCs using 
standard statistics indicated that the BA-M5P model had the greatest potential to produce a robust 
prediction of the number of lymphocytes, neutrophils, monocytes, and WBC compared to other 
models. Moreover, pre-exercise training WBCs counts, intensity and duration of exercise and body 
fat percentage were the most important features in predicting WBCs counts. These findings hold 
significant implications for the advancement of exercise immunology and the promotion of public 
health.
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The immune system is a complex organization of organs, cells and proteins with specialized roles to defend the 
host against possible microorganism  invasions1. One of the body’s immune system lines of defence against inva-
sion is white blood cells (WBCs) which do not operate in isolation and are profoundly influenced by exercise as 
physical  stress2 and individual characteristics, including gender, age, body fat percentage (BFP), maximal aerobic 
capacity  (VO2 max), body mass index (BMI), and muscle mass (MM)2,3. Among these factors, exercise, as a direct 
factor that can be easily controlled, is important in maintaining people’s health because exercise with unsuitable 
intensity and duration can result in immune dysfunction and increases the risk of contracting various diseases 
(e.g., viral infections, cancer, and inflammatory diseases)4. Despite the multiple studies that have been conducted 
to understand the interactions between exercise and the immune system function, the study of the optimal pat-
tern of exercise based on immunological responses in the blood is limited. Because these interactions are very 
complicated and influenced by diverse  factors5. To the best of our knowledge, only a random forest (RF) model 
has been used to predict WBCs during  exercise6. Considering that applying other intelligent  models7 and other 
 characteristics6 may enhance the predicting accuracy of WBCs, hence, more studies are needed.

In several past decades, the use of machine-learning (ML) algorithms as an innovative and powerful technol-
ogy for information processing, data mining, and modelling has substantially  increased7–10. Having a nonlinear 
structure, the ability to predict complex phenomena, handling big datasets with different scales, and insensitivity 

OPEN

1Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i 
University, Tehran, Iran. 2AI & Digital Health Technology, Artificial Intelligence and Cyber Futures Institute, Charles 
Sturt University, Bathurst, NSW 2795, Australia. *email: ashirin777@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-71576-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20683  | https://doi.org/10.1038/s41598-024-71576-z

www.nature.com/scientificreports/

to missing data are advantages of these  algorithms11. Recently hybrid algorithms as one of the advanced ML 
tools have been applied to solve regression and classification issues in the field of medicine and exercise around 
the world, including the diagnosis and prediction of cardiovascular  diseases12,  cancers13, Type-2  Diabetes14, 
adherence to physical  activity15, athletes’ competitive  ability16, and human  activity17. Most of these studies have 
compared different ML models with hybrid models and confirmed the superiority of hybrid models compared 
with other methods for similar conditions.

Although advances have been achieved related to the impacts of exercise on the immune system and the 
predictive power of hybrid algorithms has been proven in a wide spectrum of applications in different fields, the 
performance of these algorithms to predict the number of WBCs and their comparison with diverse standalone 
algorithms has not been studied. Therefore, the main objectives of this study are: (1) producing predictions of 
lymphocytes (LYMPH), neutrophils (NEU), monocytes (MON), and WBC counts during exercise using stan-
dalone algorithms, namely M5 Prime (M5P), random forest (RF), alternating model trees (AMT), reduced error 
pruning tree (REPT), locally weighted learning (LWL), and support vector regression (SVR) along with six types 
of hybrid algorithms trained with a bagging (BA) algorithm namely BA-M5P, BA-RF, BA-AMT, BA-REPT, BA-
LWL, and BA- SVR; (2) comparing the predictive power of these algorithms; and (3) performing a sensitivity 
analysis of WBCs-influencing factors. Moreover, to the best of the authors’ knowledge, no studies have assessed 
factors of age, BFP, and MM as WBCs estimators in modelling using intelligent algorithms. Therefore, this study 
is the first attempt for assess of these factors and the proposed models in predicting LYMPH, NEU, MON, and 
WBC counts during exercise.

Methods
Subjects
To test the objectives of this study, data from 200 eligible healthy subjects (100 men, 50.0%) in the age range of 
18–60 years were collected (Table 1). Before the start of the study, three steps were performed; (1) screening the 
subjects with the questionnaire to investigate their health condition based on the absence of infectious, cardio-
vascular, inflammatory or immune diseases; (2) explaining the research process to all of the subjects and asking 
them to provide written consent; and (3) asking to subjects to refrain from exercise training or vigorous physical 
activity, and not to take anti-inflammatory agents, steroids and vitamin supplements for two weeks before the 
exercise sessions. This study was approved by the Research Ethics Committee, and all processes were conducted 
in accordance with the relevant regulations.

Table 1.  Statistical parameters of studied variables for the total data 1. BMI = body mass index. BFP = body 
fat percentage. MM = muscle mass.  VO2 max = maximal aerobic capacity.  HRtarget1 = the minimum of target 
heart rate of subjects in determined intensity.  HRtarget2 = the maximum target heart rate of subjects in 
determined intensity. Duration = exercise training duration.  WBC1 = pre-exercise training white blood cell 
counts.  LYMPH1 = pre-exercise training lymphocyte  counts.  NEU1 = pre-exercise training neutrophil counts. 
 MON1 = pre-exercise training monocyte counts.  WBC2 = post-exercise training white blood cell counts. 
 LYMPH2 = post-exercise training lymphocyte  counts.  NEU2 = post-exercise training neutrophil counts. 
 MON2 = post-exercise training monocyte counts.

Variable Min–Max Mean ± SD

Age (years) 18–60 36.54 ± 10.86

Weight (kg) 49–130 76.09 ± 12.83

Height (cm) 154–191 169 ± 9

BMI (kg  m−2) 18.44–40.12 26.65 ± 4.38

BFP (%) 21.9–58.70 30.29 ± 7.14

MM (kg) 22.69–60.38 41.84 ± 4.94

VO2 max (ml  kg−1  Min−1) 21.1–55.74 37.03 ± 7.63

HRtarget1 (bpm) 116–175 141.93 ± 14.19

HRtarget2 (bpm) 131–189 155.57 ± 15.88

Duration (min) 1–138 46.19 ± 38.23

WBC1  (103/mm3) 4.25–10.32 7.14 ± 1.52

LYMPH1  (103/mm3) 1.01–4.71 2.42 ± 0.70

NEU1  (103/mm3) 1.65–6.48 3.76 ± 1.15

MON1(103/mm3) 0.28–1.00 0.56 ± 0.15

WBC2  (103/mm3) 5.36–14.23 8.90 ± 1.96

LYMPH2  (103/mm3) 0.86–6.86 3.32 ± 1.22

NEU2  (103/mm3) 1.85–8.73 4.63 ± 1.39

MON2  (103/mm3) 0.22–1.30 0.74 ± 0.21
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Development and application of machine-learning algorithms
Preparation of modelling dataset
Characteristics of participants (weight, height and BMI) and input and output datasets were measured using 
standard techniques. According to the manufacturer’s instructions, BFP and MM data were estimated using a 
multi-frequency bioelectrical impedance analysis (BIA) device (Tanita BIA MC-180MA.  VO2 max was measured 
using a Bruce  test18 for each subject in the cardiology clinic. Based on the previous studies, three intensities, 
namely low intensity (50–63% of  HRmax), moderate intensity (64–76% of  HRmax), and high intensity (77–93% 
of  HRmax) were considered for exercise  protocol6,19. For this, the maximum heart rate  (HRmax) using Tanaka 
 formula20 for each subject was calculated. Then, the minimum and maximum target heart rate  (HRtarget) using 
Karvonen  method21 and in accordance with the determined intensity for each subject was achieved. The subjects 
implemented the exercise protocol based on the characterised  HRtarget on a treadmill (Rodby, RL1602E, Sweden). 
Their heart rate during protocol execution was monitored continuously with a Polar watch and chest strap (Polar 
Electro Oy, Kempele, Finland) to ensure that the heart rate of samples is between their minimum and maximum 
 HRtarget. It should be noted that subjects were tested in an individual training condition in a public fitness centre. 
Although for each person, the exercise training intensity was randomized and each subject performed one speci-
fied intensity (only one of the intensities mentioned above), the duration of exercise training was according to 
the capacity of the subjects and wasn’t pre-determined. The individual’s capacity depends on various parameters 
such as age, gender, BMI, and intensity of the  exercise22. For measurement of leukocyte levels, blood samples (3 
millilitres of peripheral venous blood) of subjects were taken at baseline and immediately after the completion 
of the exercise training.

Finally, the collected data from 200 people were used for WBC modelling. In this study, to avoid over-fitting, 
the K-fold cross-validation method was applied to train and test machine-learning  models6. In this method, data 
was randomly partitioned into equal-sized subsamples (5 subsamples) in which four samples (160 subjects) for 
training and one remaining sample (40 subjects) for validating were applied, and the process repeated 5 times.

Features importance
The analysis of feature’s importance in ML models is critical because it helps to remove factors that reduce the 
prediction capability of the models or have no contribution to modelling  results23. In this study, the method of 
mean decrease in impurity (MDI) in the RF algorithm was applied to determine feature’s importance and selec-
tion of input vectors. We assessed the importance of effective factors on post-exercise training WBCs counts, 
including pre-exercise training WBCs counts, age, BFP,  VO2 max, MM, and the intensity (the minimum and 
maximum  HRtarget) and duration of exercise for determination of the optimum structure of models for predicting 
LYMPH, NEU, MON, and WBC.

Descriptions of the models
This study investigates some tree-based, lazy-based learner, function-based, and ensemble-based algorithms for 
predicting WBCs counts during exercise for healthy people, specifically:

M5 prime (M5P). The M5P algorithm as a DT-based algorithm is the expanded version of the M5 algorithm 
that was originally proposed by  Quinlan24. This algorithm is known for its robustness when dealing with missing 
data, flexibility, and ability to handle a large number of data sets with many  attributes25. This algorithm performs 
in 4 steps, in the first step, the input space is split into several sub-spaces to construct a tree, in the process of 
building of the tree using the standard deviation reduction (SDR), error reduction is maximized. In the next 
step, a linear regression model is generated in each sub-spaces. Then, a pruning technique is applied to eliminate 
undesired sub-trees and overcome the over-training problem. In the final step, the smoothing process compen-
sates for the sharp discontinuities between adjacent linear  models26.

Support vector regression (SVR). SVR is a support vector machine (SVM) version that performs regression 
instead of classification. In this approach, which was introduced by  Vapnik27 the separator hyperplane in SVM 
becomes the fitting function of data. In this method, the use of the structural risk minimization (SRM) principle 
results in an overall optimal response and elevates the model’s  power28. In the SVR method, various types of 
kernel functions (e.g., linear, nonlinear, polynomial, radial basis function (RBF), and sigmoid) are used, among 
which the RBF kernel is the most widely used  function29.

Reduced error pruning trees (REPT). The REPT model as a tree-based model integrates the reduced error 
pruning model with decision tree algorithms introduced by  Quinlan30 and is employed for classification and 
regression. This algorithm performs in 4 steps, in the first step, multiple trees in various iterations are generated 
31. In the next step among them, the best tree is selected. Then, the reduced error pruning approach integrated 
with decision tree algorithms to reduce the size of tree branches and prevent over-fitting32. Finally, missing val-
ues are managed, and values of numerical attributes are sorted.

Random forest (RF). The RF algorithm introduced by  Breiman33 is a popular general-purpose algorithm in 
modern  times34. This algorithm, as a tree-based algorithm, needs few parameters to tune and can deal with 
small sample  sizes35. In this algorithm, a forest of decision trees is produced from the combination of rand-
omized decision trees in which every tree forecasts a class and the final decision is produced by averaging all 
predicted  classes7. Generally, RF training involves drawing a bootstrap sample from the training data, growing 
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a decision tree for each bootstrap sample, and finally repeating these steps until a large enough number of trees 
are  generated36.

Alternating model trees (AMT). The AMT algorithm introduced by Freund and  Mason37 shows the prediction 
capability of decision tree algorithms just in a single tree-based structure, which includes separator and predic-
tion nodes. This algorithm includes three steps. In the first step, the separator variable is selected considering all 
input variables. The next step applies two basic linear regressions to the data. In the final step, the prediction at 
each prediction node is multiplied by the shrinkage parameter and then summed together to obtain the target 
prediction.

Locally weighted learning (LWL). LWL as a lazy-based learner is a nonparametric regression model that can 
manage various data distribution types and prevent boundary and cluster  effects38. This method depends on the 
distance function, smoothing parameter, and weighting function. The distance function is used to recover the 
nearest neighbours of a given query  example39, and the weighting function computes the weight of the sample 
neighbour query. The bandwidth parameter is used for the smoothing parameter, which determines the range 
of generalisation.

Bagging (BA). BA is one of the robust ensemble techniques proposed by Breiman to solve classification and 
regression  problems40. The method can enhance the overall accuracy of the ensemble by weakening the defects 
of poorly performing ensemble  members40. The training process in the BA algorithm includes three steps, the 
first step is selecting randomly and independently the samples from the primary training datasets and build-
ing a specified number of sub-datasets. The next step is to characterize the base learning algorithm to train the 
sub-datasets. In the final step, predictions are created from each model, and afterwards, the final prediction is 
generated using  averaging41.

Statistical evaluation metrics
To validate and compare the performance of the models, the six most commonly used quantitative metrics, 
including coefficient of determination  (R2), root mean squared error (RMSE), mean absolute error (MAE), rela-
tive absolute error (RAE), root relative square error (RRSE), and Nash–Sutcliffe efficiency coefficient (NSE), were 
applied in the testing dataset. The equations for the metrics mentioned above are expressed in Table 2. Higher 
NSE and  R2 values and lower RMSE, MAE, RAE and RRSE values indicate better efficiency of models; RMSE, 
MAE, RAE and RRSE range from 0 to + ∞, NSE ranges from − ∞ to 1, and  R2 ranges from 0 to  16,42.

Results and discussion
Feature importance analysis
Feature importance scores for each factor were determined using MDI method (Fig. 1). Feature selection results 
based on this method showed that: (1) for predicting  WBC2,  WBC1 is the most important factor, followed by 
 HRtarget1,  HRtarget2, BFP, duration,  VO2 max, MM and age, respectively; (2) for predicting  NEU2,  NEU1 is the 
most important factor, followed by  HRtarget2,  HRtarget1, BFP, duration,  VO2 max, MM and age, respectively; (3) for 
predicting  LYMPH2,  LYMPH1 is the most important factor, followed by  HRtarget2,  HRtarget1, BFP, duration, MM, 
 VO2 max, and age, respectively; and (4) for predicting  MON2,  MON1 is the most important factor, followed by 
duration,  HRtarget1,  HRtarget2,  VO2 max, BFP, MM and age, respectively. Table 3 is visualized in Fig. 1 for a better 
understanding of feature ranking and importance according to the used technique.

Based on the obtained results, the most effective parameters for predicting post-exercise training WBCs 
counts were pre-exercise training WBCs counts, followed by intensity and BFP for predicting  WBC2,  LYMPH2, 
and  NEU2, and intensity and duration of exercise for predicting  MON2. The high importance of intensity and 
duration of exercise are consistent with the results of the previous  studies3,6. Moreover, multiple studies have 
confirmed function changes of MON, NEU, NK, T and B cells and other biomarkers of immune that after exercise 
 training43–45. Exercise influences the immune system through circulatory (hemodynamic) changes and endo-
crine  hormones46–48. The importance of body fat can be justified in this way, in the regulation of immune and 
inflammatory processes, adipose tissue plays a critical role not only as an energy store but also as an important 
endocrine  organ49. The previous studies also have identified the various products of adipose tissue, including 
adipokines and cytokines and several pathways linking adipose tissue metabolism with the immune  system49,50. 

Table 2.  Model evaluation metrics. n is the number of data,  Oi: is the ith observed WBCs,  Pi is the ith 
predicted WBCs, O is the average of observed WBCs,  P is the average of predicted WBCs.
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Excessive body fat provokes the reduction of plasma anti-inflammatory mediators, leading to the development 
of a chronic low-grade systemic inflammatory  state51. The next important factor is cardiorespiratory fitness and 
physical activity levels which are negatively associated with total WBC counts in  adults52,53. Higher levels of 
cardiorespiratory fitness are related to lower pro-inflammatory cytokines levels (e.g., IL-6 and tumour necrosis 
factor-α (TNF-α))54, which may stimulate neutrophils through cortisol and the hypothalamic–pituitary  axis55. 
Moreover, we considered MM as a required input since the communication between the skeletal muscle and 
the immune system happens in many different ways and involves different  aspects56. The previous findings have 
demonstrated a significant association between higher levels of circulating inflammatory markers and lower skel-
etal muscle strength and muscle mass; this relationship’s strength differ depending on population and  gender57. 
Our results showed that although age had the lowest impact on predicting WBCs, it is an influencing factor on 
the immune system. In this way with aging (especially with the beginning of the sixth decade of life), the human 
immune system undergoes changes that include reduced production of B and T cells in the bone marrow and 
thymus and diminished function of mature lymphocytes in secondary lymphoid  tissues58,59.

Model evaluation
After determining the importance of input variables, all models were validated using performance indices (RMSE, 
MAE, RAE, RRSE, NSE, and  R2) during the testing phase. The results for predicting LYMPH, NEU, MON, and 
WBCs are shown in Tables 3, 4, 5 and 6, respectively.

Analysis of the results based on standard statistical parameters showed that: (1) for predicting WBC, the 
BA-M5P model had the highest prediction power, followed by the BA-SVR, M5P, SVR, BA-RF, BA-AMT, RF, 
BA-REPT, BA-LWL, AMT, REPT, and LWL models, respectively; (2) for predicting NEU, the BA-M5P model 
had the highest prediction power, followed by the BA-SVR, M5P, SVR, BA-AMT, BA-RF, RF, BA-REPT, BA-LWL, 
REPT, AMT and LWL models, respectively; (3) for predicting LYMPH, the BA-M5P model had the highest pre-
diction power, followed by the BA-SVR, M5P, SVR, BA-RF, RF, BA-AMT, BA-REPT, AMT, REPT, BA-LWL, and 
LWL models, respectively; and (4) for predicting MON, the BA-M5P model had the highest prediction power 
followed by the BA-SVR, M5P, SVR, BA-RF, RF, BA-REPT, BA-AMT, AMT, BA-LWL, REPT, and LWL models, 
respectively. Therefore, an assessment of the predictive capability of the twelve developed models showed that 
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Fig. 1.  Graphical representation of features importance in predicting WBCs.
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for predicting WBCs, the three best models were BA-M5P, followed by BA-SVR, and M5P, respectively, and the 
worst model was LWL.

The classification of performance based on both NSE and  R2 metrics showed that: (1) for predicting WBC, 
the M5P, SVR and RF standalone models and all hybrid models except for BA-LWL had very good performance; 
(2) for predicting NEU, the M5P and SVR standalone models and the BA-M5P, BA-SVR, and BA-AMT hybrid 
models had very good performance; (3) for predicting LYMPH, none of the models had very good performance 
but M5P, SVR, BA-M5P, and BA-SVR had good performance; and (4) for predicting MON only BA-M5P and 
BA-SVR had good performance.

Table 3.  Performance of 12 models for prediction of WBC.

Model RMSE  (103/mm3) MAE  (103/mm3) RAE (%) RRSE (%) NSE R2

AMT 1.37 1.00 65.2 64.75 0.57 0.63

REPT 1.44 1.11 71.73 68.12 0.52 0.52

M5P 0.92 0.69 46.63 44.68 0.83 0.83

RF 1.01 0.75 49.99 48.51 0.78 0.79

LWL 1.50 1.16 74.31 70.72 0.48 0.52

SVR 0.92 0.69 47.01 44.77 0.82 0.82

Bag-AMT 1.01 0.73 49.07 48.21 0.78 0.79

Bag-REPT 1.01 0.76 50.88 48.83 0.77 0.77

Bag-M5P 0.89 0.66 44.78 43.38 0.85 0.85

Bag-RF 0.99 0.73 49.25 47.87 0.78 0.81

Bag-LWL 1.31 1.03 66.53 66.53 0.61 0.65

Bag-SVR 0.91 0.67 45.42 44.08 0.83 0.83

Table 4.  Performance of 12 models for prediction of NEU.

Model RMSE  (103/mm3) MAE  (103/mm3) RAE (%) RRSE (%) NSE R2

AMT 0.98 0.67 67.84 72.96 0.47 0.57

REPT 0.87 0.6 62.43 66.29 0.57 0.60

M5P 0.55 0.34 40.98 45.22 0.83 0.83

RF 0.71 0.49 52.81 55.80 0.70 0.73

LWL 0.98 0.71 70.98 72.96 0.47 0.48

SVR 0.55 0.35 39.81 45.19 0.82 0.83

Bag-AMT 0.62 0.38 43.86 49.86 0.78 0.81

Bag-REPT 0.72 0.49 53.01 56.52 0.70 0.72

Bag- M5P 0.52 0.33 41.33 43.34 0.84 0.84

Bag-RF 0.71 0.46 50.40 55.72 0.71 0.73

Bag-LWL 0.82 0.58 60.36 62.92 0.62 0.65

Bag-SVR 0.54 0.36 42.16 43.67 0.83 0.84

Table 5.  Performance of 12 models for prediction of LYMPH.

Model RMSE  (103/mm3) MAE  (103/mm3) RAE (%) RRSE (%) NSE R2

AMT 0.94 0.73 69.63 69.12 0.47 0.57

REPT 1.03 0.77 74.12 77.35 0.35 0.40

M5P 0.70 0.55 51.26 50.15 0.74 0.74

RF 0.82 0.63 60.22 59.69 0.61 0.63

LWL 1.14 0.89 86.72 85.09 0.20 0.28

SVR 0.74 0.57 53.48 53.35 0.73 0.74

Bag-AMT 0.83 0.61 57.62 60.52 0.60 0.65

Bag-REPT 0.86 0.66 62.85 62.7 0.57 0.59

Bag-M5P 0.68 0.53 49.40 48.64 0.75 0.76

Bag-RF 0.81 0.62 58.49 58.97 0.62 0.65

Bag-LWL 1.04 0.82 78.88 76.74 0.34 0.36

Bag-SVR 0.69 0.54 50.18 49.64 0.75 0.75
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Also, an assessment of the base models compared with their ensemble counterparts showed that ensemble 
models improve prediction accuracies of various base regression  models60. For example, this improvement is 
indicated by an increase of 2.41% in the NSE and  R2, and a decrease of 3.26%, 4.35%, 3.97%, and 2.91% in the 
RMSE, MAE, RAE, and RRSE, respectively, in the Bag-M5P model as the best model compared to the M5P 
model for predicting WBC. Moreover, it can be said that in most cases, the performance of the hybrid models 
depends on the base model used. For example, in this study, although the incorporation of the bagging algorithm 
improved the prediction power of all standalone models, the BA- M5P model had the highest prediction power 
since the M5P base model had a higher performance compared to other base models.

Generally, although hybridization increases the model’s complexity and consumption of time, hybrid models 
can more easily identify the non-linearity of variables relationship compared to standalone models and elimi-
nate the inherent shortcomings of base  models11. The improvement in the results of the bagging algorithm is 
because it enables several weak learners to work together to enhance their predictive capability. Also, it reduces 
the variance in performance measures while the bias almost is the  same61. Moreover, since sampling is carried 
out by bootstrapping, the training data becomes more diverse, leading to this method becoming more  effective62.

For a visual analysis and assessment of the applied models, scatter plots of testing dataset are presented for 
the best models in predicting LYMPH, NEU, MON, and WBC (Fig. 2).

The comparison of plots for the best model (Bag-M5P) indicated that there was the closest agreement between 
observed WBC and predicted WBC compared with LYMPH, NEU, and MON.

The assessment of the modelling results also showed that some predicted WBCs were not accurate, which 
it often occurs in modelling. The reason may be that we didn’t consider the other WBCs-influencing factors, 
including psychological stress, diet, temperature, and relative  humidity3, in developed models. Additionally, 
various factors, such as the menstrual cycle in females, can affect  WBCs63, which were not controlled in this 
study. Therefore, these samples are not reflective of the general women population. On the other hand, the use 
of the other intelligent  models7, high-quality  data64, more  data65, and meta-heuristic optimization algorithms 
for adjustment of model  parameters66 may improve results. It should be noted that the use of other methods 
for more accurate assessment of body composition, such as Dual-energy X-ray absorptiometry (DEXA)67, can 
lead to more precise results, which should be considered in future studies. Generally, the results obtained from 
this study indicated that the hybrid algorithms presented more accurate predictions of WBCs compared to 
the standalone algorithms. In particular, M5P trained with the bagging data mining algorithm had very good 
performance in predicting WBC (NSE = 0.85 and  R2 = 0.85) and NEU (NSE = 0.84 and  R2 = 0.84) and had good 
performance in predicting LYMPH (NSE = 0.75 and  R2 = 0.76) and MON (NSE = 0.69 and  R2 = 0.70) during 
exercise. These results show the usability of the proposed model. On the other hand, not having samples in age 
groups under 18 and over 60, as well as samples with medical conditions, are the main limitations of the pre-
sent study which this problem should be investigated in future studies because results may not be applicable to 
children, old people, and individuals with medical conditions. Thus, although the results of this study provide 
a simple modelling tool for convenient use by athletes, non-athletes, and the personnel involved in health care, 
more detailed studies should investigate the potential of this approach with various WBCs-influencing factors 
and with more data in the future.

Conclusion
The development of approaches that are both reliable and available for the accurate prediction of WBCs count 
during exercise can help to determine the proper intensity and duration of exercise based on the immune system 
response and as a result maintain people’s health. Considering the non-linear and complex behaviour of the 
immune system in interaction with exercise, intelligent algorithms can have the potential for accurate prediction 
of WBCs count during exercise. This study tested this potential by examining the prediction power of standalone 
algorithms (M5P, RF, AMT, REPT, LWL, and SVR) and hybrid algorithms (BA-M5P, BA-RF, BA-AMT, BA-REPT, 
BA-LWL, and BA- SVR). Our findings revealed that combining BA with the standalone models could improve the 
performance of these models. Also, the BA-M5P model produced superior results in predicting LYMPH, NEU, 

Table 6.  Performance of 12 models for prediction of MONO.

Model RMSE  (103/mm3) MAE  (103/mm3) RAE (%) RRSE (%) NSE R2

AMT 0.15 0.10 66.26 69.81 0.46 0.53

REPT 0.16 0.12 73.23 75.92 0.36 0.44

M5P 0.12 0.08 54.57 57.31 0.64 0.65

RF 0.12 0.08 54.19 58.45 0.63 0.63

LWL 0.17 0.13 79.40 79.50 0.29 0.31

SVR 0.12 0.08 53.81 58.22 0.63 0.64

Bag-AMT 0.13 0.08 53.64 63.58 0.55 0.61

Bag-REPT 0.12 0.08 54.84 60.71 0.59 0.61

Bag- M5P 0.10 0.07 50.33 54.43 0.69 0.70

Bag-RF 0.12 0.08 54.74 58.29 0.63 0.64

Bag-LWL 0.15 0.11 69.05 70.55 0.45 0.45

Bag-SVR 0.11 0.08 51.64 56.16 0.66 0.67
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MON, and WBC compared to other models, as well as was the most successful in assessing WBC. Moreover, 
the results of feature importance indicated that after initial WBCs counts, the three most significant features 
were intensity and duration of exercise and BFP. Generally, the results of this study provide a relatively cheap 
and applicable method for fast predictions of WBCs during exercise that has important potential implications 
for public health and for clinicians caring for athletes and athletic teams.

Data availability
Data are available by contacting the corresponding author upon reasonable request.
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