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Abstract 

A goal of developmental research is to examine individual changes in constructs over time. The 

accuracy of the models answering such research questions hinges on the assumption of 

longitudinal measurement invariance: The repeatedly measured variables need to represent the 

same construct in the same metric over time. Measurement invariance can be studied through 

factor models examining the relations between the observed indicators and the latent constructs. 

In longitudinal research ordered-categorical indicators such as self- or observer-report Likert 

scales are commonly used, and these measures often do not approximate continuous normal 

distributions. The present didactic paper extends previous work on measurement invariance to 

the longitudinal case for ordered-categorical indicators. We address a number of problems that 

commonly arise in testing measurement invariance with longitudinal data including model 

identification and interpretation, sparse data, missing data, and estimation issues.  We also 

develop a procedure and associated R program for gauging the practical significance of the 

violations of invariance.  We illustrate these issues with an empirical example using a subscale 

from the Mexican American Cultural Values scale.  Finally, we provide comparisons of the 

current capabilities of three major latent variable programs (lavaan, Mplus, OpenMx) and 

computer scripts for addressing longitudinal measurement invariance.  

 

Key words: measurement invariance; ordered-categorical; longitudinal; confirmatory factor 

analysis; practical significance 
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Testing Measurement Invariance in Longitudinal Data with Ordered-Categorical 

Measures 

Developmentalists are inherently interested in studying individual and population changes over 

time (e.g., depression, externalizing behavior, motivation for educational attainment). Models of 

change (e.g., growth models) hinge on the idea that the repeatedly measured variable carries the 

same meaning and the same scale over all time points and over all individuals; this is the idea of 

longitudinal measurement invariance. Often, researchers administer the same scale to 

participants (e.g., children, other informants) and assume measurement invariance holds; 

however, in many cases measurement invariance may not hold because the same scale can 

measure a different construct at different ages (especially given the rapid transitions occurring in 

adolescence). If measurement invariance does not hold, then the observed changes may reflect 

changes in what is being measured rather than the level of the construct of interest. Thus, 

evaluation of longitudinal measurement invariance is critical to drawing valid conclusions about 

growth and change in the level of latent constructs over time (e.g., Leite, 2007; Wirth, 2008). 

Measurement invariance can be evaluated through the use of multivariate measurement 

models, such as confirmatory factor and item response models. In the published literature, 

evaluation of measurement invariance has most commonly been applied to cross-sectional data, 

to study whether the continuous measured indicators reflect the same construct on the same scale 

in different groups (e.g., gender, ethnic, language groups; see Meredith, 1993; Widaman & Reise, 

1997). More recently, methods for establishing longitudinal measurement invariance with 

continuous measured indicators were developed within a confirmatory analysis (CFA) 

framework (e.g., Khoo, West, Wu, & Kwok, 2006; Meredith & Horn, 2001) and several 

demonstrations and applications have appeared in the literature (e.g., Millsap & Cham, 2012; 
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Widaman, Ferrer, & Conger, 2010).  Figure 1 illustrates the basic CFA models used to test 

measurement invariance in the (a) multiple groups and (b) longitudinal cases for a one-factor 

model with continuous indicators. Discussion of Figure 1 is deferred to the Testing Measurement 

Invariance with Continuous Variables section. 

In many applied situations, key constructs are measured by a collection of ordered-

categorical indicators (e.g., self- or observer-report Likert scale items). A comprehensive 

presentation of issues associated with testing longitudinal measurement invariance with ordered-

categorical data has not been presented in the literature. Treating ordered-categorical data as 

continuous might sometimes be acceptable when there are several (i.e., 5+) response categories.  

However, this practice can lead to biased parameter estimates when there are fewer categories 

(e.g., Beauducel & Herzberg, 2006; DiStefano, 2002; Dolan, 1994; Rhemtulla, Brosseau-Liard, 

& Savalei, 2012) or when the observed indicator distributions are skewed (e.g., asymmetric 

threshold spacing
1
, Rhemtulla et al., 2012). Thus, ordered-categorical CFA will often be the 

approach of choice when measured indicators are ordered-categorical. Methods of establishing 

longitudinal measurement invariance for ordered-categorical indicators within the CFA 

framework build on the foundations of tests of multiple-group measurement invariance for 

continuous indicators (Meredith, 1993; Widaman & Reise, 1997), tests of longitudinal 

measurement invariance for continuous indicators (Meredith & Horn, 2001; Khoo et al., 2006), 

and CFA models for ordered-categorical indicators (Muthén, 1984; Wirth & Edwards, 2007).  

The purpose of this didactic paper is to consider theoretical issues and many of the 

practical problems that can arise when testing longitudinal measurement invariance with 

                                                           
1
 Asymmetric threshold spacing refers to the situation in which threshold levels of going from one response category 

to the next (e.g., from “I somewhat believe this” to “I very much believe this”) are not distributed symmetrically 

around the mean of the latent response distribution, such that the peak of the distribution of the observed ordinal 

indicator falls to the left or right of the center (Rhemtulla et al., 2012). 
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ordered-categorical indicators. The organization of this manuscript is as follows. First, we briefly 

review foundational work on methods for establishing measurement invariance with continuous, 

multivariate-normally distributed indicators across groups and across time. Second, we briefly 

review foundational work on CFA approaches for ordered-categorical indicators, and explain 

how this can be extended to test longitudinal measurement invariance for ordered-categorical 

indicators. Third, we explicate the estimation of latent variable models (e.g., confirmatory factor 

analysis models; structural equation models) of ordered-categorical variables and provide 

comparisons of the current capabilities of three major latent variable programs (lavaan, Mplus, 

OpenMx) for estimating these models. Fourth, we explicate the model specification and 

interpretation for each level of longitudinal measurement invariance with ordered-categorical 

indicators. Fifth, we consider practical problems in the evaluation of longitudinal measurement 

invariance using ordered-categorical CFA models, including data sparseness, missing data, and 

gauging the practical significance of violations of measurement invariance. Sixth, we illustrate 

many of these issues with an empirical example using a subscale from the Mexican American 

Cultural Values scale (Knight et al., 2010), and present computer scripts for addressing 

longitudinal measurement invariance.  Finally, we conclude with a discussion with 

recommendations, limitations, and future directions. Our goal is to provide a clear didactic 

presentation of these procedures so applied researchers familiar with measurement invariance 

can use them in their own research.  We limit our presentation to the most common longitudinal 

data structure in which participants are measured at fixed time points (measurement waves) and 

there is no group-level clustering (e.g., schools). 

Testing Measurement Invariance with Continuous Variables 

Multiple Groups 
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 Following a procedure originally developed by Meredith (1993; see also Millsap, 2011; 

Widaman & Reise, 1997), measurement invariance in multiple groups with continuous indicators 

is established by sequentially testing a series of nested models in which constraints are added at 

each step of the hierarchy. Figure 1(a) depicts the basic measurement model used to test a 

hypothesized one-factor model with J indicators and G = 2 groups
2
. (1) The baseline configural 

invariance model tests the hypothesis that the same general pattern of factor loadings holds 

across groups. The corresponding factor loadings (  
   

,   
   

), intercepts (  
   

   
   

), and unique 

factor variance-covariance matrix (         ) are freely estimated (other than those constrained 

for model identification
3
) and can take on different values in the G groups. If the configural 

invariance model fits the data, subsequent models in the hierarchy are tested. (2) In the weak 

invariance model, the corresponding factor loadings are set to be equal (  
   

   
   

). If the fit of 

the configural and weak invariance models do not differ, weak invariance is established. Weak 

invariance implies that the variances and covariances (when there are two or more latent 

common factors) of the latent common factors can be compared in the G groups (Widaman & 

Reise, 1997). (3) In the strong invariance model, the corresponding factor loadings and intercepts 

are set to be equal (  
   

   
   

   
   

   
   

). If the fit of the weak invariance and strong 

invariance models do not differ, strong invariance is established. Achieving strong invariance 

implies that the means, variances, and covariances of the latent common factors can be compared 

                                                           
2
 For ease of presentation, the present work focuses on models with one latent common factor per group (for 

multiple group models) or per measurement occasion (for longitudinal models), although the results can be easily 

generalized to cases with more than one latent common factors.  
3
 Two approaches can be used to identify the variance structure of the latent common factors: The marker variable 

approach gives the latent common factor a scale that is in the same unit as one of the indicators (the marker variable) 

by constraining the factor loading of this indicator to 1.0; the second approach sets the variance of the latent 

common factor to a fixed value, typically 1.0 (Bollen, 1989, p. 239). Two approaches can be used to identify the 

mean structure of the latent common factors: The intercept of the marker variable can be constrained to 0, or the 

mean of the latent common factor can be constrained to 0. In this present work, we use the marker variable approach 

to identify the variance structure, and constrain the latent common factor mean in one group (for multiple group 

models) or at one measurement occasion (for longitudinal models) to 0 to identify the mean structure. 
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in the G groups (Millsap, 2011; Widaman & Reise, 1997). Moreover, group differences in the 

means of the measured indicators are solely due to group differences in the latent common factor 

means (Millsap, 2011). (4) Finally, in the strict invariance model, the corresponding factor 

loadings, intercepts, and unique variances (and any nonzero unique factor covariances) are all set 

to be equal in the G groups (  
   

   
   

   
   

   
   

          ). If the fit of the strong 

invariance and strict invariance models do not differ, strict invariance is established, which 

implies that group differences in the means, variances, and covariances of the measured 

indicators are solely due to group differences in the latent common factors (Millsap, 2011). 

Longitudinal Measurement Invariance 

The procedure for testing longitudinal measurement invariance with continuous 

indicators closely parallels testing measurement invariance with multiple groups (Meredith & 

Horn, 2001; Millsap, 2011; Millsap & Cham, 2012). Figure 1(b) depicts the basic measurement 

model used to test a hypothesized one-factor model with J indicators measured at 2 occasions.  

Three changes from Figure 1(a) are noteworthy: (1) the latent construct at Time 1 is allowed to 

co-vary with the same construct at Time 2; (2) the corresponding unique factors at Time 1 and 

Time 2 are allowed to co-vary; and (3) the second subscript now refers to the measurement wave 

t, whereas in Figure 1(a) the superscript (g) referred to the group.  

Once again, a series of four hierarchical models may be tested. The configural invariance 

model tests the hypothesis that the same general pattern of factor loadings holds across time 

(Millsap & Cham, 2012). In this model, the corresponding factor loadings (       ), the 

intercepts (       ), and the unique factor variance-covariance matrix (       ) at the two 

measurement occasions are freely estimated (other than those constrained for model 

identification). As before, the weak invariance model sets the corresponding factor loadings to be 
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equal over time (       ), the strong invariance model sets the corresponding factor loadings 

and intercepts to be equal over time (       ,        ), and the strict invariance model sets 

the corresponding factor loadings, intercepts, and unique factor variances (and any non-zero 

within-wave unique factor covariances) equal over time (       ,        ,        ). The 

interpretation of measurement invariance at each level in the hierarchy parallels that described 

above for the multiple group invariance case. With more than two measurement waves, 

additional constraints potentially could be put on the stability of the corresponding lagged 

covariances of the unique factors across time, which could be considered an additional (higher) 

level of longitudinal measurement invariance beyond strict invariance. 

Ordered-Categorical CFA: Basic and Longitudinal Models 

In this section we first review the basic ordered-categorical CFA model, which may not 

be familiar to applied researchers. We then consider its extension to the longitudinal model used 

to test measurement invariance over time. We focus our presentation on the case in which one 

factor is measured over T measurement occasions by J ordered-categorical indicators that have at 

least three response categories. When the observed indicators are binary, special constraints are 

required to identify the CFA model testing measurement invariance (see Millsap & Tein, 2004). 

Basic Model   

Let      be the observed ordered-categorical response from the i
th

 person on the j
th

 

indicator at time t. Following Muthén (1984), we assume that all measured ordered-categorical 

indicators have score ranges {0, 1,..., C}, where c = 0, 1, …, C are the response categories of the 

observed responses. In the CFA model for ordered-categorical indicators, it is assumed that there 

are unobserved latent responses     
  that underlie each of the observed ordered-categorical 

responses     . The unobserved latent responses are assumed to be continuous and multivariate 
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normally distributed (Muthén, 1984), with a set of threshold parameters   for each indicator that 

determine the observed ordered categorical responses, such that  

       , if          
          , (1) 

where c = 0, 1, …, C are the response categories of the observed responses, and {    ,     , …, 

        } are the threshold parameters for observed ordered categorical variable j at measurement 

occasion t (       , and           ). As illustrated in Figure 2, the threshold parameters 

slice the underlying continuous latent responses into discrete values of the observed ordered-

categorical responses. For a given latent response, when the threshold parameters are fixed, the 

corresponding observed response is completely determined.   

The linear relationships between pairs of the underlying continuous latent responses are 

represented by polychoric correlations
4
. The factor model for the latent response X

*
 at time t is  

     
                 , (2) 

where     is the intercept,     is the factor loading of the continuous latent response j on the latent 

common factor at time t,     is the common factor score for person i at time t, and      is the 

unique factor score for the person i on the j
th

 indicator at time t. Typically, all latent intercepts 

    are fixed to zero to allow for the estimation of the latent threshold parameters.  

Extension to Longitudinal Measurement Model 

The basic model used to test longitudinal measurement invariance for ordered-categorical 

indicators is depicted in Figure 3. Consistent with previous work in longitudinal measurement 

invariance with continuous indicators (e.g., Millsap & Cham, 2012), we allow the common 

factors to freely covary across time, and have  

                                                           
4
 A polychoric correlation is the theoretical correlation between two bivariate normal, continuous latent responses 

    
  estimated based on the observed ordered-categorical responses.  The best known special case is the tetrachoric 

correlation which is the estimate of this theoretical correlation based on two binary observed variables.  
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           ,  

                 ,  (3) 

    

     

     

    

    

  
      

  
   

 , 

where the diagonal elements of   represent the common factor variances at each occasion and 

off-diagonal elements representing lagged common factor covariances across time. We allow 

each unique factor to freely correlate with itself over time but not with other unique factors at 

other measurement occasions, and have 

            ,  (4) 

    

      

      

    

    

  
      

  
    

 ,  

where each diagonal element of the supermatrix   is a submatrix     representing the unique 

factor variance-covariance matrix at measurement occasion t, and each off-diagonal element of 

  is a diagonal submatrix       , with its diagonal elements representing the lagged covariances 

of each unique factor with itself over time. 

Estimation of Latent Variable Models with Ordered-Categorical Variables 

In this section we consider estimation issues in some detail. Different statistical packages 

utilize different estimation methods, model comparison tests, and treatment of missing data; 

therefore, they can produce different results.  Four estimators are commonly used with latent 

variable models with ordered-categorical variables:  Weighted Least Squares (WLS), Diagonally 

Weighted Least Squares (DWLS), Unweighted Least Squares (ULS), and Maximum Likelihood 

(ML). WLS, DWLS, and ULS are limited information methods, whereas ML is a full 
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information method. Assuming multivariate normally distributed latent responses, limited 

information methods use only the univariate and bivariate information -- the observed univariate 

marginal frequencies and observed bivariate frequencies of the ordered-categorical indicators 

(Forero & Maydeu-Olivares, 2009; Maydeu-Olivares & Joe, 2005). In contrast, the full 

information methods use all of the information in the data -- the observed multivariate 

frequencies of the ordered categorical indicators. According to asymptotic statistical theory, full 

information methods should produce parameter estimates with greater efficiency (Joe & 

Maydeu-Olivares, 2010; Maydeu-Olivares & Joe, 2005). In practice, however, the difference 

between full information and limited information methods is negligible given sufficient sample 

size (Forero & Maydeu-Olivares, 2009). Moreover, as the number of observed indicators 

increases, computing the probabilities of the observed responses based on the multivariate 

normal distribution of the latent responses becomes difficult.  

Limited information approach. The general limited information approach for estimating 

ordered-categorical CFA models involves multiple stages of estimation (Browne & Arminger, 

1995; Flora & Curran, 2004; Millsap, 2011; Muthén, 1984). In Stage 1, the observed univariate 

marginal frequencies of each ordered categorical indicator are used to provide maximum 

likelihood estimates of the standardized threshold parameters. In Stage 2, conditional maximum 

likelihood estimates of the polychoric correlations between each pair of indicators are calculated 

based on estimates of the standardized threshold parameters from Stage 1 and the observed 

bivariate frequencies of the ordered-categorical indicators. In Stage 3, estimates of the other 

model parameters (including the unstandardized threshold parameters; Millsap, 2011, p. 134) are 

obtained based on estimates of the standardized threshold parameters from Stage 1, their 

estimated large-sample covariance matrix (Muthén, 1984), and estimates of the polychoric 
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correlations from Stage 2 and their estimated large-sample covariance matrix (Browne & 

Arminger, 1995; Muthén, 1984; Muthén & Satorra, 1995). Model identification constraints and 

any other desired constraints are imposed at Stage 3 (Millsap, 2011, p. 134).  

In Stage 3 of estimation, in order to obtain estimates of model parameters, one of the 

estimators from the generalized least squares (GLS) family may be used. The general form of the 

fit function that these methods attempt to minimize is:  

                            , (5) 

where    is the vector containing the estimated standardized thresholds from Stage 1 and the 

estimated polychoric correlations from Stage 2;      is the vector containing the model-implied 

standardized thresholds and polychoric correlations, as functions of the unknown model 

parameters  ; and  , the weight matrix, is a square matrix. Different weight matrices may be 

used. The weight matrix W must be inverted and simple forms of W facilitate computation at a 

cost of asymptotic efficiency of estimates. Simple forms of W are typically preferred when 

sample size is small, when there are a large number of observed ordered-categorical variables, or 

when both of these conditions exist.  The estimation procedures are presented below in order of 

decreasing complexity of W and hence decreasing computational burden. 

1. Weighted Least Squares (WLS). The weight matrix W contains the large-sample 

estimates of the variances and covariances of the standardized thresholds and polychoric 

correlations. This weight matrix contains all of the information, and is the correct weight matrix 

to use. However, it can become very large quickly as the number of variables in the model 

increases. Thus when feasible (large sample sizes; small number of indicators; indicators with 

more response categories), WLS provides optimal estimates. Otherwise, WLS may be 

computationally infeasible (West, Finch, & Curran, 1995) or prone to non-convergence, 
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improper solutions, inflated goodness-of-fit test statistics, and biased estimates of factor 

correlations and factor loadings (Flora & Curran, 2004). This estimator is implemented in Mplus 

and the lavaan package, denoted as WLS in both packages. 

2. Diagonally Weighted Least Squares (DWLS). DWLS keeps only the diagonal 

elements of the weight matrix used in WLS estimation, which are the large-sample estimates of 

the variances of the standardized thresholds and polychoric correlations; all other elements are 

set to 0. This diagonal weight matrix is easy to invert, thus reducing the computational demands 

(Millsap, 2011, p. 135). DWLS is not asymptotically efficient as its weight matrix contains less 

information. As a result, default standard errors are no longer accurate, and the goodness-of-fit 

test statistic does not have a    distribution. Two different robust adjustment procedures, mean-

adjusted weighted least squares and mean- and variance-adjusted weighted least squares have 

been proposed to overcome these problems (Muthén, du Toit, & Spisic, 1997). These two 

methods produce identical parameter estimates and standard errors, but their adjustments to the 

   goodness-of-fit statistic differ (mean-adjusted versus mean- and variance-adjusted). The 

mean-adjustment procedure is denoted WLSM and the mean- and variance-adjustment procedure 

is denoted WLSMV
5
 in Mplus. The lavaan package (Rosseel, 2012) also implements DWLS 

with the mean- and variance-adjustment procedure, denoted as WLSMV.  

3. Unweighted Least Squares (ULS). ULS uses an identity matrix as the weight matrix   

(Muthén, 1993). ULS makes no assumption about the distribution of the observed indicators as 

long as the model is identified (Bollen, 1989, p.112); it is often recommended for categorical 

indicators at small to medium sample sizes (e.g., Forero, Maydeu-Olivares, & Gallardo-Pujol, 

                                                           
5
 The original version of WLSMV in Mplus estimated the model degrees of freedom from the sample, such that 

from sample to sample, “the degrees for freedom may vary within a given model specification” (Flora & Curran, 

2004). A new version of the mean- and variance-adjustment procedure, which does not involve an adjustment for 

degrees of freedom and has Type 1 error rates very similar to the original version, is now the default in Mplus when 

WLSMV is invoked (Asparouhov & Muthén, 2010a). 
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2009; Rhemtulla et al., 2012). ULS is not asymptotically efficient as its weight matrix contains 

less information, and adjustments to improve the standard errors and the goodness-of-fit test 

statistic are provided in Muthén (1993) and Asparouhov and Muthén (2010a). ULS with robust 

standard errors and the mean- and variance-adjusted goodness-of-fit test statistic for ordered-

categorical variables is implemented in Mplus, denoted as ULSMV
6
, but is not currently 

implemented in lavaan.  

Full information approach. Maximum Likelihood is a full information estimation 

approach. Currently ML estimation can be implemented under either the CFA framework for 

ordered-categorical indicators or the item response theory (IRT) framework.  

1. CFA framework for ordered-categorical indicators. Within the CFA framework for 

ordered-categorical indicators, ML estimation generates expected covariances and means of the 

latent responses based on the observed multivariate frequencies of the ordered-categorical 

indicators. A numerical integration method is then used for integration over a multivariate 

normal distribution defined by these covariances and means to maximize the likelihood function 

and obtain estimates of model parameters (Boker et al., 2014; Wirth & Edwards, 2007). ML 

estimation of CFA models for ordered-categorical indicators is computer intensive and requires 

large sample sizes and a relatively small number of observed indicators (e.g., a maximum of 20 

are permitted in OpenMx, Boker, et al., 2014; see Jöreskog & Moustaki, 2001; Wirth & Edwards, 

2007). It is currently implemented in OpenMx, but not Mplus or lavaan.  

2. IRT framework. Within the IRT framework, the graded response model (Samejima, 

1969) is often used to handle ordered-categorical indicators. The normal-ogive version of the 

graded response model, which uses the probit link function, is isomorphically equivalent to the 

                                                           
6
 The default ULSMV method in Mplus now does not involve an adjustment for degrees of freedom, but a ULSMV 

method that involves an adjustment for degrees of freedom can be invoked by using the command Satterthwaite=ON 

(Asparouhov & Muthén, 2010a). 
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CFA model for ordered-categorical indicators depicted in Figure 3 (Takane & de Leeuw, 1987). 

The normal-ogive version of the graded response model attempts to estimate all parameters in 

one step (Jöreskog & Moustaki, 2001). The estimation methods of this approach generally make 

use of all the information in the data, and are considered full information methods. In contrast to 

full information ML estimation under the CFA framework, these estimation methods involve 

integration (marginalization) over the latent common factors (i.e., person specific values on the 

latent constructs) rather than indicators (Wirth & Edwards, 2007). Among the most commonly 

used estimation methods within the IRT framework are the marginal maximum likelihood (MML) 

methods (e.g., MML, MML with the EM algorithm, MML with adaptive numerical integration; 

Wirth & Edwards, 2007). MML is what Mplus uses for ordered-categorical indicators when 

estimator=ML is used, and is also implemented in lavaan (estimator = "MML"). 

Comparison of estimators. According to simulation studies, WLS estimation generally 

performs adequately only at large sample sizes with a small number of latent common factors 

and small number of measured ordered categorical variables (e.g., N = 1000 in Flora & Curran, 

2004 for a two-factor model with 10 indicators). Otherwise, WLS is prone to non-convergence, 

improper solutions, inflated goodness-of-fit test statistics, and biased estimates of factor 

correlations and factor loadings. Although it has received less attention, full information ML 

within the CFA framework for ordered-categorical indicators can be expected to show similar 

performance to WLS given the need to invert a complex weight matrix (the matrix of the model 

implied values; Browne & Arminger, 1995) in the estimation process. In contrast, MML, DWLS, 

and ULS have been shown to provide similar results and work well at more modest sample sizes 

of about 500, especially with indicators that are not highly skewed (Flora & Curran, 2004; 

Forero & Maydeu-Olivares, 2009; Forero et al., 2009; Rhemtulla et al., 2012): They all provide 
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accurate estimates of the factor loadings
7
 (Forero & Maydeu-Olivares, 2009; Forero et al., 2009), 

and goodness-of-fit statistics with proper Type 1 error rates and sufficient statistical power 

(Forero & Maydeu-Olivares, 2009; Savalei & Rhemtulla, 2013). At smaller sample sizes of 200 

or less, none of these methods have satisfactory performance; they are all prone to non-

convergence, improper solutions, large standard errors, biased estimates of factor loadings and 

thresholds, and problematic goodness-of-fit tests (Forero & Maydeu-Olivares, 2009; Forero et al., 

2009; Savalei & Rhemtulla, 2013).  

Software implementation. Table 1 summarizes several of the key features of three major 

software packages (Mplus, lavaan, and OpenMx)
8
 with respect to the different estimators, 

parameterizations, convergence time, and restrictions on the number of observed indicators. ULS 

with robust correction for ordered-categorical variables is implemented in Mplus. DWLS 

methods with robust corrections are implemented in Mplus and lavaan. OpenMx
9
 implements 

full information ML estimation within the CFA framework for ordered-categorical indicators, 

whereas Mplus and lavaan implement the MML estimation within the IRT framework
10

.  

Missing data and model fit are discussed below. 

Testing Longitudinal Measurement Invariance with Ordered-Categorical Indicators 

Our goal is to develop comparisons for longitudinal models with ordered-categorical 

indicators that parallel, as closely as possible, the comparisons described above that are used for 

                                                           
7
 MML and ULS also tend to provide unbiased estimates of the thresholds when the sample size is 500 and above 

(Forero & Maydeu-Olivares, 2009). Less, if any, work has been done to investigate the estimation accuracy of the 

thresholds using DWLS. 
8
 The versions of the software packages compared in this paper are: lavaan 0.5-17, Mplus 7.11, and OpenMx 

2.0.0.3838. 
9
 WLS, ULS, or DWLS were not implemented in OpenMx (version 2.0.0.3838) when we conducted this work. The 

latest release of OpenMx, version 2.3.1, implements WLS, DWLS, and ULS. To make use of these estimators in 

OpenMx (version 2.3.1), the user needs to manually specify the matrices involved in the fit function (see Equation 

(5)). 
10

 In Mplus, (a) using MML with the probit link for ordered-categorical indicators invokes the normal-ogive version 

of the graded response model, and (b) using MML with the logit link for ordered-categorical indicators invokes 

another version of the graded response model. In lavaan, only MML with the probit link is available. 
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models with continuous indicators (configural vs. weak; weak vs. strong; strong vs. strict 

invariance). The mathematical development supporting the interpretation of each level of 

measurement invariance for ordered-categorical indicators is presented in Appendix A. 

Model 1. The baseline model  

The baseline model tests the hypothesis that the same general pattern of factor loadings 

holds across time. This baseline model should provide a good fit to the data in order to continue 

evaluation of loading (weak), threshold (strong), and unique factor (strict) invariance models.  

 Neither the latent common factors nor the underlying latent responses X
*
 have inherent 

scales (i.e., unit of measurement); constraints on parameters must be imposed to identify the 

scales of latent common factors and the underlying latent responses. The following constraints 

serve to identify this baseline model (adapted from Millsap & Tein, 2004): 

1. At all measurement occasions, the latent intercepts    are fixed to zero. 

2. At one measurement occasion (the reference measurement occasion, typically the first or 

last), the common factor mean    is constrained to zero, and the unique factor covariance 

matrix     is constrained to be      , the identity matrix
11

. At all other measurement 

occasions, the unique factor covariance matrix     is a diagonal matrix with the diagonal 

elements freely estimated. 

3. At all measurement occasions, the same observed measure is chosen as the marker 

variable, and the factor loading of the marker variable is constrained to be 1.00. 

4. One threshold for each indicator (and a second threshold for the marker variable) is 

constrained to be equal across measurement occasions. 

                                                           
11

 Alternatively, the total variances of all latent responses at the reference measurement occasion can be constrained 

to 1.0, instead of constraining the unique variances to 1.00 (adapted from Millsap & Tein, 2004). 
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This model identification strategy makes it possible to freely estimate the unique factor 

variances at occasions other than the reference occasion, and allows for the estimation of a model 

representing the invariance of the unique factor variances (discussed below) that parallels the 

strict invariance model in the continuous case. This unique factor invariance model can be 

implemented using the WLS and DWLS estimators with the theta parameterization
12

 in Mplus or 

lavaan, using the ULS estimator with the theta parameterization in Mplus
13

, or using the ML 

estimator in OpenMx. However, it cannot be implemented in Mplus or lavaan using the MML 

estimator with the probit link, as the unique scores in probit regressions are constrained to follow 

a standard normal distribution. We discuss practical considerations in choosing marker variables 

and in specifying constraints for factor loadings and thresholds, as well as specific issues 

involved in fitting the model when applied to empirical data in the Empirical Illustration section.  

Model 2. The loading invariance model  

The baseline model is compared to the loading invariance model that adds the constraint 

that factor loadings are identical across time:              ,              , 

             , …. The first subscript represents the latent response underlying the 

observed indicator and the second subscript represents time. The loading invariance model 

parallels the weak invariance model for continuous indicators. Of importance, since all intercepts 

are fixed to zero for model identification, when loading invariance holds for ordered-categorical 

indicators, changes over time in the expected means of the continuous latent responses 

                                                           
12

 For ordered-categorical CFA models, two parameterizations are available: delta and theta (Muthén & Asparouhov, 

2002). These two parameterizations have a scaling factor for each indicator. Using the delta parameterization, the 

scaling factors for each indicator are the inverse of the standard deviations of the underlying latent responses, and 

are treated as model parameters; in contrast, the unique variances are not treated as model parameters, but instead 

are calculated as a function of the model explained variances of the latent responses and the scaling factors. The 

theta parameterization considers the unique variances as model parameters, and calculates the scaling factors as a 

function of the model explained variances of the latent responses and the unique variances. Thus, using the theta 

parameterization, invariance constraints can be directly put on the unique variances. 
13

 Currently ULS for ordered-categorical indicators is not implemented in lavaan. 
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underlying the measured ordered-categorical indicators are entirely attributable to changes in the 

latent common factors over time (see Appendix A). However, since the continuous latent 

responses are not observed but are instead inferred based on distributional assumptions 

(multivariate normality), this condition is not sufficient to guarantee invariance of the observed 

responses. 

Model 3. The threshold invariance model  

The loading invariance model is compared to the threshold invariance model that adds 

the constraint that for each indicator, the threshold level of going from one response category to 

the next is identical over time:                  ,                 ,      

           , …, with the first subscript representing the latent response underlying the 

observed indicator, the second subscript representing time, and the third subscript representing 

threshold. The threshold invariance model parallels the strong invariance model for continuous 

indicators. Of importance, unlike the continuous case, having invariant factor loadings and 

invariant thresholds does not translate into the nice situation in which changes in the means of 

the measured ordered-categorical indicators are solely attributed to changes in the latent common 

factor. To achieve this, the unique factor variance must also be invariant over time (see 

Appendix A). 

Model 4. The unique factor invariance model  

The threshold invariance model is compared to the unique factor invariance model that 

adds the constraint that the corresponding elements in     (all unique factor variances
14

) are 

equal over time. The lagged unique factor covariances over time (diagonal elements in       ) 

are freely estimated. This unique factor invariance model is estimable when the unique variances 

                                                           
14

 Within-wave unique factor covariances are normally assumed to be 0. If not, the corresponding within wave factor 

covariances should be constrained to be equal at each measurement wave. 
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of the latent responses are freely estimated in the earlier models. Recall that unique variances at 

the reference occasion were fixed to 1.0 for model identification, so in this unique factor 

invariance model, all unique variances are fixed to 1.0.  

The unique factor invariance model parallels the strict invariance model for continuous 

indicators. When longitudinal unique factor invariance is achieved, changes over time in the 

expected means, variances, and within-wave covariances of the continuous latent responses are 

entirely attributable to changes in the latent common factors over time. Moreover, changes in the 

within-wave characteristics of the measured ordered-categorical indicators over time are 

entirely attributable to changes in the latent common factors over time. The mathematical 

development supporting these conclusions is presented in Appendix A. 

Model fit evaluation  

Once the fit of the baseline model is established, nested model tests should be used to 

compare the fit of the less restricted model to the next model in the hierarchy. With ML 

estimation, the likelihood ratio test (Bentler & Bonett, 1980) or its robust version (Satorra & 

Bentler, 2001; 2010) may be used for model comparison. With DWLS or ULS estimation with 

robust corrections in Mplus, the DIFFTEST function (Asparouhov & Muthén, 2006) provides a 

proper evaluation of the difference between nested ordered-categorical CFA models. Using 

DWLS estimation with robust correction in lavaan, a difference test akin to the DIFFTEST in 

Mplus can be requested. Previous research suggests that the Mplus DIFFTEST results from 

ordered-categorical CFA models assessing multiple-group measurement invariance using DWLS 

may exhibit inflated Type 1 error rates (Sass, Schmitt, & Marsh, 2014). Thus, it is important to 

also examine local fit indices (residuals; modification indices; cf McDonald & Ho, 2002). 
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Some authors (e.g., Chen, 2007; Cheung & Rensvold, 2002) have suggested that changes 

in practical fit indices like the RMSEA and CFI might potentially be useful indices for the 

comparison of nested models. However, these indices have not been systematically studied in the 

context of ordered-categorical CFA models. In the only study to date, Sass et al. (2014) found 

that changes in practical fit indices performed poorly with DWLS estimation with mean- and 

variance-adjustments to the goodness-of-fit test statistic, especially for misspecified models. At 

this point, the use of changes in practical fit indices cannot be recommended for the evaluation 

ordered-categorical CFA models. 

Three Common Issues That Arise in Practice 

Sparse data problem  

If different numbers of categories are observed at each measurement point (i.e., the 

number of categories C+1 changes over time), problems are created in specifying invariance 

constraints on the threshold parameters. The thresholds that statistical software packages 

recognize are based on the observed response categories at each occasion, not the scaling of the 

measurement instrument. Take the example of a five-point Likert scale indicator with response 

categories 1 through 5. Suppose in a longitudinal study participants endorse response categories 

1 through 5 at Time 1 but only response categories 2 through 5 at Time 2. At Time 1 the first 

threshold that statistical software packages recognize is the threshold between response 

categories 1 and 2, whereas at Time 2 the first threshold that statistical software packages could 

recognize is the threshold between response categories 2 and 3. Thus, to correctly specify 

invariance constraints on the threshold parameters, the second observed threshold at Time 1 

should be constrained to be equal to the first observed threshold at Time 2 (between the response 

categories 2 and 3 on the Likert scale, Grimm, Ram, & Estabrook, in press). Depending on how 
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often sparse data occur, this could be a tedious process. Moreover, with sparse data there may be 

low or zero expected cell frequencies in the observed contingency table, which could lead to 

inaccurate estimation of the polychoric correlations (Brown & Bendetti, 1977; Olsson, 1979), 

which in turn may lead to inaccurate parameter estimates in the CFA models (Flora & Curran, 

2004). An alternative approach to specifying equality constraints on the threshold parameters in 

the face of the sparse data is to collapse some of the adjacent sparse response categories. After 

collapsing the adjacent sparse response categories, all indicators would have the same number of 

observed response categories at each of the measurement occasions, so that the specification of 

equality constraints on the threshold parameters would be straightforward.  

Missing data  

Most longitudinal studies have missing data. Missing data theory (Rubin, 1976) 

distinguishes between data that are missing completely at random (MCAR), missing at random 

(MAR), or missing not at random (MNAR). MCAR makes the strongest assumption--assuming 

that data are missing due to completely random reasons and that the missing data patterns are 

independent of the observed data. MAR assumes that the probability of missing data on a 

variable is related to observed data on other analysis variables, but is unrelated to the would-be 

values of the variable itself.  MNAR assumes that the missing data are related to the unobserved, 

would-be values of the variable.  Under the strong MCAR assumption, unbiased estimates of all 

model parameters and tests of model fit can be achieved through complete case analysis (listwise 

deletion) or available case analysis (pairwise deletion), but statistical power of the nested model 

tests will be reduced. Using either the complete or available case approach under the weaker 

MAR assumption can lead to biased parameter estimates and tests of model fit.  
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Improved estimates of model parameters and tests of model fit under the weaker MAR 

assumption can be achieved in three ways. First, full information maximum likelihood estimation 

(available in OpenMx) or marginal maximum likelihood estimation (Mislevy, in press; available 

in Mplus
15

) adjusts estimates based on all of the observed data in the measurement model. 

However, when using ML or MML, common fit statistics (e.g.,    goodness-of-fit statistic, CFI, 

RMSEA) are not readily available, although researchers can calculate them manually by fitting a 

separate null or saturated model. Second, for both the full information and the limited 

information estimators, auxiliary variables, variables that are not part of the measurement model 

but that have a substantial correlation with both missingness and the variables in the 

measurement model (Graham, 2003; 2009), can be added to the model.  This approach adjusts 

estimates for the observed values of the auxiliary variables. Mplus (e.g., Asparouhov & Muthén, 

2010b), lavaan, and OpenMx all permit estimation of models with auxiliary variables, although 

auxiliary variables will influence the model fit statistics. Third, multiple imputation can be 

performed followed by analyses using ML/ MML, WLS, DWLS or ULS (Asparouhov & Muthén, 

2010c). Using this approach, the parameter estimates and standard errors may be combined 

across multiple imputed data sets following Rubin’s (1987) procedure. However, to our 

knowledge no published article addresses the mechanism of pooling the overall model fit 

statistics like CFI, RMSEA, and the    goodness-of-fit statistic across multiple imputed data sets, 

which is critical to the evaluation of longitudinal measurement invariance. 

Gauging the Practical Significance of the Violations of Invariance 

If the statistical tests of measurement invariance fail to be supported for one or more of 

the four models, it is useful to have a method with which to gauge the practical significance of 

                                                           
15

 Although MML is implemented in lavaan, missing data handling using MML is not available in the current 

version (0.5-17). Lavaan uses listwise deletion with MML. 
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the differences in measurement model parameters over time (i.e. whether the differences have 

practical implications, Kirk, 1996). The primary concern for researchers is whether the 

mean/variance change in the observed indicators between measurement occasions is due to true 

change in the mean/variance of the latent construct, or an artifact of the different values of the 

parameters in the measurement model across different measurement occasions. We propose that 

the practical significance of the differences in measurement model parameters over time can be 

evaluated through sensitivity analyses that compare the model-predicted probabilities of 

choosing specific response categories at specific measurement occasions, which were calculated 

based on measurement models with different levels of invariance constraints.  

Consider the equation for the mean structure of the latent responses at time t 

    
         , (6) 

where    
  is a     vector of the population means of the J latent responses at time t,    is a 

vector of the latent intercepts at time t,    is the factor loading vector at time t, and    is the 

latent common factor mean at time t. As mentioned earlier, all latent intercepts are fixed to zero 

to identify the model, so Equation (8) can be simplified to 

     
      . (7) 

Then consider the equation for the population variance-covariance matrix of the latent responses 

at time t: 

    
   

        
     , (8) 

where    is the common factor variance at time t, and     is the unique factor covariance matrix 

at time t. All the elements on the right-hand side of Equations (9) and (10),   ,   ,   , and    , 

can be obtained from the ordered-categorical CFA output, and thus the model-predicted means 

and variances of the latent responses at each time can be calculated. Assuming a normal 
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distribution of the latent responses, the model-predicted probabilities of choosing each response 

category on each indicator at each time point can be calculated based on the estimated thresholds 

(which are also obtained from the ordered-categorical CFA output). An R function (presented in 

Supplemental Material 1A) was developed to calculate the estimated probabilities of choosing 

each response category for each indicator.  An example of applying the R function is illustrated 

in the Empirical Illustration section and in Supplemental Material 1B.  

When loading invariance (Model 2) holds but threshold invariance (Model 3) does not, 

the researcher can use this R function to calculate the model-predicted probabilities based on the 

loading invariance model results and the model-predicted probabilities based on the threshold 

invariance model results. Differences in the model-predicted probabilities from these two models 

can serve as an estimate of the effect size of the violation of longitudinal measurement 

invariance at the threshold level. Likewise, when the baseline model (Model 1) holds but the 

loading invariance model (Model 2) does not, differences in the model-predicted probabilities 

from these two models can serve as an estimate of the effect size of the violation of longitudinal 

measurement invariance at the factor loading level. If the threshold invariance model (Model 3) 

holds, but the unique factor invariance model (Model 4) does not, differences in the model-

predicted probabilities from these two models can serve as an estimate of the effect size of the 

violation of longitudinal measurement invariance at the unique factor level. 

Empirical Illustration 

Background 

Many theories identify enculturation processes, or changes in Mexican American youths’ 

heritage cultural values, as an important mechanism through which later educational and 

psychosocial outcomes are influenced. However, few researchers have directly examined how 
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Mexican American youths’ heritage cultural values change over time. To examine such changes 

in heritage cultural values, it is important to first evaluate the measurement invariance of the 

measures of the heritage cultural values across time. Without an investigation of longitudinal 

measurement invariance, it is difficult to understand the degree to which changes over time in the 

observed scores of a measure of Mexican American youths’ heritage cultural values can be 

attributed to true changes in the latent constructs of interest. The current empirical illustration 

highlights the utility of the methods to evaluate both longitudinal measurement invariance of 

ordered-categorical variables and violations of such assumptions on real data drawn from an on-

going longitudinal study examining Mexican American youths and their families (Roosa et al., 

2008). 

Sample 

The data used in this illustration come from the first four measurement occasions (5
th

, 7
th

, 

10
th

, and 12
th

 grades) of an on-going longitudinal study examining the changes in cultural values, 

contexts, and mental health problems of Mexican American youths and their families (Roosa et 

al., 2008). The analyses were based on a sample of 749 Mexican American youths.  

Measures 

Our empirical illustration will focus on one of the subscales of the Mexican American 

Cultural Values Scale (MACS; Knight et al., 2010), familism obligations, which was measured 

by five indicators. Youths were instructed to indicate their degree of agreement with each 

indicator by responding to a 5-point Likert-type scale (1 = not at all to 5 = very much).  

Sparse Data Problem 

In this sample, Mexican American youth typically endorsed high levels on each indicator 

on the familism obligations subscale. One indicator reads, “If a relative is having a hard time 
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financially, one should help him or her out if possible.” At Time 1, only one of 749 youths 

responded 1 (not at all), and only 14 responded 2 (a little), with the rest of the youths responding 

3 (somewhat) or higher. At Time 3, no youth responded 1, and only four responded 2. As 

mentioned above, the thresholds that statistical software packages recognize are based on the 

observed response categories at each occasion. When different numbers of categories are 

observed at each measurement point (i.e., the number of categories C +1 changes over time), 

problems are created in specifying invariance constraints on the threshold parameters. We 

merged categories 1 and 2 for all of the indicators. Each indicator in the familism obligations 

subscale then had four observed response categories at each of the four measurement occasions, 

making specification of equality constraints on the threshold parameters straightforward.  

Analyses 

Item responses were rescaled from (1 or 2 collapsed), 3, 4, and 5 to 0, 1, 2, and 3, 

respectively, so that the lowest response category was zero in accordance with the notation we 

have used in this paper. The code used to test longitudinal baseline, loading invariance, threshold 

invariance, and unique factor invariance models of familism obligations is presented in 

Supplemental Materials 2A – 2D (using DWLS
16

 in Mplus), 3A – 3D (using DWLS in lavaan), 

and 4A – 4D (using ML in OpenMx), respectively. The corresponding factors and the unique 

factor scores for each indicator were allowed to correlate across measurement occasions. The 

constraints for scaling purposes described earlier were imposed. Specific issues regarding the 

choice of thresholds to be constrained, the choice of marker variables, and the calculation of CFI 

are discussed below. 

                                                           
16

 The ULS estimator with robust correction in Mplus failed to produce converged and proper solutions for the 

baseline, loading invariance, and threshold invariance models in this data set. The Mplus code using the ULS 

estimator with robust correction is the same with the Mplus code using the DWLS estimator with robust correction 

with one exception: The estimator is ULSMV instead of WLSMV.  
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Choosing the thresholds to be constrained for model identification. As discussed, the 

model identification strategy requires that one threshold per indicator and a second threshold for 

the marker variable be constrained to be equal across measurement occasions to identify the 

latent responses. Note that this strategy makes the assumption that the constrained thresholds are 

invariant in the population. If a chosen threshold is not invariant in the population, then the 

equality constraint placed on this chosen threshold might result in a misfit of the model to the 

data. A true violation of measurement invariance at the threshold level can mistakenly lead to the 

conclusion that the violation is at the factor loading level due to a poor selection of the thresholds 

to constrain for the identification of the latent responses. A modification index can be calculated 

for each constrained parameter in the loading invariance model, which can provide useful 

information with which to diagnose this problem. In this context, if the loading invariance model 

is rejected, and if the following examination of the modification indices reveals a constrained 

threshold with a high modification index, then constraining the equality of a different threshold 

over time should be considered for model identification (Yoon & Millsap, 2007). Since estimates 

of thresholds from categories with sparse data tend to be less stable, constraining such thresholds 

to identify the model typically is not a good choice.  

Choosing the marker variable. A marker variable should have a meaningful metric, or be 

an indicator of the latent common factor with a high factor loading. For evaluating longitudinal 

measurement invariance, it is crucial to choose a marker variable whose loading is invariant at all 

occasions
17

. The model identification strategy requires that two of the thresholds for the marker 

variable be constrained to be invariant across measurement occasions. Therefore, the marker 

                                                           
17

 If loading invariance does not hold for any one indicator so that no appropriate marker variable exists, then the 

researcher can conclude that loading invariance does not hold. 
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variable should not only have an invariant factor loading across all measurement occasions, but 

also have at least two invariant thresholds
18

.  

Caution in calculation of CFI. As a relative fit index that assesses goodness of fit, CFI 

measures the improvement of model fit relative to a baseline (null) model (Bentler, 1990), which 

should be nested within the most restricted model of interest. In the continuous indicator case, 

the null model for testing longitudinal measurement invariance used by standard statistical 

packages to calculate the CFI (and other relative fit indices like the TLI, Tucker & Lewis, 1973) 

places no constraint on the mean structure or the unique factor structure, and becomes an 

inappropriate comparison model (cf. Widaman & Thompson, 2003; Wu, West, and Taylor, 

2009).  Supplemental Materials 5A and 5B adapt this work to the ordered-categorical indicator 

case, providing the Mplus and lavaan syntax for specifying an appropriate alternative null model 

for the test of longitudinal measurement invariance
19

. Supplemental Material 5C provides a SAS 

macro adapted from Wu et al. (2009) for calculating the corrected CFI. 

Calculating probabilities. Supplemental Material 1A contains an R function we created 

to calculate the estimated probabilities for endorsing each response category for each indicator. 

Supplemental Material 1B contains the R code for calculating the discrepancies in the estimated 

probabilities at each occasion between the loading and threshold invariance models. When 

loading invariance is retained but threshold invariance is rejected, discrepancies in the estimated 

probabilities between these two models can serve as an estimate of the magnitude of the effect of 

violating longitudinal measurement invariance at the threshold level. Likewise, when the 

baseline model holds but loading invariance does not (or when the threshold invariance model 
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 If no indicator has two threshold parameters that are invariant across time, then the researcher can conclude that 

threshold invariance does not hold. 
19

 In addition to constraining all the thresholds to be invariant across occasions, this alternative null model also 

constrains all unique variances at all measurement occasions to be 1.0 and all within-wave and lagged unique factor 

covariances to zero. Thus, this null model is also appropriate for the unique variance invariance model. 
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holds but the unique factor invariance model does not), differences in the predicted probabilities 

between these two models can serve as an estimate of the effect size of the violation of 

longitudinal measurement invariance at the factor loading level (or the unique factor level). 

The R function in Supplemental Material 1A calculates the model predicted probabilities 

of endorsing each response category on each indicator at each measurement occasion, based on 

the assumption of normal distributions of the latent responses underlying the ordered-categorical 

measures, and the following parameter estimates from a one-factor ordered-categorical CFA 

model: 1) factor loadings; 2) latent common factor means; 3) latent common factor variances; 4) 

unique factor variances; and 5) thresholds.  This R function has several restrictions: 1) The 

number of indicators and 2) the number of response categories for each indicator must be the 

same across measurement occasions; 3) the response categories of the indicators are scaled such 

that the lowest response category is 0; and 4) unique factors within a measurement occasion are 

uncorrelated. These restrictions are typically met.  

Results 

Table 2 presents the results from the longitudinal measurement invariance tests for the 

familism obligation subscale based on Mplus output using DWLS
20

. The baseline model (Model 

1) showed adequate fit. The CFI and RMSEA values for the loading invariance model (Model 2) 

also suggested adequate fit, and the DIFFTEST indicated that adding the loading invariance 

constraints did not significantly worsen the model fit when compared to the baseline model. The 

DIFFTEST comparing the threshold invariance model (Model 3) to the loading invariance model 

(Model 2), however, indicated that the threshold invariance model fit the data significantly worse 

than the loading invariance model. Given that the threshold invariance model (Model 3) did not 

                                                           
20

 Model solutions obtained using DWLS in Mplus, DWLS in lavaan, and ML in OpenMx were similar for our 

analyses of this data set of N = 749. 
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hold, the unique factor invariance model (Model 4) was not tested for this data set and a 

sensitivity analysis of the practical significance of the failure of threshold invariance was 

conducted (see below). However, if the threshold invariance model were to hold, the unique 

factor invariance model needs to be tested. Of importance, with ordered-categorical indicators 

longitudinal unique factor invariance is needed to attribute changes in the means of the observed 

ordered-categorical indicators solely to changes in the latent common factor. 

As noted earlier, the Mplus DIFFTEST results from ordered-categorical CFA models 

using DWLS may exhibit inflated Type 1 error rates (Sass et al., 2014), thus it is important to 

also examine local fit indices, such as modification indices. Examination of modification indices 

suggested that constraining the thresholds of some indicators to be invariant across measurement 

occasions was problematic. Indicators V1, V2, and V5 for familial obligation did not appear to 

have invariant thresholds across time, with Times 1 and 3 different from Times 2 and 4. 

However, these results do not directly inform us about the magnitude (practical significance) of 

the violation of measurement invariance. We therefore conducted a sensitivity analysis to 

examine the model-based predicted probabilities of choosing each response for the familism 

obligations subscale, calculated using the R programs in Supplemental Materials 1A and 1B.  

Tables 3 and 4 present the predicted probabilities of choosing each response category for 

each indicator of youth reported familism obligation at each measurement occasion, based on the 

retained loading invariance model (Model 2) and the rejected threshold invariance model (Model 

3), respectively. Table 5 presents the discrepancies in the predicted probabilities between the 

threshold and loading invariance models. One indicator for familism obligations, “Parents should 

be willing to make great sacrifices to make sure their children have a better life”, (V5) had the 

largest discrepancies in predicted probabilities between the retained loading invariance model 
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(Model 2) and the rejected threshold invariance model (Model 3) at Time 3 (V5T3). The 

predicted probability of endorsing the response category “Very much agree” was estimated to be 

0.490 in the accepted loading invariance model, but 0.381 when thresholds were also constrained 

to be invariant over time. The violation of threshold invariance led to differences in the predicted 

probabilities of choosing the response categories, with the greatest difference being -0.109 

(=0.381-0.490). Given that our illustrative example is based on a sample size of 749 youths, 

discrepancies in the estimated probabilities that are small (e.g., < .05) may represent relatively 

few individuals in the sample (e.g., a .04 discrepancy in the estimated probabilities represents 

about 30 people out of 749), and the researcher might decide to ignore such discrepancies. For 

the familism obligations subscale which reached loading invariance but failed to achieve 

threshold invariance, adding threshold invariance constraints led to material differences in the 

estimated probabilities at Times 1 and 4 for V2, and at Time 3 for V5. Given the nature of this 

illustrative data set, it is possible that important changes in the nature of the constructs occurred 

between Time 1 (5
th

 grade) and Time 2 (7
th

 grade). Missing data. In the present longitudinal data 

set, missing data (0%, 5.2%, 15.0%, and 19.3% at Times 1, 2, 3, and 4, respectively) were 

primarily due to participant attrition. We reported in Tables 2-5 results based on the default 

Mplus procedure to estimate the ordered-categorical CFA models using DWLS, which makes the 

strong MCAR assumption and uses pairwise deletion (Asparouhov & Muthén, 2010b; Muthén & 

Muthén, 1998-2012).  We performed additional analyses in which we identified potential 

auxiliary variables that were expected to be related to attrition (e.g., Time 1 mother employment 

status, youth gender, youth nativity [Mexico-born versus US-born], Time 1 self-identified 

ethnicity for youth [Mexican versus Mexican American], and Time 1 self-identified ethnicity for 

mother). We included these variables in the ordered-categorical CFA models for testing 
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longitudinal measurement invariance using WLSMV in Mplus. Results of these additional 

analyses did not materially change the parameter estimates of the initial investigation of 

longitudinal measurement invariance without auxiliary variables, with most differences 

occurring at the third decimal place. These additional analyses suggested that the default 

approach to addressing missing data using DWLS with robust correction in Mplus was likely not 

problematic in the present illustration. We report the uncorrected analyses, which also illustrate 

the calculation of corrected CFI values that are not influenced by auxiliary variables.  

Discussion 

Given the importance of longitudinal studies in understanding development, it is 

important to establish measurement invariance of key constructs. The structure of important 

constructs, such as abilities, personality traits, and psychopathology may change during 

childhood, adolescence, and adulthood. When the measures of constructs of interest are not 

invariant over time, any apparent change may reflect change in what is being measured rather 

than in the level of the latent construct of interest. Methods of testing for measurement 

invariance allow for the examination of this issue. CFA-based methods for testing measurement 

invariance for constructs measured with continuous indicators have been extensively developed 

for both cross sectional (Meredith, 1993; Widaman & Reise, 1997) and longitudinal data 

structures (e.g., Khoo et al., 2006; Meredith & Horn, 2001). However, these approaches are not 

optimal when ordered-categorical indicators are collected. Available evidence from simulation 

studies (e.g., Rhemtulla et al., 2012) suggests that the traditional approach of treating ordered-

categorical indicators as continuous using standard procedures of testing measurement invariance 

may result in suboptimal parameter estimates, especially with a small number of response 

categories or skewed distributions of observed responses due to asymmetric threshold spacing.  
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The approach presented here builds on key foundational work on testing measurement 

invariance.  For the case of testing measurement invariance between different groups (e.g., 

gender; language), Meredith (1993) and Widaman and Reise (1997) developed the basic set of 

hierarchical models, identification constraints, testing procedures, and the interpretation of the 

models. Meredith and Horn (2001) modified the specification originally developed for models 

for cross-sectional data to address the over-time covariance of the latent common and unique 

factors that characterize continuous longitudinal data.  Finally, Millsap and Tein (2004) 

developed an appropriate specification that permitted the identification and testing of models for 

testing measurement invariance between different groups with ordered-categorical data. We 

drew on this work, combining the earlier insights to adapt existing models of measurement 

invariance to be appropriate for use with longitudinal ordered-categorical data.  Our goal was to 

develop a hierarchical series of model tests that paralleled as closely as possible those used in 

tests of measurement invariance with continuous variables. We also wanted to highlight many of 

the subtle issues that arise in implementing these tests of measurement invariance in three 

commonly used statistical software packages (lavaan, Mplus, and OpenMx). 

In an earlier section we presented the specification and interpretation of four longitudinal 

measurement invariance models for ordered-categorical indicators that parallel the configural, 

weak, strong, and strict invariance models for continuous data. The baseline model for ordered-

categorical data closely parallels the configural invariance model for longitudinal measurement 

models with continuous data in most respects (cf. Widaman & Reise, 1997). The loading 

invariance model also closely parallels the weak invariance model, but includes an interesting 

unique property: Changes over time in the expected means of the continuous latent responses are 

entirely attributable to changes in the latent common factor over time. Note however that the 
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continuous latent responses are not measured indicators, and they are inferred from the ordered-

categorical indicators based on distributional assumptions. In the loading invariance model, 

changes in the means of the measured ordered-categorical indicators cannot be solely attributed 

to changes in the latent common factor. The threshold invariance model also parallels the strong 

invariance model in many aspects, but its interpretation differs in an important way.  Unlike in 

the continuous case, having invariant factor loadings and invariant thresholds does not imply that 

changes in the means of the measured ordered-categorical indicators can be solely attributed to 

changes in the latent common factor (see Appendix A). To achieve this, a higher level of 

invariance termed unique factor invariance must be reached.  The unique factor variances (which 

are equal to 1.0 in this model) and any non-zero within-wave unique factor covariances must also 

be invariant over time (see Appendix A). In this case, changes over time in the expected means, 

variances, and within-wave covariances of the continuous latent responses are entirely 

attributable to changes in the latent common factor over time, paralleling the strict invariance 

model with continuous measured variables.  Moreover, changes in the within-wave 

characteristics of the measured ordered-categorical indicators over time are entirely attributable 

to changes in the latent common factor over time. Even if unique factor invariance is achieved, 

the expected lagged covariances of the continuous latent responses over time will not necessarily 

be invariant.  A model with the further restriction that the lagged unique factor covariances are 

equal over time must be met to achieve this property.   

We also considered three important practical issues in the evaluation of longitudinal 

measurement invariance. Sparse data, particularly in some of the high or low categories, can 

occur as children mature leading to complexities in equating thresholds. Missing data occur as 

participants drop out of longitudinal studies. The need to achieve a more stringent level of 
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measurement invariance (unique factor invariance) in order to compare the observed means over 

time places a strict requirement that will often not be met in practice. We developed a sensitivity 

analysis that allows researchers to assess the practical significance of the failure to achieve more 

advanced levels of measurement invariance.  

Of practical importance, we considered three major statistical software packages that can 

be used to test measurement invariance for ordered-categorical indicators. Special attention was 

paid to available estimators and treatment of missing data within each package. WLS and ML are 

theoretically the estimators of choice given very large sample sizes (N > 1000) and a limited 

number of observed ordered-categorical variables.  Some current implementations of MML do 

not permit easy estimation of the models necessary for testing longitudinal measurement 

invariance because correlated unique factors cannot be directly specified. Alternative 

specifications of the measurement invariance models must be used. ULS and DWLS appear to 

have good properties with more moderate sample sizes (200 < N < 1000), but default treatment 

of missing data is not optimal, with multiple imputation providing less biased tests and improved 

statistical power.  Table 1 summarizes the features available in lavaan, Mplus, and OpenMx. 

Testing measurement invariance using ordered-categorical CFA models is dependent on 

some key distributional assumptions. Ordered-categorical CFA models assume that the 

continuous latent responses underlying the observed ordered-categorical indicators are 

multivariate-normally distributed (Muthén, 1984), and the relationships estimated by these 

models are between the latent, multivariate-normally distributed responses (West et al., 1995). If 

one or more of the true latent variables (e.g., depression) follows a distribution that is markedly 

non-normal, the parameter estimates and standard errors from ordered-categorical CFA models 

may be in a transformed metric (of normal latent distributions) that is less meaningful to 
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researchers than those expressed in the original metric (of non-normal distributions). On a 

positive note, some simulation studies suggest that the biases in the estimated factor loadings 

(differences between estimates in the transformed metric versus the population values in the 

original metric) when latent responses are non-normal tend to be trivial when robust WLS 

estimation (e.g., DWLS, ULS) is used, especially with larger sample sizes (e.g., 500 or greater; 

Flora & Curran, 2004; Rhemtulla et al., 2012).  

Limitations and Implications for Future Research 

Given that the high standard of the unique factor invariance must be satisfied to interpret 

differences in the means of the observed ordered-categorical indicators, we proposed and 

illustrated a sensitivity analysis based on the model-predicted probabilities to gauge the practical 

significance of the violations of longitudinal measurement invariance. Simulation studies are 

needed to examine whether this analysis is equally sensitive to violations of invariance of factor 

loadings, thresholds, and unique factor variances.  Other approaches to sensitivity analysis also 

need to be developed. Drawing on studies of growth models with continuous indicators (see Kim 

& Willson, 2014a; 2014b; Leite, 2007; Wirth, 2008), approaches can be developed for ordered-

categorical data that examine effects of inappropriate measurement invariance constraints on 

estimates of key growth parameters and their standard errors. Such sensitivity analyses assume 

that the form of the latent growth model has been correctly specified. Further research is needed 

to investigate the performance of such potential sensitivity analysis for ordered-categorical 

indicators, including the influence of sample size, number of indicators, and improper 

specification of the growth curve model.  

In the test of longitudinal measurement invariance with more than two measurement 

waves, additional constraints potentially could be put on the stability of the corresponding lagged 
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covariances of the unique factors across time, which could be considered an additional (higher) 

level of longitudinal measurement invariance beyond strict invariance. For ordered-categorical 

indicators, the lagged unique factor covariances influence the lagged covariances of the 

continuous latent responses over time. They also influence the probability that an observed 

ordered-categorical indicator takes on specific values at two measurement occasions (see 

Appendix A). The effect of lagged covariances of the unique factors over time is an area that 

could be examined as part of the test of longitudinal measurement invariance in future research.  

Appropriate treatment of missing data is needed to obtain accurate model fit statistics and 

nested model tests. Although multiple imputation is well understood in the context of ML 

estimation, less is known about its performance in conjunction with DWLS or ULS estimation 

that is necessary at smaller sample sizes. To our knowledge, no published article has addressed 

pooling the overall model fit statistics like CFI, RMSEA, and the    goodness-of-fit statistic 

across multiple imputed data sets, which is critical to the evaluation of measurement invariance. 

A procedure proposed by Meng and Rubin (1992) to combine likelihood ratio test statistics 

obtained using maximum likelihood estimation across multiply imputed data sets might be 

extended to combining nested model test statistics obtained using DWLS or ULS with ordered-

categorical indicators, but further study is needed to examine its performance. Alternatively, Li, 

Raghunathan, and Rubin (1991) proposed a procedure in the context of ML estimation for 

pooling the multivariate-Wald test for a set of parameters across imputed data sets, which may be 

used to test the longitudinal invariance of parameters (indicated by non-significance of changes 

in parameters). However, further investigation is needed to evaluate how well these procedures 

work with ordered-categorical data using DWLS or ULS estimation. 
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Finally, no satisfactory estimation methods presently exist for data sets with fewer than 

200 cases when assessing measurement invariance in longitudinal data with ordered-categorical 

measures.  Bayesian estimation methods offer some promise here, although they will require 

information (e.g., prior research) to specify reasonable values for the prior distributions.  Once 

again, evaluation of this promise will require further investigation. 

Concluding Remarks 

 In this didactic article we have presented a full summary of the theoretical issues in 

testing longitudinal measurement invariance with ordered-categorical variables including model 

specification and testing. We have also addressed many of the common practical problems that 

arise in testing measurement invariance in longitudinal research and provided comparisons of 

three popular statistical programs for estimating these models. Finally, we have presented 

computer scripts in the supplemental materials for estimating the necessary models and programs 

and macros for computing proper estimates of the CFI and for gauging the practical effects of 

violations of measurement invariance. While challenges remain and relatively large sample sizes 

are required, we have provided applied researchers with the necessary foundation and the 

practical tools to conduct these analyses in their own research.   
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