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The complex organization of connectivity in the human brain is incompletely understood. Recently, topological measures based on graph
theory have provided a new approach to quantify large-scale cortical networks. These methods have been applied to anatomical connec-
tivity data on nonhuman species, and cortical networks have been shown to have small-world topology, associated with high local and
global efficiency of information transfer. Anatomical networks derived from cortical thickness measurements have shown the same
organizational properties of the healthy human brain, consistent with similar results reported in functional networks derived from
resting state functional magnetic resonance imaging (MRI) and magnetoencephalographic data. Here we show, using anatomical net-
works derived from analysis of inter-regional covariation of gray matter volume in MRI data on 259 healthy volunteers, that classical
divisions of cortex (multimodal, unimodal, and transmodal) have some distinct topological attributes. Although all cortical divisions
shared nonrandom properties of small-worldness and efficient wiring (short mean Euclidean distance between connected regions), the
multimodal network had a hierarchical organization, dominated by frontal hubs with low clustering, whereas the transmodal network
was assortative. Moreover, in a sample of 203 people with schizophrenia, multimodal network organization was abnormal, as indicated
by reduced hierarchy, the loss of frontal and the emergence of nonfrontal hubs, and increased connection distance. We propose that the
topological differences between divisions of normal cortex may represent the outcome of different growth processes for multimodal and
transmodal networks and that neurodevelopmental abnormalities in schizophrenia specifically impact multimodal cortical
organization.
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Introduction
A concise quantification of the extraordinary complexity of

the extensively interconnected human brain has long been elusive
if not intractable. However, topological measures based on graph
theory (Watts and Strogatz, 1998; Latora and Marchiori, 2001;
Newman, 2002) have recently provided new approaches to the
investigation of complex networks. Following the seminal de-
scriptions of cortical networks, based on tract tracing data that
directly define anatomical connections between regions (Young,
1992), graph theoretical metrics were applied to quantification of
nonhuman cortical connectivity matrices (Hilgetag et al., 2000;
Stephan et al., 2000; Sporns et al., 2000) [for review, see Bassett

and Bullmore (2006)]. Thus, it has been established that anatom-
ical networks in both the cat and the macaque monkey have the
typical “small-world” combination of high clustering of local
connections with a short minimum path length between any pair
of regions (Hilgetag et al., 2000; Sporns et al., 2002; Sakata et al.,
2005); they also tend to minimize wiring length (Chen et al.,
2006).

Comparable information on human anatomical networks, for
which tract tracing data are not available, can be inferred from
magnetic resonance imaging (MRI) data. For example, cortical
thickness measurements are known to be strongly correlated be-
tween regions that are axonally connected (Lerch et al., 2006),
perhaps because connectivity confers a mutually trophic effect on
growth of connected regions (Wright et al., 1999; Pezawas et al.,
2005). Thus, a whole-brain anatomical network can be abstracted
from human MRI data by compiling a matrix of correlations in
cortical thickness (or volume) between all pairs of regions in
some parcellation scheme and then applying a threshold to create
a graph representing strong (suprathreshold) correlations as con-
nections between regions (see Fig. 1). This approach was used
previously to confirm that human neuroanatomical networks
also have small-world properties, that the most highly connected
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regions, or “hubs,” of the network tend to be areas of association
cortex, and that the network has a modular community structure
(Chen et al., 2008; He et al., 2008). Importantly, many of these
results are consistent with recent graph theoretical analyses of
human brain functional networks in a no-task or “resting” state
(Salvador et al., 2005; Achard et al., 2006; Bassett et al., 2006;
Achard and Bullmore, 2007), indicating a degree of topological
isomorphism between whole-brain structural and functional
networks.

The classical divisions of cerebral cortex (unimodal, multimo-
dal, and transmodal), originally defined by regional cytoarchitec-
tonic characteristics, are known to support very different func-
tions (Mesulam, 1998). Although it seems reasonable to expect
that these varied functions are reflected in division-specific orga-
nization of anatomical connections between regions, no data are
currently available to test this hypothesis. One of the principal
goals of this study was therefore to assess the commonalities and
differences in network organization of the principal human cor-
tical divisions. To do this, we used several topological measures
(including hierarchy and degree correlation, as formally defined
in Materials and Methods) and an estimate of the spatial separa-
tion between connected regional nodes (connection distance).

Moreover, if topological measures of anatomical network or-
ganization are functionally and/or pathophysiologically relevant,
we might expect them to be impacted by neuropsychiatric disor-
ders, such as schizophrenia, that are associated with abnormal
cognitive function and measures suggestive of disordered ana-
tomical connectivity (Volkow et al., 1988; Weinberger et al.,
1992; Bullmore et al., 1997; Meyer-Lindenberg et al., 2001). An-
other major goal of this study was therefore to investigate
whether topological and distance metrics of anatomical network
organization were significantly abnormal in people with
schizophrenia.

Materials and Methods
Sample
Two hundred three patients with schizophrenia and related spectrum
disorders (diagnosed according to Diagnostic and Statistical Manual of
Mental Disorders IV criteria) and 259 healthy volunteers were recruited as
part of the Clinical Brain Disorders Branch/National Institute of Mental
Health Genetic Study of Schizophrenia [National Institutes of Health
Study Grant NCT 00001486, Daniel R. Weinberger, principal investiga-
tor] (supplemental Table 1 A–D, available at www.jneurosci.org as sup-
plemental material). Additional details of the sampling protocol and full
exclusion criteria are described by Egan et al. (2000). In the patient
group, 81% had a diagnosis of schizophrenia, 12% had schizoaffective
disorder, and 7% had psychosis not otherwise specified.

The two groups were matched for age, but the schizophrenia group
included more males and had lower mean intelligence quotient and years
of education than the volunteer group. All the patients were receiving
antipsychotic drugs and other medication at the time of study; none of
the healthy volunteers were taking psychoactive medication (Egan et al.,
2000).

Acquisition and preprocessing of MRI data
A high-resolution magnetic resonance image of brain anatomy was ac-
quired from each participant using a GE Signa system (GE Healthcare)
operating at 1.5 T at the National Institute of Mental Health. A three-
dimensional volume of T1-weighted data, comprising 124 sections in the
sagittal plane, was acquired using a spoiled gradient recall sequence with
the following parameters: repetition time, 24 ms; echo time, 5 ms; num-
ber of excitations, 1; flip angle, 45°; matrix size, 256 � 256; field of view,
24 � 24 cm; voxel resolution (in x, y, z dimensions), 0.975 � 0.975 � 1.5
mm 3. Participants were scanned in random order with respect to diag-
nosis. Quality control procedures were as described previously (Egan et
al., 2000).

Overall, the preprocessing pipeline included the following steps: inho-
mogeneity correction; stripping of skull and other noncerebral tissues;
probabilistic tissue classification of gray matter, white matter, and CSF
density at each voxel; nonlinear normalization of each image with a
custom T1-weighted template image [based on a previous sample of 171
healthy volunteers scanned using the same system and sequence (Peza-
was et al., 2004)]; modulation of the gray matter densities in the normal-
ized images by the determinant of the Jacobian of the normalization
function to provide an estimate of gray matter volume at each voxel
(Good et al., 2001). These operations were implemented using
SPM2 software (Statistical Parametric Mapping, http://www.
fil.ion.ucl.ac.uk/spm/).

We then estimated the total gray matter volume for each of n � 104
brain regions in each participant. The 104 regions comprised 48 cortical
regions in each hemisphere, corresponding approximately to classical
Brodmann areas (BAs), as well as the amygdala, the hippocampus, the
striatum, and the thalamus bilaterally. Regions were defined anatomi-
cally by previous template images (Pick-Atlas, Advanced Neuroscience
Imaging Research Core, http://www.fmri.wfubmc.edu; MRIcro, http://
www.sph.s.c.edu/comd/rorden/mricro.html) that were registered with
the gray matter volume maps by an affine registration. Cortical areas
were further categorized into transmodal T, unimodal U, or multimodal
M divisions using previously published criteria (Mesulam, 1998). The
transmodal division comprised 42 regions, the unimodal division com-
prised 28 regions, and the multimodal division comprised 32 regions
(Table 1).

We used regression to model the effects of age (linear, quadratic, and
cubic functions), gender, and total gray matter volume on the full set of
individual measurements at each region. The residuals of this regression,
or corrected gray matter volume estimates, therefore represent regional
volumes corrected for age, gender, and total gray matter volume and
were the substrate for additional analysis.

Inter-regional correlations and anatomical networks
We used partial correlation as the metric of association between cor-
rected gray matter volume estimates for each possible pair of regions in

Table 1. Areas allocated to transmodal, unimodal, and multimodal systems

Transmodal Unimodal Multimodal

ObF (11) PSs (1) FEF (8)
ObF (12) PSs (2) DLpF (9)
Ins (13) PSs (3) FPo (10)
Ins (14) PrM (4) V3 (19)
Ins (15) SsA (5) InT (20)
Ins (16) SuM (6) MiT (21)
VPC (23) SsA (7) SuT (22)
VAC (24) FEF (8) PHg (36)
SbG (25) PVi (17) InT (37)
EcS (26) ViA (18) AnG (39)
RPH (27) PrA (41) SmG (40)
PER (28) AuA (42) SbC (43)
ReS (29) SbC (43) pTr (44)
Cin (30) pOp (45)
DPC (31) DLpF (46)
DAC (32) InpF (47)
ACC (33)
AER (34)
PeR (35)
TPo (38)
RSb (48)

Regional categorizations were based on previous work (Mesulam, 1998). Brodmann’s areas are shown in parenthe-
ses. ObF, Orbitofrontal; Ins, insula; VPC, ventral posterior cingulate; VAC, ventral anterior cingulate; SbG, subgenual;
EcS, ectosplenial; RPH, rostral parahippocampus; PER, posterior entorhinal; ReS, retrosplenial; Cin, cingulate; DPC,
dorsal posterior cingulate; DAC, dorsal anterior cingulate; ACC, anterior cingulate; AER, anterior entorhinal; PeR,
perirhinal; TPo, temporopolar; RSb, retrosubicular; PSs, primary somatosensory; PrM, primary motor; SsA, somato-
sensory association; SuM, supplementary motor; FEF, frontal eye field; PVi, primary visual; ViA, visual association;
PrA, primary auditory; AuA, auditory association; SbC, subcentral area; DLpF, dorsolateral prefrontal cortex; FPo,
frontopolar; InT, inferior temporal: MiT, middle temporal; SuT, superior temporal; PHg, parahippocampal gyrus; InT,
inferior temporal; AnG, angular gyrus; SmG, supramarginal gyrus; SbC, subcentral area; pTr, pars triangularis; pOp,
pars opercularis; InpF, inferior prefrontal.
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each group separately. For each pair of regions i and j, we computed the
correlation in corrected gray matter volume over subjects �i,j after re-
moving the effects of all other regions m � (i, j). This resulted in a pair of
{104 � 104} partial correlation matrices, each within-group matrix rep-
resenting the specific associations in corrected gray matter volume be-
tween each of the 5356 possible pairs of regions.

From each partial correlation matrix R, we derived a binary adjacency
matrix A, the ai,j elements of which are zero if �|i,j| � � and unity if �|i,j|

� �, where 0 � � � 1 is an arbitrary threshold. The adjacency matrix can
in turn be represented as an undirected graph G, where a line or edge is
drawn between two regional nodes if the partial correlation between
them exceeds the threshold.

Rather than restricting our analysis to a set of graphs obtained by
applying a single threshold value to the partial correlation matrices, we
systematically explored the properties of the graphs over a range of
thresholds. When �3 1, the number of edges in the graph E will mono-
tonically decrease toward its minimum value (0); when �3 0, the num-
ber of edges will monotonically increase toward its maximum value
(Emax � 5356). The number of edges in a graph, divided by the maximum
possible number of edges, can be used as a simple measure of the
threshold-dependent cost of the graph (Latora and Marchiori, 2001;
Achard and Bullmore, 2007): 0 � K(�) � E(�)/Emax � 1. Thus, it is
possible to represent various measures of network organization within
each group as a function of cost and to compare topological and anatom-
ical properties of the graphs between groups while ensuring that the
number of edges is the same for each group over the range of thresholds
considered (Bollobás, 1985).

Overview of network analysis
We investigated network architecture at global, divisional, and regional
scales. Analysis of cortical divisions, by definition, only included cortical
regions, whereas analysis at global and regional scales also included sub-
cortical regions. Global network architecture was quantified in terms of
small-worldness and degree distribution of the whole-brain network.
Divisional architecture was characterized in terms of small-worldness,
degree distribution, hierarchy (�), degree correlation (r), and connection
distance (d). Regional properties were described in terms of degree (k),
clustering ( C), and several measures of centrality (e.g., betweenness cen-
trality, Bc). The computation of these metrics requires binary graphs, or
adjacency matrices, obtained by thresholding the partial correlation ma-
trices. Thus, we first established the range of thresholds that yielded fully
connected, small-world graphs. We then averaged the divisional and
regional metrics over this small-world regime and compared the results,
when appropriate, to null distributions obtained from randomly con-
nected graphs. Furthermore, using permutation tests, we looked for sig-
nificant differences in divisional and regional metrics between the nor-
mal and schizophrenic groups.

Topological and distance metrics
Here we provide brief, formal definitions of each of the metrics used in
this study.

Degree, path length, clustering, and small-worldness. The degree of a
node, k, is simply the number of edges that connect it to the rest of the
network: highly connected nodes have large degree. The degree distribu-
tion represents the probability of a given degree over all nodes in the
network.

The minimum path length between two nodes in a graph, Li,j, is the
smallest number of edges that must be traversed to make a connection
between them. If Li,j � 1, the two nodes are nearest neighbors, directly
connected to each other by a single edge. The characteristic path length,
or average of Li,j over all possible pairs, is thus a measure of the global
connectivity of the network.

The clustering coefficient, C, is defined as follows:

C �
1

NGi�NCi � 1� �
j,k�Gi

1

Lj,k
,

where Gi is the subgraph of nodes and edges connected to node i, and Lj,k

is the minimum path length between nodes j and k in the subgraph. Thus,
clustering is a measure of the local connectivity of a regional node.

Small-worldness, �, of a complex network is defined as high clustering
C compared with the clustering of a comparable random graph CR but
characteristic path length approximately the same as in a comparable
random graph LR (Watts and Strogatz, 1998). This can be summarized by

the scalar � �
C/CR

L/LR
(Humphries et al., 2006), which will be greater than

unity for a small-world network. We estimated the small-worldness of
the whole-brain network at each cost by sampling 100 random graphs
(with the same number of nodes and degree distribution as the brain
networks) and using the resulting estimates of LR and CR to estimate the
distribution of �. We defined the upper limit of the small-world regime
as the highest cost (K � 0.25) at which the minimum value of � was
greater than 1.

Hierarchy. The hierarchical structure of the networks was quantified
by the � coefficient, which is a parameter of the power-law relationship
between clustering C and degree k of the nodes in the network (Ravasz
and Barabasí, 2003): C � k ��. We estimated � by fitting a linear regres-
sion line to the plot of log( C) versus log(k) for the network at a given cost.
To estimate hierarchy coefficients for the multimodal, unimodal, and
transmodal divisions of cortex, we used the same regression model but
fitted it separately to the regional data representative of each division. A
large positive value of � means that the hubs of the network have high
degree (total connectivity) but low clustering (local connectivity), indi-
cating that they are connected predominantly to nodes not otherwise
connected to each other.

Assortativity. The degree correlation, r, is a measure of the correlation
between the degree of a node and the mean degree of its nearest neighbors
(Newman, 2002). This parameter can be adapted to determine the assor-
tativity of subnetworks by considering only the subset of edges that con-
nect to any of the nodes within the subnetwork. A positive value of degree
correlation, r 	 0, indicates that nodes are likely to be connected to other
nodes with the same degree and therefore that the high degree nodes or
hubs of the network are likely to be connected to each other. This is
characteristic of an assortative network. If the degree correlation is neg-
ative, r � 0, this implies that the hubs of the network are not connected to
each other, and this is characteristic of a disassortative network.

Connection distance. The connection distance of an edge, di,j, was esti-
mated by the Euclidean distance between the centroids of the connected
regions i and j in standard stereotactic space. The mean connection dis-
tance, d, was defined as the average connection distance over all edges in
a network. Thus, connection distance differs from the other, topological
and dimensionless metrics we used in that it represents a spatial or topo-
graphic property of the network and has units of millimeters.

Centrality and identification of network hubs. Several different metrics
are available to identify the regional hubs of a network. As already noted,
high degree is one such criterion; however, various measures of centrality
have also been advocated for this purpose (Sporns et al., 2007). We used
four measures to identify regional hubs: degree k, betweenness Bc, close-
ness Cc, and eigenvector centrality Ec. A given region was defined as a hub
if its value for one or more of these measures was at least 2 SDs greater
than the mean over all regional nodes in the network.

The betweenness centrality for the ith region in a graph G is defined as
follows:

Bc�i� � �
j�m�i�G

� j,m�i�

� j,m
,

where �j,m is the number of shortest geodesic paths between regions j and
m, and �j,m(i) is the number of shortest geodesic paths between j and m,
which pass through node i.

The closeness centrality is defined as follows:

Cc�i� �
1

¥ j�GLi, j
,

where j denotes one of the nodes accessible from the index node i, and Li,j

is the shortest path between nodes i and j.
The eigenvector centrality of the ith node is the ith component of the
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eigenvector of the adjacency matrix A associated with the largest
eigenvalue.

Statistical analysis
We compared the observed values of hierarchy �, degree correlation r,
and connection distance d in cortical networks to their distributions in
comparable random graphs with the same number of nodes and degree
distributions. At each cost in the small-world regime, we sampled 1000
random graphs and estimated the mean and SD of each parameter so that
we could then calculate a Z-score for the corresponding parameter esti-
mated in the cortical network. For example, the Z-score for the hierarchy
coefficient of the multimodal network thresholded at arbitrary cost was
thus defined as follows:

Z��� �
�� � �R

SD��R�
,

where �R denotes the hierarchy coefficient of the comparable random
graph. Maximum Z-scores, and Z-scores averaged over all costs in the
small-world regime, i.e., 0.15 � K � 0.25, were used to summarize the
topological properties of the cortical networks compared with random
networks.

To investigate topological and distance parameter differences between
the healthy volunteers and the people with schizophrenia, we used a
permutation test. The regional gray matter volume estimates for each
participant were randomly reassigned to one of two groups comprising
the same number of subjects as the volunteer (259) or schizophrenia
(203) groups. The partial correlation matrix was then estimated and
thresholded; the graph parameters were calculated at each cost in the
small-world regime, and the between-group difference in all parameters
was calculated for each permutation. This procedure was repeated 5000

times to sample the permutation distributions of all parameter differ-
ences under the null hypothesis that observed topological differences
were not determined by true group membership. The one-tailed p value
was then calculated as the proportion of entries in the corresponding
permutation distribution that were greater than (or smaller than) the
observed between-group difference.

All topological and statistical operations were implemented using Sta-
tistica (version 6.0; StatSoft) or Matlab (version 2007a; MathWorks)
software. The networks in Figure 4 were created using Pajek software
(http://pajek.imfm.si/doku.php?id�download).

Results
Defining a small-world cost regime
The topological properties of the networks derived by threshold-
ing the matrix of inter-regional correlations in gray matter vol-
ume will depend on the choice of threshold value. If the threshold
is high and the number of edges is low, the network will be
sparsely connected and some regional nodes may be disconnect-
ed; if the threshold is low and the number of edges is high, the
network will be more densely connected but will also have a
random topology (Fig. 1). Our first effort was therefore to define
a range of thresholds that yielded fully connected networks with a
small-world topology. We found that networks were fully con-
nected when the cost of the network K, defined as the number of
edges divided by the maximum possible number of edges, was
	0.15. For each fully connected network, we calculated the
small-world scalar �, which provides a convenient summary of
the small-worldness of a network compared with equally sized
random graphs: if �		 1, the network in question is small-world.

Figure 1. Schematic of procedure to construct human whole-brain anatomical networks. Top row, Structural MR images (A) are segmented by a tissue classification algorithm to produce maps
of gray matter (B) that are then multiplied by a regionally parcellated template image (C) to estimate regional gray matter volume in each of 104 brain regions. The partial correlation of regional gray
matter volume is estimated for each possible pair of regions and compiled in a {104 � 104} inter-regional partial correlation matrix (D). Middle row, Various thresholds can be applied to generate
adjacency matrices of variable sparseness from the partial correlation matrix (E). Bottom row, The adjacency matrices are visualized as undirected graphs or networks by plotting each region as a
node in anatomical space (using the x and z coordinates of the regional centroid in Montreal Neurological Institute space) and drawing an edge between regions that have strongly correlated gray
matter densities (non-zero elements in the adjacency matrix) (F ). Results are shown for networks with costs in the range 0.25 � K � 0.05.
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As shown in Figure 2, we found that the sparsest networks were
clearly small-world, e.g., � was 	2 when only 5% of possible
connections were represented in the network (K � 0.05). How-
ever, as expected, when the connection cost was increased, the
value of � monotonically declined toward an asymptotic value of
1. For costs greater than K � 0.25, we found that � � 1.2, indi-
cating that the brain networks were becoming topologically in-
distinguishable from random graphs. Thus, we identified the
range of costs 0.15 � K � 0.25 as the regime associated with
small-world properties of sparse but fully connected brain ana-
tomical networks. All subsequent analysis focused on networks in
this regime.

Normal cortical network organization
The small-world properties of the healthy human cortical net-
work were consistent with previous reports (He et al., 2008).
Moreover, the cumulative degree distribution of the whole-brain
networks was found to follow an exponentially truncated power
law, which was also consistent with previous studies of both an-
atomical (He et al., 2008) and functional (Achard et al., 2006)
networks derived from (functional) MRI data (supplemental Fig.
1, available at www.jneurosci.org as supplemental material).

As shown in Table 2, regions of right premotor cortex (BA 6),
orbitofrontal cortex (BA 11), middle temporal cortex (BA 21),
retrosplenial (BA 29), dorsal lateral prefrontal cortex (BA 46),
and insula (BA 14), were identified as hubs of the normal network
by two of the four (degree or centrality) parameters considered;
left retrosplenial cortex was identified by three parameters, and

anterior cingulate cortex was identified as a hub by only one
parameter.

Network properties of normal cortical divisions
The multimodal network M was the only cortical division that
demonstrated a significant degree of hierarchical organization:
the mean hierarchy coefficient over all costs in the small-world
regime was �M � 0.16, and the maximum Z-score for the hierar-
chy coefficient of the multimodal network compared with ran-
dom networks was max(ZM(�)) � 2.09, p � 0.04. Unimodal U
and transmodal T cortical network hierarchy coefficients were
generally closer to 0 (�U � �0.06; �T � �0.14) and consistently
fell within the 80% confidence interval for the hierarchy coeffi-
cient of comparable random networks.

The transmodal network was the only cortical division that dem-
onstrated a significant degree of assortativity: the mean assortativity
over all costs in the small-world regime was rT � 0.048, and the
maximum Z-score for the assortativity of the transmodal network
compared with random networks was max(ZT(r)) � 1.93,
p � 0.027. Multimodal and unimodal networks had assortativity
coefficients closer to zero (rM � �0.015; rU � 0.019) and consis-
tently fell within the 80% confidence interval for assortativity of
comparable random networks.

Mean connection distance (d, mm) was greatest for multimo-
dal cortex (dM � 62), intermediate for unimodal cortex (dU �
59), and smallest for transmodal cortex (dT � 51). However,
connection distance was significantly smaller for all cortical net-

Figure 2. Organization of normal human brain anatomical networks in the small-world regime. A, Small-world metric, �, in the cost range 0.05� K �0.25 showing that the mean value of ��
1.2 when K � 0.25. B, Minimum degree k (red) and minimum clustering C (black) of the whole-brain networks as functions of cost showing that clustering or degree of some nodes is 0 when K �
0.15. C, Anatomical representation of a sparsely thresholded network showing regional nodes color coded according to their membership of classical cortical divisions: transmodal (red), unimodal
(green), and multimodal (blue). Z-scores for hierarchy coefficients (�; in D), degree correlation or assortativity (r; in E), and mean connection distance (d; in F ) for the three cortical networks as a
function of cost in the small-world regime; gray areas indicate the 80% confidence interval for the parameters estimated in comparable random graphs (�1.65 � Z � 1.65).
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works than for comparable random networks (zT � 4.54, p � 2 �
10�6; zU � 4.24, p � 1 � 10�5; zM � 4.13, p � 2 � 10�5).

In short, these results suggest that all cortical divisions share
the important organizational principle of tending to reduce wir-
ing costs (compared with random networks), but multimodal
cortex is differentiated by significantly nonrandom hierarchy and
transmodal cortex is differentiated by nonrandom assortativity
of network organization.

Cortical network organization in schizophrenia
The whole-brain anatomical networks constructed from MRI
data on people with schizophrenia also showed fully connected,
small-world properties (� 	 1) in the cost range 0.15 � K � 0.25.
The degree distribution of the schizophrenic network also fol-
lowed an exponentially truncated power law (supplemental Fig.
1, available at www.jneurosci.org as supplemental material).

However, as shown in Table 2, the hubs of the schizophrenic
network were qualitatively different from the hubs of the normal
network. For example, dorsolateral prefrontal cortex, which was
identified bilaterally as a hub in healthy volunteers, did not show
this property in patients. Instead, insula, thalamus, temporal
pole, pars opercularis (inferior frontal), inferior temporal, and
precentral cortex were identified as hubs by at least one parame-
ter in the patient group. Only one region (inferior temporal gy-
rus; BA 37) was consistently identified as a hub in the schizo-
phrenic network by all four centrality parameters.

In addition to its effects on global organization, we also con-

sidered the effects of schizophrenia on organization of each of the
three subdivisions of cortex: transmodal, unimodal, and multi-
modal. There were a number of differences between the groups in
organization of the multimodal cortical network. As shown in
Figure 3, the multimodal network was less hierarchical through-
out the small-world regime in people with schizophrenia, and
this difference was statistically significant (permutation test, p �
0.018). The between-group differences in hierarchical organiza-
tion of the multimodal cortical network were also visualized
graphically (Fig. 4). Finally, the mean connection distance was
significantly greater for the multimodal network in people with
schizophrenia (permutation test, p � 0.028).

All topological changes were specific to the multimodal net-
work because there were no significant differences between
groups in hierarchy, assortativity, or connection distance of
transmodal or unimodal networks.

We finally explored group differences in the organization of
the networks at a regional level by testing for a significant
between-group difference in the degree, clustering, and between-
ness centrality of each node separately (Fig. 3). The clustering
coefficient was the most sensitive measure of between-group dif-
ferences: 23 regional nodes showed significant differences in clus-
tering, mostly (78%) in the left hemisphere, and most (61%)
reflecting increased clustering in schizophrenia. The regions pre-
dominantly affected were in premotor, prefrontal, orbitofrontal,
inferior temporal, medial temporal, cingulate, and insular cortex.
Similar profiles of regional abnormality in the patients compared
with controls were identified in terms of degree and betweenness
centrality (Fig. 3).

Discussion
Properties of healthy human cortical networks
One of our main findings was that classical divisions of normal
human cortex shared some general principles of large-scale ana-
tomical organization but also differed in some important global
network properties.

All cortical networks (multimodal, unimodal, and trans-
modal) demonstrated connection costs significantly less than ex-
pected in comparable random graphs. This is compatible with
previous work highlighting the efficiency of (axonal) wiring in
nervous systems and consistent with the hypothesis, first sug-
gested by Durbin and Mitchison (1990), that minimization of
connection costs has been an important fitness criterion for evo-
lution of all major components of human brain (Chklovskii et al.,
2002; Chklovskii, 2004). All three networks also shared small-
world properties and exponentially truncated power-law degree
distributions (supplemental Fig. 1, available at www.jneurosci.
org as supplemental material), implying the existence in each
network of a subset of highly connected hub regions and repli-
cating previous findings in healthy human whole-brain networks
(He et al., 2008).

Small-worldness is an almost ubiquitous property of complex,
real-life networks, and, more specifically, it makes sense as a prin-
ciple of brain topology because it supports both modular and
distributed (high complexity) processing dynamics, which are
well recognized as complementary aspects of the computational
repertoire of the brain (Sporns et al., 2002; Bassett and Bullmore,
2006). A truncated power-law degree distribution is another
property that seems to be common to a wide variety of informa-
tion systems, including the Internet and World Wide Web, the
extent of truncation tending to be greater (the probability of a
very high degree hub being smaller) in physically embedded net-
works, such as the global air transportation network. Our obser-

Table 2. Regional hubs of the multimodal cortical network

Bc k Cc Ec

Healthy volunteers
R BA 6,
SuM 2.9 2.4
R BA 11,
ObF 2.9 2.1
R BA 21,
MiT 2.3 2.4
R BA 29,
ReS 2.5 2.4 2.1
R BA 46,
DLpF 2.5 2.2
L BA 14,
Ins 2.3 2.1
L BA 33,
ACC 2.2
L BA 46,
DLpF 2.9 2.1

People with schizophrenia
R BA 15,
Ins 2.0 2.3
R BA 37,
InT 4.9 3.4 2.51 2.8
L BA 4,
PrM 2.2 2.1 2.2
L BA 15,
Ins 2.4
L BA 38,
TPo 2.3
L BA 45,
pOp 2.2 2.1 2.1
R Thal 2.0 2.2

Hubs are defined by various centrality parameters for healthy volunteers (HV) and people with schizophrenia (SCZ).
Values indicate the number of SDs away from the mean. L, Left; R, right. See Table 1 for abbreviations of Brodmann’s
areas.
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vation of hub regions in multimodal, unimodal, and transmodal
networks is compatible with several previous reports of hub re-
gions in whole-brain anatomical networks and suggests that the
degree distribution is a conserved and invariant parameter of
brain network organization at global and divisional scales.

However, it was also evident that the three cortical systems
were not topologically identical. The strongest contrast was be-
tween the multimodal network and the transmodal network,
with the unimodal network tending to have less differentiated
properties. For example, mean connection distance was greatest
for multimodal cortex, least for transmodal cortex, and interme-
diate for unimodal cortex. This is not surprising when we recall
that many of the more recently evolved regions of neocortex
comprising the multimodal system are anatomically distributed
over the lateral surfaces of the cerebral hemispheres, whereas
many of the phylogenetically older regions of allocortex or paleo-

cortex comprising the transmodal system are concentrated in
medial temporal and other limbic structures. A less predictable
difference between the networks was that multimodal cortex was
hierarchical, whereas transmodal cortex was assortative.

The hubs of a hierarchical network are highly connected but
have low clustering; they are mainly connected to nodes that are
not otherwise connected to each other. This architecture seems
generally typical of corporate, information, or infrastructural sys-
tems; it favors executive-report relationships between nodes and
conserves wiring costs, but it is vulnerable to targeted attack on
the hubs (Ravasz and Barabasí, 2003; Sakata et al., 2005; Vahdat-
pour et al., 2005). The hubs of an assortative network are highly
connected to each other, and this organization is more typical of
social networks (although also reported for protein–protein net-
works) (Newman, 2002; Ravasz and Barabasí, 2003; Barrat et al.,
2004; Trusina et al., 2004; Aftabuddin and Kundu, 2007). Assor-

Figure 3. Effects of schizophrenia on organization of the multimodal cortical network. Top row, Hierarchy coefficients (�; in A), degree correlation or assortativity (r; in B), and mean connection
distance (d; in C) as functions of cost in the small-world regime for healthy volunteers (black lines) and people with schizophrenia (red lines). Middle and bottom rows, Between-group differences
in regional degree (k; in D, G), clustering (C; in E, H ), and betweenness centrality (Bc; in F, I ). In the middle row, regional differences are represented anatomically in the context of a sparsely
thresholded whole-brain network; red nodes have significantly greater hub criteria, and black nodes have significantly smaller hub criteria, in people with schizophrenia. The size of the node is
inversely proportional to the p value of the between-group difference. In the bottom row, the red and black bars represent the rank-ordered and anatomically labeled p values for the 10 most
significant between-group differences in each of the hub criteria.
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tative networks are robust against random
or targeted removal of hubs, percolate eas-
ily, and have low epidemic thresholds. Dif-
ferent growth processes have been impli-
cated in the generation of hierarchical and
assortative networks (Cantanzaro et al.,
2004).

Returning to our results in this context,
we can see that the topological differences
between multimodal and transmodal cor-
tex could be significant in terms of their
differential function, robustness to dam-
age or disease, and development. More
specifically, they suggest that multimodal
and transmodal systems have been formed
by different growth processes and/or
evolved to satisfy different selection crite-
ria. The emergence of a hierarchical orga-
nization in multimodal cortex, for exam-
ple, might reflect a greater selection
pressure on wiring cost at the expense of
robustness as a function of the consider-
able increase in total brain volume associ-
ated with the evolutionary expansion of
neocortex.

Disorganization of cortical networks
in schizophrenia
This study represents the first effort to
characterize the anatomical (dis)organiza-
tion of brain networks in schizophrenia
using graph theoretical tools, and, in so
doing, we have observed a number of in-
teresting results.

First, we have shown that several global
parameters of whole-brain network architecture, such as small-
worldness and the degree distribution, were close to their values
in healthy volunteers, suggesting that key aspects of brain orga-
nization are highly conserved even in the presence of a putative
neurodevelopmental disorder with profound effects on complex
brain functions.

Second, we found that the three classical cortical divisions
were differentially associated with the state of schizophrenia.
Transmodal and unimodal cortical networks showed no signifi-
cant difference in hierarchy, assortativity, or connection distance
compared with healthy volunteers, whereas the multimodal cor-
tical network had significantly reduced hierarchy and increased
connection distance, as well as a trend to increased assortativity.
In short, the multimodal network in schizophrenia had charac-
teristics that might be interpreted as less efficiently wired, and the
hubs of the network tended to be abnormally clustered and con-
nected to other nodes of high degree. When we considered the
multimodal network at a finer-grained regional level of topolog-
ical analysis, these observations were corroborated by the finding
that the predominantly prefrontal hubs of the normal network
were replaced by inferior temporal, insular, and cingulate hubs in
people with schizophrenia. Moreover, there were numerous
between-group differences in regional clustering and other prop-
erties, involving mainly components of frontal, medial temporal,
cingulate, and insular cortex, many of which have been suggested
previously to be anatomically abnormal in schizophrenia (Wein-
berger et al., 2001; Ellison-Wright et al., 2008).

In short, our data are consistent with previous evidence that

schizophrenia may be conceived of as a dysconnectivity syn-
drome (Volkow et al., 1988; Weinberger et al., 1992; Bullmore et
al., 1997; Meyer-Lindenberg et al., 2001, 2005), principally im-
pacting on the normally efficient constitution of a frontally dom-
inated hierarchical network of multimodal cortex. This view is
consistent with many previous cognitive studies of schizophre-
nia, which have repeatedly emphasized deficits in executive and
attentional processes dependent on lateral prefrontal cortical
connectivity (Weinberger et al., 2001) and the many previous
reports of functional and structural MRI abnormalities in multi-
modal association cortex and related white matter tracts (Woo-
druff et al., 1997; Weinberger et al., 2001; Buchanan et al., 2004;
Honea et al., 2005; Kanaan et al., 2005; Gur et al., 2007; Kubicki et
al., 2007). Our data are also potentially consistent with theoretical
models of abnormal anatomical connectivity in schizophrenia at
a synaptic level (Friston, 1998). For example, abnormal
experience-dependent plasticity, leading to changes in synaptic
density or dendritic arborization, could be reflected by abnormal
inter-regional covariation of gray matter volume, even in the
absence of macroscopic abnormalities of white matter tracts de-
tectable by diffusion tensor imaging (DTI).

Methodological issues
The main limitation of our analysis is that, because the anatom-
ical connectivity matrix is estimated on the basis of inter-regional
correlations estimated over subjects, we have no opportunity to
directly relate network metrics to individual differences in brain
functions.

Figure 4. Graphical visualization of multimodal network hierarchy in healthy volunteers (A) and people with schizophrenia
(B). Nodes are ordered according to their degree ( y-axis). Size of nodes indicates greater than (large) or less than (small) average
clustering. Color of the nodes indicates lobe location: frontal (blue), temporal (green), parietal (black), or occipital (red). Lettering
indicates approximate Brodmann area, and the 
 denotes left-sided regions. Note that highly clustered nodes are concentrated at
the bottom of the normal hierarchy, which is dominated by highly connected nodes (many of them frontal) with low clustering;
conversely, in people with schizophrenia, highly clustered nodes are more evenly distributed in terms of their degree, and frontal
hubs are less prominent.
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It is also notable that our measurements of regional gray mat-
ter volume and the definition of multimodal, transmodal, and
unimodal systems were both based on a priori anatomical classi-
fications that are well respected and broadly conventional but to
which alternatives exist. Adoption of different anatomical stan-
dards may have some effect on the pattern of results, but, pending
a consensus on human cortical parcellation, this issue will remain
somewhat arbitrary.

Another important consideration is that we have not made
direct measurements of anatomical connectivity, as can be done
by tract tracing in animals, but have instead inferred anatomical
connectivity from covariation in regional gray matter volume. A
direct proof that correlations of gray matter volume across sub-
jects are indicative of axonal connectivity via white matter tracts
has not been provided. However, strong correlations between
brain regions known to be anatomically connected have been
observed in previous optimized voxel-based morphometry stud-
ies (Mechelli et al., 2005; Pezawas et al., 2005). Similarly, correla-
tions between left inferior frontal and superior temporal regions
in cortical thickness measurements were validated previously as
indirect markers of anatomical connectivity by direct compari-
son with DTI measurements of the arcuate fasciculus (Lerch et
al., 2006). There are also hypothetical reasons to expect that in-
terconnected regions might have correlated gray matter volumes
attributable to the mutually trophic effects of connectivity on
growth of connected regions. For example, neurotrophic factors
such as BDNF, and glutamatergic signaling via the NMDA recep-
tor, are known to promote neuronal survival as well as maintain
and increase dendritic volume in the adult brain (Burgoyne et al.,
1993; Monfils et al., 2004). However, we acknowledge that the
cellular substrates of covariation of MRI measurements of gray
matter volume have not been completely determined (Wein-
berger and McCure, 2002), so our inference of anatomical con-
nectivity should be regarded currently as tentative.

It also is important to acknowledge that brain volume mea-
surements made with MRI reflect aspects of brain biology other
than neuronal elements, including blood volume, perfusion, and
physiological measures related to tissue hydration, which could
have implications for correlated volume measures (Weinberger
and McCure, 2002). Antipsychotic medications and heavy smok-
ing, which are relatively specific to the patient sample, have been
shown to have effects on these non-neuronal components of
brain volume, which could bear on group differences found in
this study. In future work, these and other issues could perhaps be
resolved by estimating the anatomical network individually for
each subject using DTI or by directly investigating cellular corre-
lates of altered gray matter (co)variation in MRI measurements
of appropriate animal models.
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