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Abstract

Quick and accurate diagnosis of COVID-19 is crucial in preventing its transmission. Chest
X-ray (CXR) imaging is often used for diagnosis, however, even experienced radiolo-
gists may misinterpret the results, necessitating computer-aided diagnosis. Deep learning
has yielded favourable results previously, but overfitting, excessive variance, and gen-
eralization errors may occur due to noise and limited datasets. Ensemble learning can
improve predictions by using robust techniques. Therefore, this study, proposes two-
fold strategy that combines advanced and robust algorithms, including DenseNet201,
EfficientNetB7, and Xception, to achieve faster and more accurate COVID-19 detec-
tion. Segmented lung images were generated from CXR images using the residual U-Net
model, and two attention-based ensemble neural networks were used for classification.
The COVID-19 radiography dataset was used to evaluate the proposed approach, which
achieved an accuracy of 98.21%, 93.4%, and 89.06% for two, three, and four classes
respectively which outperformed previous studies by a significant margin considering
COVID, viral pneumonia, and lung opacity simultaneously. Despite the similarity in CXR
images of COVID, pneumonia, and lung opacity, the proposed approach achieved 89.06%
accuracy, demonstrating its ability to recognize distinguishable features. The developed
algorithm is expected to have applications in clinics for diagnosing different diseases using
X-ray images.

1 INTRODUCTION

A cluster of pneumonia cases reported in Wuhan, China, has
swiftly spread well over the world within a short period of
time, according to a study from late 2019 [1–3]. Since its
inception, a newly discovered coronavirus has caused havoc
and eventually become a pandemic [4]. The sickness, which is
termed COVID-19 according to the World Health Organization
(WHO), is caused by the SARS-CoV-2 virus. Most often, those
who contract the virus experience a mild-to-moderate respira-
tory infection and recover without any complications, but older
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people requiring intensive medical support for pre-conditions
including cancer, diabetes, cardiovascular disease, or chronic
respiratory diseases are more at risk [3]. Most coronavirus
patients will experience a common cold and fever, according to
studies, while only a small number will show no symptoms.

The best resilience against the infection has been demon-
strated within adults, but as a drawback, they are more apt to
transfer it than adolescents [5].

More than 585 million confirmed cases with 6.4 million
fatalities and 560 million recoveries had been reported as of
August 2022, in roughly 228 nations [6]. Coronavirus has also
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impacted the medical staff who are on the front lines of
the battle against the coronavirus epidemic. According to a
study, this illness affects the emotional, physical, and social
health of medical workers [7]. These days, antigen testing and
reverse transcription polymerase chain reaction (RT-PCR) test-
ing, which can detect the active SARS-CoV-2 protein as well
as RNA from respiratory specimens, most regularly through
oro- or nasopharyngeal swabs, are the most renowned clinical
screening methods for the detection of COVID-19 active cases
[7].

Although these strategies are the gold standard in detection,
there are debatable key criteria. Antigen testing seems to be
less expensive and causes a tremor, but occasionally produces
erroneous results because of its low sensitivity to the ratios of
symptomatic and asymptomatic patients [8]. The antigen test
is sensitive when the infection rate is at its peak, i.e. the high-
est concentration of SARS-CoV-2 proteins. Since there may
be insufficient cellular material or inadequate extractions in the
sample that was obtained from the infected person, which may
be resulted in ambiguous diagnostics. Moreover, RT-PCR test-
ing takes a long time to assess the results and is also much
more difficult and laborious. Although the initial barriers to
the provision of kits for the aforementioned approaches have
already been alleviated, the drawback in terms of sensitivity
may still exist for samples that are collected less than opti-
mally or in patients with a low viral load [9]. More specifically,
93% of samples from broncho-alveolar lavage, 63% of samples
from sputum, and only 32% of samples from throat swabs are
sensitive enough for RT-PCR testing [10].

CXR and CT imaging examinations are two significant alter-
nate standard screening techniques that are utilized [11]. These
techniques are used by radiologists as visual indicators for
diagnosing viral infections. According to certain experimental
research on the correlation between patients with confirmed
COVID-19 pneumonia clinical circumstances and chest CT
findings, these patients have typical imaging characteristics that
make them amenable to early disease scope screenings [11]. The
major challenge faced by CT imaging is that after monitoring
symptoms for a prolonged period, the initial CT report appears
normal [12]. According to one study, chest CT has an excellent
sensitivity of up to 90% but a comparatively lower specificity
of between 25% in 83% of adult populations, while the accu-
racy in paediatric populations appears to be quite poor due to
insufficient evidence [9]. In these circumstances, CXR imag-
ing meets the fundamental requirements for better screening of
the COVID-19 population worldwide, particularly in resource-
constrained and severely afflicted areas [9]. The rapid triage
of patients with suspected COVID-19 is made possible by the
availability of CXR imaging equipment, which is easily available
to many healthcare centers and may be used inside an isolation
room, thus approving its portability [7, 10].

CXR imaging has manageable maintenance costs. Radiol-
ogists with advanced training and expertise are required for
COVID-19 detection if the CXR image analysis is used. Yet,
compared to the whole population screened, there are, sadly,
significantly fewer radiologists or specialized doctors. Based on
data from 29 nations, a recent study found that there were

3.52 active doctors for every thousand inhabitants on aver-
age. The greatest number was 5.24 doctors per 1,000 people in
Austria, and the lowest value was 2.18 doctors per 1,000 peo-
ple in Colombia [13]. Due to its capacity to function in the
face of massive datasets that outperform humanistic potential,
AI-based techniques using deep learning have proven to be suc-
cessful and have had a positive impact on the medical field.
In relation to COVID-19 identification utilizing deep convo-
lution networks, numerous academics from around the world
are experimenting with different datasets and releasing articles.
Although these methods have shown promise in medium-to-
light datasets, they have rarely been approved as solutions that
are suitable for production. Medical imaging does not currently
have enough data to train deep learning models. New deep
learning models can’t generalize to clinical data that hasn’t been
seen, even if the training data is small. Additionally, medical
images need to be manually labelled and annotated, which takes
time and money and is expensive [14]. Transfer learning may
offer great alternatives for locating precisely labelled data, as the
models’ capacity for handling large numbers of data is severely
constrained, and it also eliminates the necessity for human
annotators [14, 15]. A medical analysis is nothing unusual, but
transfer learning has recently proved quite successful in a variety
of visual tasks. When it comes to automatic COVID-19 identifi-
cation, multiple state-of-the-art pre-trained models that apply
transfer learning outperform novel convolutional structures
that are created from scratch [10, 16, 17].

In our study, we have presented a deep convolutional neu-
ral network architecture using segmented chest X-ray images
for automatic COVID-19 recognition in a computer-aided
diagnosis model. In order to accomplish improved predic-
tion accuracy, we used an ensemble of three pre-trained
models (DenseNet201, Xception, and EfficientNetB7) after
using the ResUNet model to segment the lung section from
X-ray images. To the best of our knowledge, the model
outperformed many other state-of-the-art experimental stud-
ies, achieving a higher accuracy of 98.21% for two classes,
93.4% for three classes, and 89.06% for four classes, respec-
tively. In summary, our main contributions to this work are as
follows:

∙ The model has an end-to-end hierarchical structure with
fewer parameters, which requires fewer operations and saves
memory space.

∙ Segmented lung region of raw CXR images have been used
without performing any manual image augmentation process.

∙ Proposing an ensemble learning approach for achieving
higher predictive accuracy and robustness.

∙ Large training dataset has been used with no manual feature
extraction and preprocessing techniques.

The whole article is organized into different sections, i.e. a
review of related works in Section 2, dataset description and
model formulation in Section 3, evaluation of training, and test
results with confusion matrices are discussed in Section 4. In
Section 5, the future scope of this research is addressed and the
conclusion is pointed out in Section 6.
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2 RELATED WORKS

The development of AI-based medical systems and the quick
rise of COVID-19 have resulted in the widespread use of auto-
matic computer-aided diagnosis. Numerous researchers from
all around the globe are working on developing a quicker and
more effective detection model. Binary or categorical classifica-
tions have been used in studies on the prediction of COVID-19
using CXR pictures; some of these studies handled raw data,
while others used preprocessing techniques. In systematic inves-
tigations, the sizes of datasets are also crucial. [16] developed
a model named DarkCovidNet based on DarkNet families
that attained an accuracy of 87.02% for three classes. [10] tai-
lored a deep neural network and defined that as COVID-NET
for the early detection of COVID-19 on CXR images using
a projection-expansion-projection-extension (PEPX) structure
that has obtained an accuracy of 93.3%. In an experimental
study, [18] performed scale-invariant feature transform (SIFT)
& binary robust invariant scalable key-points (BRISK)-based
deep learning models to predict COVID-19 infected patients,
which acquired 96.6% accuracy. [19] proposed a complex model
on MCFF-Net, which obtained an accuracy of 96.79% for
three classifications, but the model faced a hardware issue in
practical application. In a study, [20] achieved 90.3% accu-
racy with the augmentation and normalization of CXR images
using ResNet50, ResNet152, and VGG16 models. [21] inves-
tigated how different enhancement strategies affected both
plain and segmented images and presented a modified U-net
model for lung segmentation, obtaining accuracy and intersec-
tion over union (IoU) of 98.63% and 94.3%, respectively. They
investigated six pre-trained models (i.e. ResNet18, ResNet50,
ResNet101, InceptionV3, DenseNet201, and ChexNet - some
of their details can be found in the Section 5) and found
that DenseNet201 outperformed the rest with an accuracy of
95.11% for segmenting gamma-corrected lung images. Another
investigation revealed that accuracy rates for classifications into
three and four classes using the CoroDet model were 94.2%
and 91.2%, respectively [22]. Using an ensemble of CNN and
ResNet architecture, [23] performed the classification on three
classes and achieved 93.1% and 90% accuracy, respectively. For
the prior architectures for four classes, they also attained an
accuracy of 77.2% and 81.5%. [24] used explainable artificial
intelligence approaches to quantify the impact of segmentation,
scoring 98.2% on the dice and then 83% on the F1-score for
COVID identification with multiclass classification. [25] pre-
sented the Xception-based architecture, namely CoroNet to
carry out the multiclass classification with an overall accuracy
of 89.6%. DenseNet201 and MobileNet are used to extract fea-
tures, and then selected features are submitted to LightGBM
for multiclass classification, yielding an accuracy measure of
91.11%, according to a method described by [26]. In propos-
ing a model called CovXnet, [27] noted an accuracy of 92.02%.
In the COVID-19FclNet9 model, [28] reported an accuracy of
89.96%.

In an experiment, [29] used a model that included the
weights of VGG16 and InceptionV3, which performed well

for binary and three-class classification but poorly for four-
class classification, achieving just 62.5% accuracy. By applying
the augmentation with VGG16 for the automatic classification
of three different classes, [30] obtained an accuracy of 83.6%.
Following the application of a deep learning framework based
on VGG19, [31] suggested a semi-automated image prepro-
cessing model to build a reliable dataset by removing noise
and undesired features. The experiment’s precision was 83%,
while the experiment’s sensitivity and f1-score were both 80%.
[32] applied a VGG16-based model and found 84.10% accuracy
for multiclass classification. [33] used CT images to screen for
coronaviruses while taking into account ResNet and a location
awareness system, resulting in an accuracy of 86.7%. Another
experiment was carried out on CT scans by [34], who proposed
the CovNet model and attained an accuracy of 90% for three
classes. A concatenation of Xception and ResNet50V2 that was
introduced by [35] yielded an overall accuracy of 91.4%, bet-
ter than the performance of the separate models. [36] used
MobileNetV2 and VGG19 to achieve accuracy of 98% and
95% in binary classifications, respectively. [37] reported a 98.7%
accuracy rate for two classes using CNN-based transfer learning
and a generative adversarial network. [38] discovered 87.86%
accuracy for multiclass classification and 98.97% accuracy for
binary classes in a different investigation.

3 DATASET DESCRIPTION

Since COVID-19 is a novel disease, the relevant datasets are
still evolving. The majority of publicly accessible datasets were
created by compiling CXR images from several public image
repositories. This article introduces the materials and dataset uti-
lized in the study. The training, validation, and testing dataset
distribution among the different classes are also discussed as
illustrated in Figure 1.

In our study, we used a dataset publicly available on Kaggle
named ‘COVID-19 Radiography Database’, the winner of the
COVID-19 dataset award by the Kaggle Community [21, 39,
40]. The dataset contains CXR images for COVID-19-positive
cases, normal, lung opacity, and viral pneumonia images along
with their corresponding lung masks. A comprehensive amount
of information, including the patient’s demographics, the type
of projection used, and the acquisition parameters for the imag-
ing study, are provided together with the images that were
annotated and validated by a team of expert radiologists. [19]

The database consists of 3,616 COVID-19-positive cases,
with 10,192 normal, 6,012 lung opacity, and 1,345 viral pneumo-
nia chest X-ray images along with their corresponding ground
truth masks. All of the images have a resolution of 299×299
pixels and are stored as portable network graphics (PNG) files.
While performing the segmentation technique, we chose 15,873
images belonging to 4 classes for training and 5,292 images for
validation including the same number of segmentation masks.
The segmented images are then further divided into three dif-
ferent categories. Figure 1 shows the distribution of different
classes in the training, validation, and test datasets. Table 1
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SAYEED ET AL. 2403

FIGURE 1 Distribution of different classes in (a) training, (b) validation, and (c) test dataset.

TABLE 1 Dataset counts for training, validation, and testing.

COVID Lung opacity Normal Viral pneumonia

Train 2692 4609 7802 976

Validation 724 1203 2039 269

Test 200 200 350 100

shows the overall dataset count for training, validation, and
test datasets.

The amount of memory and computational resources needed
to process larger images is directly impacted by the larger num-
ber of pixels that they contain. The overall processing time
and memory needs can be greatly decreased by reducing the
image size. This is particularly crucial when working with huge
datasets. Additionally, shrinking the image size might direct the

model’s attention to the areas of the image that are most infor-
mative [41]. We used raw images, so to enable the model to
learn feature information more quickly, we reduced their size
to a fixed resolution of 256×256 pixels for segmentation and
224×224 pixels for the classification study.

Figure 2 depicts the sample CXR images with their cor-
responding ground truth masks of normal, COVID-19, lung
opacity, and viral pneumonia.

4 METHODOLOGY

Convolutional neural networks have gained popularity as a
result of their enhanced image classification capabilities. Convo-
lutional layers and filters in a network, aid in the extraction of an
image’s spatial and temporal information where the fully con-
nected layers make the model end-to-end trainable to classify

FIGURE 2 Sample CXR images with their corresponding ground truth masks of (a) COVID, (b) lung opacity, (c) normal, and (d) viral pneumonia.
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FIGURE 3 The schematic diagram of our overall workflow.

the data into different classes. In a general sense, compara-
tively, for a small dataset, transfer learning may be helpful [46].
Transfer learning has recently been applied with effectiveness
in a variety of practical applications, including manufacturing,
medicine, and baggage screening [47–49]. This deep learning
algorithm doesn’t need to be created from scratch, which elimi-
nates the need for a huge dataset and shortens the long learning
period. Three different types of significant experiments have
been used to carry out the entire process. The investigation
required the creation of two distinct datasets. The training,
and validation, plain CXR images for the first dataset, were
derived straight from the original dataset, as opposed to the
training, validation, and test segmented lung images for the sec-
ond dataset, which were produced following the application of
the segmentation approach. First, classification was carried out
using 3 distinct pre-trained deep-learning models on plain CXR
images. Individual models such as DenseNet201, Xception, and
EfficientNetB7 were trained on our dataset, and the experimen-
tal results were recorded. Then, using a suitable segmentation
model to pre-process our images by generating a specific lung
region and a classification model to categorize the lung X-
ray images, we set out to build a deep learning segmentation
classification pipeline.

Our work has essentially been divided into two sections.
The model was fed the raw CXR images and their related
ground truth masks after dividing the dataset into training
and validation. The predicted masks were then integrated with
the images using a bit-wise AND operation. The segmented
lung X-ray images were consequently produced. Three sep-
arate convolutional neural networks were then fed with the
segmented images, which were then concatenated to make
predictions on test data and evaluate the effectiveness of
the suggested methodology. Figure 3 depicts the detailed
workflow.

4.1 Segmentation

In the literature, there are a number of U-net-based segmen-
tation model variations. In the end, we discovered that the
deep residual U-Net model, popularly known as ResUnet [50],
produced the best results for us on the dataset. The model typ-
ically makes use of both residual deep learning and the U-Net
architecture. The problem of vanishing gradients is alleviated
by the residual connections in the residual U-Net. Addition-
ally, the model has the capacity to learn more sophisticated and
abstract representations of the input data. Compared to the con-
ventional U-Net model, the residual U-Net has shown greater
performance, with better accuracy, better retention of fine fea-
tures, and improved segmentation boundaries. Therefore, we
made the choice to continue using this segmentation module
in our workflow. To perform the segmentation, images were
resized to 256×256. This segmentation module, with a seven-
level architecture, has three primary components theoretically.
The encoder is considered the initial component of the archi-
tecture, which shrinks and compactifies the input images into
smaller and more comprehensible representations. The decoder,
or the final core part of this architecture, retrieves the rep-
resentations into a pixel-by-pixel categorization, i.e. semantic
segmentation. Between the encoder at the ResUNet’s input and
the decoder at the output, the classifier’s second from the mid-
dle section acts as a link [50]. Figure 4 illustrates the model’s
complete architecture.

As an optimizer algorithm, the Adam optimizer was used,
as it meets the requirements of momentum and root mean
squared propagation (RMSprop), delivers faster speed in terms
of invariance of the magnitudes of parameter, and handles the
gradient descent problem. In comparison, it costs less to really
get better returns. To obtain more detailed information, which is
frequently employed in segmentation tasks, the dice-coefficient
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FIGURE 4 The architecture of ResUnet.

FIGURE 5 Complete visualization of the segmentation procedure.

loss function has been given priority over the simple cross-
entropy. In the scenario of class imbalance, overall accuracy is
not an appropriate statistic for semantic segmentation. There-
fore, the metric ‘intersection over union’ (IoU) was preferred
more. The complete visualization of the segmentation process
is shown in Figure 5.

4.2 Classification

Three deep learning models, DenseNet201 [51], EfficientNetB7
[52], and Xception [53], which were previously pre-trained on
the ImageNet Database, have been trained on our processed
dataset. These models have been applied to feature extraction
because of their dense and scalable structures, which facili-
tate the effective learning of complicated patterns and rich

hierarchical features from images. Therefore, compared to com-
putationally intensive networks trained from scratch, minimal
computational resources and time are required which improves
the performance of the classification. DenseNet201 is a con-
volutional neural network with 201 deep layers. It is composed
of numerous dense blocks. Between layers adjacent to the input
and those adjacent to the output, there are shorter connections.
Transition layers between dense blocks are used to condense the
spatial dimensions and manage the complexity of the model.
These layers typically consist of an average pooling layer fol-
lowed by a convolutional layer. The spatial data is combined into
a single vector at the network’s end by a global average pooling
layer. This model is more detailed, accurate, and easy to train as
shown in Figure 6. An architecture of the model having three
dense blocks has been shown.

The compound scaling strategy enhances the accuracy and
effectiveness of the EfficientNetB7 model. It reduces the
overall number of processes by scaling all width, depth, and res-
olution dimensions consistently. The broader layers are present
between the skip connections, while the shortcut connections
link the thin layers. On MBConv, squeeze-and-excitation opti-
mization has been added. An architecture of the model having
MBConv as the basic building block has been shown in Figure 7.

The improved or more extreme form of InceptionV3 is the
Xception model with modified depth-wise separable convolu-
tion, which is essentially channel-wise n×n spatial convolution.
The network can learn identity mappings and substantially avoid
the vanishing gradient issue because of the residual connections.
It is significantly lighter because there are fewer connections.
The architecture of the model is displayed in Figure 8.

For ensemble learning, we have presented two classification
models. In the first model, after retrieving the inputs for the
separate models’ convolutional parts, we applied a channel-
wise attention mechanism over the extracted features and then
directly concatenated them to feed the classification compo-
nent. The overall method is depicted in Figure 9. This model
was named proposed model 1. For the second model, we first
individually trained the convolutional network for our dataset
and saved the parameters. Then, using our own parameters
rather than the ImageNet weights, we reloaded the models in
accordance with the architecture illustrated in Figure 10. This
model is named proposed model 2. Following that, we retrained
each model using our dataset while freezing its upper layers and
then concatenated the derived features. The features were sent
to the fully connected or dense layers for classification once the
attention mechanism was applied.

FIGURE 6 A three-dense-block deep DenseNet. The layers across two neighbouring blocks are known as transition layers, and they modify feature-map sizes
through convolution and pooling.
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2406 SAYEED ET AL.

FIGURE 7 Visualization of EfficientNetB7’s architecture using MBConv as a fundamental building block.

FIGURE 8 The Xception architecture.

FIGURE 9 Proposed classification Model 1 using ensemble learning with attention mechanism.
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SAYEED ET AL. 2407

FIGURE 10 Proposed classification model 2 using ensemble learning with attention mechanism.

FIGURE 11 Block diagram of the SE attention module.

In Figure 11, a squeeze and excitation networks-based atten-
tion mechanism (SE-attention mechanism) is depicted, which is
inspired by the unique attention mechanism published at CVPR
2018 [54]. Any basic architecture can be enhanced with this
straightforward but effective add-on module to get improved
performance with minimal computational overhead. The atten-
tion module primarily focuses on the channel inter-dependency
and is utilized for feature re-calibration. It increases the net-
work’s sensitivity to the object’s informational characteristics.
An additional dense layer and a dropout layer were added to
the end of the models in the process of being developed. These
dense layers’ activation functions were all tuned to the ReLU
activations. Each model had a dropout layer added at the end
with a 10% dropout rate. This made it easier for each model to
handle the limited size of our dataset and prevented overfitting.
Our final layer included two neurons for categorization into
two classes, three neurons for categorization into three classes,
and four neurons for four classes, respectively, and each had a
softmax activation function. Table 2 shows a summary of the
proposed model 2’s architecture.

5 RESULT & DISCUSSION

5.1 Experimental setup

The Python 3.8.0 environment has been used to develop the
experimental study on both plain and segmented lung X-ray
images. The Tensorflow v2.8.2 platform, which offers pre-

TABLE 2 Summary of the proposed model 2’s architecture for three
classes.

Layer Output shape Parameters

Input layer 224× 224× 3 0

Functional (DenseNet201) 7× 7× 1920 18,321,984

Functional (Xception) 7× 7× 2048 20,861,480

Functional (EfficientNetB7) 7× 7× 2560 64,097,687

Concatenate 7× 7× 6528 0

2D global average pooling 6528 0

Reshape 1× 1× 6528 0

Dense 1× 1× 816 5,327,664

Dense 1× 1× 6528 5,327,664

Multiply 7× 7× 6528 0

Flatten 319,872 0

Dense 64 20,471,872

Batch normalization 64 256

Dropout 64 0

Dense 3 195

Total parameters = 134,414,514

Trainable parameters = 31,133,235

built functions and sophisticated operations to make the effort
of creating neural networks easier, was used for the experi-
ment. The following tools and libraries were used in the study:
Keras v2.8.0, OpenCV v4.1.2, Matplotlib v3.2.2, and Scikit-
learn v1.1.2. The NVIDIA-SMI 460.32.03 Tesla T4 GPU with
460.32.03 Driver and 11.2 CUDA has been selected for open
access by Google collaboratory. The optimal learning rate was
maintained at 0.001 and continually tracked at each epoch over
the loss function for the 20 epochs of training the classification
networks. By dividing the train or validation data count by the
batch size, the steps per epoch and validation step size were kept
constant. Each time, 16 samples were run through the model
in batches. The learning rate was specified to be decreased
on the plateau while maintaining a value for the patience of
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2408 SAYEED ET AL.

FIGURE 12 CXR sample image (left), ground truth mask (first-middle), generated mask by the model (second-middle), segmented lung image (right).

TABLE 3 Performance of the segmentation network.

Network Accuracy Dice loss IoU Dice coefficient

ResUNet 0.9829 0.0248 0.9451 0.9633

UNet 0.9793 0.0550 0.9124 0.9408

2, a verbosity of 1, a factor of 0.1, and a minimum learning
rate of 0.00001. The evaluation was carried out by compiling
using Adam as the optimizer. The performance measures were
IoU, accuracy, precision, recall, and f1-score, and the loss func-
tions: were dice-coefficient for segmentation and categorical
cross-entropy for classification.

The following section demonstrates how well the seg-
mentation model and classification model performed on the
segmented lung images.

5.2 Lung segmentation

To assess the effectiveness of segmentation over the chest
X-ray images, both the traditional U-net and the residual U-
net model were trained, validated, and tested on the training,
validation, and test data, respectively. However, the latter per-
formed better than the former in terms of better accuracy as
well as faster convergence [as seen in in Table 3]. A qualita-
tive review proved the test images were appropriately segmented
because the classification database’s lack of ground truth masks
prevented quantitative verification. The residual U-Net model,
which was trained on the original chest X-ray images, can very
reliably segment the lung sections of the X-ray images in the

classification database, as shown in Figure 12. A spectral visual
representation of the segmented lungs for ground truth and pre-
dicted masks are shown in Figure 13. The segmentation model’s
total accuracy, loss, weighted IoU, and dice coefficient values are
presented in Table 3.

5.3 COVID recognition

As mentioned earlier, two separate experiments using two dis-
tinct proposed models have been run on our datasets, first
looking at the three classes (COVID, normal, and viral pneu-
monia), then the four classes (COVID, lung opacity, normal, and
viral pneumonia) taken as a whole. Along with that, the models’
effectiveness on binary classes (COVID, normal) has also been
observed. Table 4 displays the results of the classification per-
formed on the original plain CXR images using each of the three
pre-trained models (DenseNet201, EficientNetB7, and Xcep-
tion). The effectiveness of our suggested ensemble approaches
outperformed that of any individual network. Tables 5 and 6
compare the effectiveness of the individual pre-trained models
with the two ensemble techniques that have been tested for two
and three classes on the segmented lung images, respectively.

The same comparative study is displayed for four classes
in Table 7. It should be highlighted that the second approach
model, which combined the models with a channel-wise atten-
tion module by saving the parameters of the pre-trained models
after re-training on segmented images, performed better in
all the circumstances. It should be mentioned here that the
standard deviation values for accuracy and loss were also mea-
sured after re-running each model 5 times, where the standard
deviations of all those runs are between 0.017 and 0.019.
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SAYEED ET AL. 2409

FIGURE 13 Spectral visualization of the segmented lungs for ground truth and predicted masks.

TABLE 4 Performance of the three pre-trained models on plain CXR
images.

Network No. of classes Accuracy Loss

DenseNet201 2 0.9609 0.1140

3 0.9210 0.1778

4 0.8483 0.3954

EfficientNetB7 2 0.9362 0.1728

3 0.9008 0.2157

4 0.8430 0.3928

Xception 2 0.9279 0.1935

3 0.8993 0.2410

4 0.8320 0.4321

TABLE 5 Performance of our models on two classes.

Network Accuracy Loss

DenseNet201 0.9457 0.1686

EfficientNetB7 0.9495 0.1657

Xception 0.9614 0.1473

Proposed model 1 0.9688 0.1372

Proposed model 2 0.9821 0.0560

The performance metrics for the first model in two, three,
and four classes, respectively, are shown in Tables 8–10. The
performance metrics for the second model on two, three, and
four classes, respectively, are shown in Tables 11–13.

TABLE 6 Performance of our models on three classes.

Network Accuracy Loss

DenseNet201 0.9311 0.1677

EfficientNetB7 0.9008 0.2410

Xception 0.9108 0.2157

Proposed model 1 0.906 0.2224

Proposed model 2 0.934 0.0791

TABLE 7 Performance of our models on four classes.

Network Accuracy Loss

DenseNet201 0.9026 0.1943

EfficientNetB7 0.8849 0.2436

Xception 0.8892 0.2533

Proposed model 1 0.8589 0.2676

Proposed model 2 0.8906 0.2222

Table 14 displays the overall test accuracies for both
models (proposed model 1 and proposed model 2) on
unknown datasets.

For the two suggested models, the confusion matrices con-
ducted on the test dataset for two, three, and four classes are
shown in Figures 14 and 15, respectively.

In Figure 16, the correctly-classified and miss-classified
COVID images with their corresponding true and predicted
labels are depicted.
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2410 SAYEED ET AL.

TABLE 8 Categorization reports for two classes using proposed model 1.

Precision Recall F1-score

COVID 0.95 0.88 0.91

Normal 0.93 0.97 0.95

TABLE 9 Categorization reports for three classes using proposed
model 1.

Precision Recall F1-score

COVID 0.96 0.71 0.82

Normal 0.83 0.98 0.90

Viral pneumonia 0.99 0.89 0.94

TABLE 10 Categorization reports for four classes using proposed
model 1.

Precision Recall F1-score

COVID 0.86 0.67 0.75

Lung opacity 0.80 0.89 0.84

Normal 0.87 0.92 0.89

Viral pneumonia 0.92 0.93 0.93

5.4 Comparison with others and ablation
study

We evaluated the effectiveness of the models that we suggested
and then contrasted the findings with earlier research. By split-
ting it up into three parts, a comparison of our recommended
approaches with prior attempts is presented in Tables 15–20,
respectively. [21] used image-enhancement techniques to create
better images while interfering with the properties of the origi-
nal plain images in three classes, having one class different from
ours. In order to achieve better results, they also used the con-
ventional U-Net model, although this model is heavier than our

TABLE 11 Categorization reports for two classes using proposed
model 2.

Precision Recall F1-score

COVID 0.99 0.92 0.95

Normal 0.95 1.00 0.97

TABLE 12 Categorization reports for three classes using proposed
model 2.

Precision Recall F1-score

COVID 0.95 0.83 0.89

Normal 0.89 0.95 0.92

Viral pneumonia 0.90 0.89 0.89

TABLE 13 Categorization reports for four classes using proposed
model 2.

Precision Recall F1-score

COVID 0.82 0.79 0.81

Lung opacity 0.86 0.88 0.87

Normal 0.92 0.93 0.92

Viral pneumonia 0.94 0.93 0.93

TABLE 14 Overall independent test accuracy for two, three, and four
classes on unknown data.

Network No. of classes Independent test accuracy

Proposed
model
1

2 0.94

3 0.88

4 0.85

Proposed
model
2

2 0.97

2 0.91

3 0.87

lightweight residual U-Net approach. [42] used a modified ver-
sion of EfficientNet to do the three-class experiment with one
class being different from ours, with marginal performance gain.
[10] experimented with a novel customized model while taking
into account a substantial dataset of high-quality images, pro-
ducing results that are close to ours. [23]’s experiments with an
ensembled CNN on a dataset with slightly more images than
ours for three classes produced results that were comparable to
ours, but their method suffers greatly when used to four-class
experiments. [24] also used the COVID-Net approach, but the
dataset contained fewer images, and his results were marginally
lower than ours. Both [27] and [30] employed CovXNet, but
the number of images in the dataset caused significant vari-
ances in their results. [38] employed DarkCovidNet, a variation
of DarkNet, originally created to perform well with two classes,
which performs better than our model in binary classification,
but, however, our method outperformed it when the multi-
class classification was considered. With their tried-and-true
methods, the rest of the studies mentioned performed poorly
than our method. In those above-mentioned methods, some
have used data augmentation and additional preprocessing tech-
niques, [10, 21, 23, 24, 30, 42], whereas the following papers
[16, 25, 28, 29, 31, 32] haven’t used any preprocessing or
enhancement techniques to interfere with the original image
properties.

We assessed the effectiveness of DenseNet201, Xception,
and EfficientNetB7 architectures for COVID-19 detection. We
also proposed an attention-based ensemble model to combine
their predictions, achieving enhanced performance compared
to individual models. The findings demonstrate the impor-
tance of model ensembling and highlight avenues for further
research in COVID-19 diagnosis using deep learning tech-
niques. We conducted experiments using a dataset consisting of
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SAYEED ET AL. 2411

FIGURE 14 Confusion Matrices for (a)–(c) two, three, and four classes for model 1.

FIGURE 15 Confusion matrices for (a)–(c) two, three and four classes for model 2.

FIGURE 16 (a) Correctly-classified COVID images. (b) Misclassified COVID images.

TABLE 15 Comparison of the proposed COVID-19 diagnostic methods with other deep learning methods developed using radiology images (part-1).

Study Dataset count Used method Preprocessing and/or augmentation Performance

[21] 18,479 (Normal - 8851, COVID -
3616, lung opacity - 6012)

U-Net and DenseNet201 Gamma correction Accuracy: 0.9511

[10] 13,962 (COVID - 358, pneumonia -
5538, normal - 8066)

COVID-Net Cropping, translation rotation, horizontal
flip, zoom and intensity shift

Accuracy: 0.933

[16] 1127 (COVID - 127, no findings - 500,
pneumonia - 500)

DarkCovidNet − Accuracy: 0.8702

[33] 618 (COVID - 219, viral pneumonia -
224, healthy - 175)

ResNet + location awareness Resampling morphological operations
(erosion, dilation, convex hull) clipping
and flipping, mirroring

Accuracy: 0.867

[42] 13,569 (Normal, COVID, lung
opacity)

Modified efficientNet Intensity normalization, rotation, scaling
horizontal flip

Accuracy: 0.939

[23] 15,478 (COVID, pneumonia, normal) InceptionV3 NASNetLarge
ensemble CNN

CLAHE with (blur, erosion, dilation,
closing, hole filling) horizontal flip,
zoom, shear

Accuracy: 0.90
Accuracy: 0.924
Accuracy: 0.931
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2412 SAYEED ET AL.

TABLE 16 Comparison of the proposed COVID-19 diagnostic methods with other deep learning methods developed using radiology images (part-2).

[23] 5851 (Normal COVID bacterial
pneumonia viral pneumonia)

MobileNet ResNet ensemble
CNN

CLAHE with (blur, erosion, dilation, closing,
hole filling) horizontal flip, zoom, shear

Accuracy: 0.768
Accuracy: 0.772
Accuracy: 0.815

[24] 1645 (COVID, lung ipacity, normal) COVID-Net − Accuracy: 0.933

[29] 6570 (COVID - 714, healthy - 1583,
bacterial pneumonia - 1860 viral
pneumonia - 2413)

VGG16 + InceptionV3 − Accuracy: 0.6250

[25] 1300 (COVID - 290, normal - 1203,
bacterial pneumonia - 660 viral
pneumonia - 131)

CoroNet − Accuracy: 0.896

[26] 1125 (healthy, COVID, pneumonia) DenseNet169 + MobileNet
and LightGBM

− Accuracy: 0.9111

[27] 9915 (COVID - 3305, pneumonia -
3305, normal - 3305)

CovXNet Hashing algorithm Accuracy: 0.9202

TABLE 17 Comparison of the proposed COVID-19 diagnostic methods with other deep learning methods developed using radiology images (part-3).

[28] 1125 (control - 125, COVID - 500,
pneumonia - 500)

COVID-19FclNet9 − Accuracy: 0.8996

[30] 1248 (COVID - 215, pneumonia - 500,
non-COVID - 533)

CovXNet Rotation, axis shift, horizontal flip, scaling
and shear transformation

Accuracy: 0.836

[32] 327 (normal - 152, COVID - 152,
pneumonia - 50)

VGG16 − Accuracy: 0.8410

[31] 400 (COVID - 100, pneumonia - 100,
normal - 200)

VGG19 − Precision: 0.83
sensitivity + F1
score: 0.80

[35] 15,085 (COVID - 180, pneumonia -
6054, normal - 8851)

Xception + ResNet50V2 Rotation, zoom, shifting
horizontal/vertical flip

Accuracy: 0.914

[43] 2331 (COVID - 231, No finding -
1050, pneumonia - 1050)

CapsNet Horizontal flip, width and height shift Accuracy: 0.8422

TABLE 18 Comparison of the proposed COVID-19 diagnostic methods with other deep learning methods developed using radiology images (part-4).

[44] 5982 (COVID - 1765, normal, pneumonia) ResNet101 − Accuracy: 0.719

[34] 4352 (COVID - 1292, CAP - 1735, non
pneumonia - 1325)

COVNet − Sensitivity: 0.90

[45] — (COVID, normal, pneumonia) Cascaded network − Sensitivity: 0.8936

[36] 52,000 (healthy - 26,000, COVID - 26,000) MobileNetV2, VGG19,
ResNet101

Rotation, horizontal flip,
width and height shift

Accuracy: 0.98,
Accuracy: 0.95,
Accuracy: 0.95

[37] 835 (COVID - 420, normal - 415) GAN + CNN cGAN Accuracy: 0.987

[38] 1127 (normal - 127, COVID - 500,
pneumonia - 500)

DarkCovidNet − Accuracy: 0.8786
Precision: 0.9135

chest X-ray images categorized into four classes and employed
transfer learning by initializing the pre-trained weights of the
selected architectures. We proposed an ensemble model that
combines the predictions of DenseNet201, Xception, and
EfficientNetB7 using an attention mechanism. The attention
mechanism assigns weights to each model’s prediction based on
its performance on the validation set. While designing the pro-
posed architectures we encountered several settings by adding

or removing certain components, such as convolution blocks,
utilizing different activation functions, or replacing dense layers
and batch normalization layers with convolution and observed
the strengths and weaknesses of each architecture in COVID-
19 detection. The results shown in the Table 5–7 indicate
each model’s performance on its own as well as the advance-
ment achieved through the proposed attention-based ensemble
model. The ensemble model leverages the complementary
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SAYEED ET AL. 2413

TABLE 19 Comparison of the proposed COVID-19 diagnostic methods with other deep learning methods developed using radiology images (part-5).

[38] 627 (COVID - 127, Normal - 500) DarkCovidNet − Accuracy: 0.9897
Precision: 0.9846

Model 1 proposed 13,748 (Normal - 10192, COVID - 3616) Residual U-Net & ensemble(Xception)
DenseNet201, EfficientNetB7) + attention

N/A Accuracy: 0.9688

Model 1 proposed 15,153 (Normal - 10192, COVID - 3616, viral
pneumonia - 1345)

Residual U-Net & ensemble(Xception)
DenseNet201, EfficientNetB7) + attention

N/A Accuracy: 0.906

Model 1 proposed 21,165 (Normal - 10192, COVID - 3616, viral
pneumonia - 1345, lung opacity - 6012)

Residual U-Net & ensemble(Xception)
DenseNet201, EfficientNetB7) + attention

N/A Accuracy: 0.8589

Model 2 is being
proposed

13,748 (Normal - 10192, COVID - 3616) Residual U-Net & ensemble(Xception)
DenseNet201, EfficientNetB7) + attention

N/A Accuracy: 0.9821

TABLE 20 Comparison of the proposed COVID-19 diagnostic methods with other deep learning methods developed using radiology images (part-6).

Model 2 is being proposed 15,153 (normal - 10192, COVID - 3616, viral
pneumonia - 1345)

Residual U-Net & ensemble(Xception)
DenseNet201, EfficientNetB7) + attention

N/A Accuracy: 0.934

Model 2 is being proposed 21,165 (normal - 10192, COVID - 3616, viral
pneumonia - 1345, lung opacity - 6012)

Residual U-Net & ensemble(Xception)
DenseNet201, EfficientNetB7) + attention

N/A Accuracy: 0.8906

features learned by different architectures, leading to improved
classification accuracy.

5.5 Discussion

In this study, we have developed a deep convolutional neural
network architecture for automatic COVID-19 detection in a
computer-aided diagnosis model utilizing segmented chest X-
ray images. After utilizing the ResUNet model to segment the
lung portion from X-ray images, we used an ensemble of three
pre-trained models (DenseNet201, Xception, and Efficient-
NetB7) to achieve enhanced prediction accuracy. CXR images
were chosen over more traditional means because they are less
expensive, simpler to use, and faster. The ResUNet Model was
chosen for its quicker memory access and shorter process-
ing times; reasonable performance with fewer parameters. We
have a large dataset with a lot of images, thus implementing
class imbalance techniques can be computationally expensive
and resource-intensive, requiring a lot more processing power
and memory space. Moreover, important information in the
image or the quality of the image may occasionally be dis-
torted as a result of geometric transformations. The intended
meaning may change or details may be lost as a result of
this distortion. Additionally, the findings could be erroneous
depending on the quality of the transformation or the param-
eters that were utilized. Because of this, we have disregarded
geometrical transformations and image enhancement. Transfer
learning has received praise for reducing resource consump-
tion and providing effective training. The slight class imbalance
challenges associated with our dataset are addressed by using
ensembled technology and fine-tuned transfer learning models,
which contribute to enhancing overall performance, particularly
for minority classes. To solve the problem of vanishing gra-
dients and limit the number of parameters, DenseNet-201 is

employed. To achieve greater accuracy and smaller footprints,
EfficientNetB7 is used. The reason Xception was picked is that
it classifies things thoroughly and into numerous categories.
The attention channel is employed to enhance the interrela-
tions between channels and concentrate on specific extracted
features. The use of ensemble techniques increases the reliabil-
ity and efficiency of forecasts. To the best of our knowledge,
our proposed second model performed better than many pre-
vious cutting-edge experimental types of research, with higher
accuracy readings of 98.21% for two classes, 93.4% for three
classes, and 89.06% for four classes, respectively. We discov-
ered that our two proposed ensemble models had outperformed
some other existing models after examining Tables 15–20. Some
studies’ performance might be superior to ours because those
studies’ image types differed in some way from ours. In the
majority of the investigations, there were various numbers of
datasets. The researchers who used the same dataset as ours may
have performed better since they used manual preprocessing
approaches, and some of them have taken the accuracy of their
validation data as their final accuracy rather than doing exper-
iments on unseen image data. The dataset’s owner, the paper
[21], published a better performance on classes other than ours
and the usage of image-enhancing techniques prior to classifica-
tion might have resulted in improved accuracy. Other than that,
our proposed model worked effectively even without any image
enhancement or preprocessing methods.

6 CONCLUSION

Controlling infectious diseases and pandemic circumstances like
the current COVID-19 requires a quick diagnosis technique.
The COVID-19 virus spread like wildfire and had an impact
on the global economy. A good substitute to outperform the
results of the current investigations is AI-based technology.
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2414 SAYEED ET AL.

Apart from what we contributed to the research, there are
usually certain limitations that we were unable to overcome.
Firstly, our dataset has not been used in clinical trials. Field
data collection and accurate annotation performed in person
may increase efficiency. As there are currently only four dif-
ferent image class types in the dataset, we must evaluate the
suggested approach using chest radiography images of other
sorts of diseases in order to generalize it. An important obstacle
to performing classification was an unbalanced dataset count.
Moreover, identification of the true class label is a difficult
operation to do because of the CXR images’ ground glass opac-
ity. With regard to accuracy and computational time, our deep
learning-based approach for COVID diagnosis still has a lot
of room for growth. Applying ensemble to segmentation may
be the focus of our future study. More hybrid deep model
exploration is possible. The model’s accuracy and dependability
can be increased by more hyperparameter testing and adjust-
ment on unobserved data. The image’s hot regions can be
emphasized using Grad-CAM-based visualization. A thorough
experiment can be performed with some experienced profes-
sionals. In order for a model to be considered robust, it must
be able to generalize across a variety of populations, includ-
ing individuals with varied genetic backgrounds and geographic
locations. More and more training on data from multiple places
is required for the model to operate more effectively. It’s cru-
cial to remember that doctors and other medical professionals
frequently use multiple diagnostic tools to find COVID-19. To
make a more reliable diagnosis, a combination of techniques is
used instead, including clinical evaluation, laboratory tests, and
imaging. In addition to other diagnostic techniques like RT-PCR
testing and CT imaging, our proposed model should be viewed
as a complementary tool. Combining various diagnostic modal-
ities can potentially increase precision and reliability in general.
It is anticipated that the impressive accuracy of the proposed
segmentation and classification identification technique noted
in the Section 5, in the COVID-19 worldwide epidemic will
establish a mechanism for COVID-19 patients to lower the bur-
den and viral proliferation associated with COVID-19 clinical
diagnostics. We can infer that this study has theoretical sig-
nificance for developing methods to provide robust classifiers
with strong reporting ability as well as usefulness in real-world
applications.
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