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A B S T R A C T

Worldwide 1.3 billion tons of food is being wasted yearly from production to household level. This is an alarming

situation as this food wastes create not only environmental and health issues but also economic crisis.

Interestingly these food wastes are rich sources of a wide variety of bioactive molecules. Modern methods and

technologies have to be adopted to utilize these food wastes for their efficient conversion into value-added

products. Rather than dumping or burning the food wastes, these can be exploited as new sources for the

production of useful bioactive molecules, which in turn will reduce the food wastes effectively. The bioactives

and biopolymers produced from food wastes will be cost-effective, which, will enhance the market requirement.

This review summarizes the existing and advancements in the extraction of bioactive compounds from food

waste andmicrobial fermentation of food waste into polymers and its applications.

1. Introduction

Food is one of the basic needs of human beings. Enormous quan-

tities of food are being wasted, starting from primary production tothe

ultimate consumption of food. These agro-industrial and household

food wastes are usually dumped in landfills or burned, which creates

serious environmental and health issues. Parfitt et al. (2010) describes

“food waste” as the food lost during the sale plus final usage by the

consumer rather than lost during the food processing. Food loss occurs

throughout the food chain up to theretail level,whereas food waste

takes place inthe retail and utilization stage. A study conducted by the

Food and Agriculture Organization of United Nations found that the

one-third (approximately 1300 million tons yearly) of the total food

produced for humans is being wasted worldwide (FAO, 2014). The

reasons for food loss and waste could be attributed to many reasons

including the bad climate, use of old techniques in harvesting, lack of

storage facilities and poor usage bythe customer. The various modes by

which food gets lost and wasted are summarized in Table 1.

Food losses and wastes can be reduced, but it cannot be avoided

fully. Food waste includes plant waste which mainly contains peel,

stems, seeds, shells, bran, pulp, residues;and animal wasteincludes

waste from ananimal bred, dairy processing, seafood, and slaughter

waste (Baiano, 2014). These food wastes are enormous sources of

bioactive molecules with wide applications (Ng et al., 2020; Matharu

et al., 2016; Laufenberg et al., 2003). Food wastes can be utilized as

antecedents of various bioactive molecules such as polyphenols, dietary

fibre, carbohydrates and proteins (Arun et al., 2017a, b; Lee et al.,

2020). Thesebioactive molecules have enormous potential to be used as

functional foods (Kumar, 2015), nutraceutical (Gupta et al., 2017),

pharmaceutical (Baiano, 2014; Sundarraj and Ranganathan, 2018) and

beauty care products (Ribeiro et al., 2013).

If food wastes are exploited for recovering bioactives and biopoly-

mers, this will reduce the cost of production as well as efficiently re-

duces waste content. Hence effective strategies should be adopted to

extract these economically important bioactive molecules using food

wastes as resources. This review outlines the types and nature of the

waste that arise from food, the bioactive components in the waste, their

isolation techniques, the sustainable utilization of the bioactive com-

pounds and production of biopolymer through food waste valorization.
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2. Global status of food waste

Along the chain of food supply, waste is produced at different loci

that spread over from the production field to the household

(Ishangulyyev et al., 2019a, b). Food waste is formed during the pre-

harvest and post-harvest processes (Verma et al., 2019). The poor

farming techniques and intense situations like awful climate and pest

attacks cause pre-harvest losses (Parfitt et al., 2010). The post-harvest

losses of food have been extensively studied by the Food and Agri-

culture Organization (FAO) of the United Nations. The recent report of

FAO (2019) reveals that 14 % of food is being wasted all over the world,

and in region-wise Central and Southern Asia together accounts for the

highest rate (21 %) of food losses followed by Northern America and

Europe (16 %). Australia and New Zealand region record the least food

loss of 6 %. Lipinski et al. (2013) reported that 56 % of the world's total

food waste is generated by the developed and industrialized nations of

Europe, North America and countries like China, Japan and South

Korea together. In the context of commodities, the FAO (2019) reports

showed that higher rate of loss occurs among roots, tubers, and oilseeds

(25%) followed by fruits and vegetables (21 %). Cereals and pulses lose

only up to 8 %. The meat and animal products loss is 12 % (FAO, 2019)

which mainly occurs due to improper packaging, storage, transporta-

tion, failing in consuming before the expiry date and dumping from

markets after expiry dates not consuming before the expiration date

(Priefer et al., 2013). The household waste mainly contains food waste,

and awkwardly in developed nations, 40 % of food loss occurs at the

consumer level (Gustavsson et al., 2011; Bond et al., 2013). The high

carbon content of food waste is harmful as it is estimated that global

food waste generates 4.4 gigatonnes of CO2 which will significantly

contribute to global warming (Emission Database for Global

Atmospheric Research, 2012; Sims et al., 2014).

3. Extraction of bioactive compounds from agricultural and food

wastes

The bioactive molecules such as polyphenols, antibiotics, pigments

and alkaloids; and biopolymers such as dietary fibre, proteins, poly-

saccharides and lipids can be extracted from food wastes. These

bioactives possess biological properties such as antioxidant, anti-

diabetic, anti-inflammation,cardiovascular protection and anticancer

activities. Biopolymers are utilized in water treatment, biomedical

zone, energy sector, andthe food industry. If the procedures for ex-

tracting these molecules are economically viable, increased attention

will be drawn towards food waste as a source.

The active compounds present in food wastes have to be extracted

from the core matrix through physical, chemical and biochemical

methods. Different techniques have been used for the extraction of

bioactives, and these processes repeatedly get modified for better pro-

duction. Agro-industrial residues are rich in cellulose, hemicellulose

and lignin. These polymers interfere with the extraction procedures,

and hence some pre-treatment procedures have to be done for proper

extraction of bioactives from these food wastes.

Physical, chemical and biological methods are employed before

extraction is initiated. Physical pre-treatment includes size reduction by

milling, steam treatment, hydrothermolysis, microwave an ultrasonic

treatments (Yoo et al., 2011; Zheng and Rehmann, 2014; Oberoi et al.,

2011; Sarkar et al., 2012). Treatment with alkali, acid, calcium hy-

droxide, ammonia, organic solvents and hydrogen peroxide is usually

followed in chemical pre-treatments (Sills and Gossett, 2011; Kaur

et al., 2012; Liao et al., 2007; Holtzapple et al., 1992; Nakamura et al.,

2004; Ichwan and Son, 2011). Biological pre-treatment involves

treating with enzymes directly or with the microorganisms, which

produces enzymes that can degrade cellulose and lignin (Xiao et al.,

2012).

Pre-treatment matrix is more acquiescent to extraction

procedures.However, there is no single extraction technique and it has

to be determined based on waste content, uniformity, aggregation

phase and many more (Socaci et al., 2017). Some of the extraction

techniques are discussed below and the details of bioactives extracted

by these extraction methods are summarized in Table 2.The compara-

tive advantages and disadvantages of different extraction methods are

also included.

3.1. Solid-liquid extraction

Solid-liquid extraction, described in AOAC protocols (Method

43.290, AOAC 1990a, b), is the base of several analytical procedures

that permits removal of soluble constituents from solids using water

and/or organic solvents. This method works on the principle of osmosis

and diffusion by which the extractable components present in a solid

matrix will move to the liquid in which the matrix is immersed

(Naviglio et al., 2019). This is one of the oldest and commonly used

techniquesutilized to extract bioactives. At optimized conditions such

as pH, temperature, weight/volume ratio, the polarity of solvents solid-

liquid extraction gives better yield (Pompeu et al., 2009). The use of

harmful solvents and the long time period for the extraction are the

major drawback of this technique (Proestos and Komaitis, 2008).

Nevertheless, this technique has wide applications and can be in-

corporated with other extraction techniques to overcome the draw-

backs.

3.2. Soxhlet extraction

Soxhlet extraction (Method 43.290, AOAC 1990a, b) like solid-li-

quid extraction works on the principle of osmosis and diffusion, along

with heating the system. This method washes the core material con-

tinuously, which aids the rapid solubilization of the desired component.

This technique is not suitable for the extraction of heat liable

Table 1

Details about food loss and food waste.

Food lose/waste Type Mode Percentage Reference

Food lose Agricultural lose Damage, spillage through harvest and sorting process, Harvesting method, Harvesting

timing

2–20 % FAO, 2011

Ishangulyyev et al., 2019a, b

Kumar et al., 2017

Postharvest lose Lose during handling, storage and movement from field to processing and distribution

centres

up to 19 % FAO, 2011

Processing lose Lose occurring at processing stage 0.5–25 % FAO, 2011

Food waste Distribution waste Wasted in markets due to inappropriate storage, less demand and expiry period,

Contamination of transportation,

1–17 % Kummu et al., 2012

Inappropriate conveyance conditions Martinez et al., 2014

Consumption waste Loss and waste by the customer, 1–30 % Kummu et al., 2012

Individual attitude, Cooking process and method, storage in household, over cooking,

Household culture

Ishangulyyev et al., 2019a, b

Schanes et al., 2018
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Table 2

Details of the bioactives extracted from food wastes by various extraction methods.

Extraction Method Compounds extracted Source Advantages Limitations Reference

Solid-liquid extraction Pectin Apple pomace, Citrus peel, Sugar

beet, Sunflower heads, wastes

from tropical fruits

Separation rate is faster Easy handling with little manual

efforts High reproducibility

Suitable for natural compounds from plants Waldron (2009); Abd-Talib

et al., 2014

Flavonones Citrus peels and residues from

segments and seeds after pressing

Waldron (2009)

Dietary fibre Apple pomace Schieber et al. (2003)

Phenolic compounds Apple pomace, Plantain

inflorescence, spent cumin,

pomegranate peel

Kołodziejczyk et al. (2007);

Ieri et al. (2011)

γ-oryzanol Rice bran Oliveira et al. (2012)

β-glucans Barley bran Izydorczyk and Dexter,

2008

Lignans Flax seeds Sainvitu et al. (2012)

Proteins Hazelnuts meal - oil crops Aydemir et al. (2014)

Polysaccharies Brewers’ spent grain - cereals Niemi et al. (2012a)

Soxhlet extraction Lipids Brewers’ spent grain - cereals Widely used classical Technique Basic model and easy to

handle

Time consuming Not eco-friendly and need large

quantities of solvents

Niemi et al. (2012b); Azmir

et al., 2013

Microwave assisted

extraction

Phenolic acids Wheat bran Highly selectable towards desired extracts High yield with

less extraction time Economical compared to solvent

extraction Operation is simple and highly economical

compared to supercritical fluid extraction Extraction time

is short compared to ultrasonic-assisted extraction

Expensive Difficult handling compared to ultrasonic-

assisted extraction Not eco-friendly due to

involvement of solvents Extraction yieldd is less for

non polar compounds

Oufnac (2006); Kumar et al.,

2016

Supercritical fluid

extraction

Caffeine Green tea leaves Eco-friendly due to less involvement of solvent Provides

high mass transfer due to low viscosity and high diffusion

coefficient than liquid solvent extraction Highly suitable

for volatile compounds

Costly and not suitable for polar compounds Perva-Uzunalić et al.

(2004b); De Marco et al.,

2018

Lycopene and β-carotene Tomato pomace Baysal et al. (2000)

Essential oils Chamomile Kotnik et al. (2007)

Capsaicinoids and colour

components

Chilli pepper Perva-Uzunalić et al.

(2004a)

Oil Rice bran Perretti et al. (2003)

Lipids Grape seeds Prado et al. (2012)

Polyphenols Grape seeds Agostini et al. (2012)

Carotenoids Sea buckthorn seeds Kagliwal et al. (2011)

Ultra sound assisted

extraction

Polyphenols Rape seeds, apple pomace High yields Save energy and power Less chemicals Proper frequency optimisation is required for

maximum yield.

Yu et al. (2016); Pingret

et al. (2012); Singh et al,

2017

Carotenoids Citrus peel Sun et al. (2011)

Proteins Rape seed meal Yu et al. (2016)

Steam current

distillation

Essential oil Flaveriabidentis Wei et al. (2012)

Pulsed electric field

extraction

Phytosterols Maize High Yiels and less time Suitable for heat labile

compounds

High level optimisation is needed Guderjan et al. (2005)

Anthocyanins Grape skin Corralesa et al. (2008)

Accelerated solvent

extraction

Polyphenols Potato peel Luthria (2012)

Subcritical water

extraction

Polyphenols Canola seed meal Hassas-Roudsari et al.

(2009)

Catechins and

proanthocyanidins

Wine related products Garc´ıa-Marino et al. (2006)

(continued on next page)
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biomolecules (Jensen, 2007) and uses a fair amount of energy, also, and

this is important in scaling up.

The main disadvantages of classical extraction methods are less

purity, use of costly solvents, not eco-friendly,time-consuming, de-

gradation of heat-sensitive compounds and less extraction selectivity.

To overcome these limitations, several novel techniques have been

developed.

3.3. Microwave-assisted extraction

Microwave-assisted extraction uses microwaves to heat the matrix-

solvent mixture to enhance bioactive extraction. These electromagnetic

waves act on the total volume rather than heating the surface and di-

rectly heat the matrix-solvent mixture, which in turn reduces the time

for extraction. This method is preferred over the solid-liquid system for

the extraction of plant bioactives, and this technique is not suitable for

scale-up due to the complex mass transfer involved (Chan et al., 2015).

Extraction of natural products and volatile oils by this method has been

patented (Pare et al., 1991; Pare, 1994). This method can extract nat-

ural compounds efficiently and rapidly as compared to classical ex-

traction techniques.This technique is considered as eco-friendly and

avoids the use of harsh solvents. Dorta et al. (2013) compared micro-

wave-assisted extraction and conventional solvent extraction for

bioactive extractions from mango peel. They reported that they

achieved 6 times higher amount of bioactive molecules than the con-

ventional method.

3.4. Supercritical fluid extraction

Supercritical fluid extraction uses an extraction solvent which is

supercritical (Sharif et al., 2014). The supercritical carbon dioxide (in-

between gas and liquid) is preferably used in this technique. The fluid

can be regulated efficiently for extraction purpose, and this nature al-

lows the user to remove the fluid from the matrix in a better way when

compared to other solid-liquid extraction protocols. In this technique

fluid with higher permeability spread over the matrix in a faster rate.

The system works at room temperature and is suitable for heat-labile

bioactives, especially non-polar compounds. However, the system is

very costly and complicated.

3.5. Ultrasound-assisted extraction

Ultrasonication uses high-frequency sound waves which cause ex-

pansion and compression cycles in the matter. Ina liquid medium, the

waves produced by the sound create small bubbles which grow and

collapse. Towards matrix, the bubble collapse hasa strong impact on the

solid surface and causes solvent penetration, thus triggering the dis-

charge of bioactives (Luque-Garcia and de Castro, 2003).

3.6. Steam current distillation

Steam current distillation is used for the extraction of essential oils

works on the principle that the vapour pressure of the volatile oil makes

them separated from the matrix. Steam is forcefully passed to a con-

tainer containing the matrixincreasing the vapour pressureof the com-

ponents which make them to release the matrix in gaseous form. This is

further condensed and collected.

3.7. Pulsed electric field extraction

When a pulsed electric field above 1 V (above trans-membrane po-

tential) was applied over cells, membrane depolarization occurs, and

micropores are formed in the cell membrane which facilitates the re-

lease of intracellular bioactives from the cells (Fincan et al., 2004; Ho

and Mittal, 1996). This technique is suitable for the extraction of heat-

labile compounds.T
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3.8. Accelerated solvent extraction

This extraction technique keeps the solvent in the liquid phase at

temperatures higher than the boiling point. In effect, this increased

temperature speeds up the release of bioactives from the matrix in a

better time period. This technique is adopted to extract constituents

from core matrix with intricate chemical-physical nature (Naviglio

et al., 2019).

3.9. Subcritical water extraction

Water under high temperature (100–374 °C) and high pressure

(10–60 bar) wereused to carry out the extraction. At these conditions

applied the dielectric constant of water become similar to that of some

organic solvents. Thus this technique can replace the organic solvent for

the extraction of non-polar bioactives from various matrices (Plaza

et al., 2010).

3.10. Enzyme assisted extraction

Enzymes can be used to break the cell wall and membrane to release

the bioactives. This is an efficient method for the extraction of bioac-

tives, as this method can avoid the usage of organic solvents. Enzyme

assisted extraction, using enzymes such as cellulase, pectinase and

hemicellulase; facilitates the release of bound bioactives such as poly-

phenols which are foundto some extent inbound with cell wall matrix

(Fu et al., 2008; Puri et al., 2012).This method is considered as an

environment friendly for the extraction of oils and natural bioactives

compounds since water is used instead of costly solvents (Puri et al.,

2012).

3.11. Rapid solid-liquid extraction

Naviglio (2000) established this technique which does not require

heating for better yield. The filter bag with dried matrix was placed in

Naviglio extractor with pressure 8–9 bars at room temperature. De-

pending on the matrix, this cycle was repeated up to 30 times to

complete exhaustion of the matrix.

4. Valorization of waste and by-products from the agro-food

industry using fermentationprocesses and enzyme treatments

A significant amount of food wastes have been disposing of con-

tinuously by the food processing industries in the last few decades.

Reports suggested that 14 million metric tons of wastes are generated

by food processing industries (Parfitt et al., 2010). Ajila et al. (2010)

reported that approximately 30 % of food wastes are emerging from

fruits and vegetable processing sector. FAO reports (2014) showed that

the Philippines, China, India and USA as the leading food waste pro-

ducers. As discussed in the introduction,these food wastes cause serious

problems and therefore it is necessary to valorize these food wastes into

value-added products or to use it as a source of extracting various

bioactives (Saini et al., 2019).

Bioactive molecules are plant-derived products which exhibit var-

ious biological properties (Studdert et al., 2011). Interestingly these

molecules are abundantly present in food wastes, and these can be

extracted by various extraction techniques discussed earlier (Kumar

et al., 2017; Lavelli et al., 2017; Maina et al., 2017; Pagano et al.,

2017). These food wastes are enriched with economic as well as health

significant constituents such as sugars, vitamins, minerals, enzymes,

pigments, flavours, functional ingredients, micronutrients, nu-

traceuticals, active pharmaceutical ingredients, phytochemicals, biofuel

and biomaterials (Lai et al., 2017; Sadh et al., 2018).

Over 20 million metric tons of animal wastes are generated annually

in Europe (Henchion et al., 2016). At present, these wastes are used as

fertilizers and animal feed (Alao et al., 2017). Since these animal wastes

are rich in proteins, efficient exploitation can increase the income of the

slaughter industry and reduces pollution hazards (Henchion et al.,

2016; Toldra et al., 2016). Enzymatic hydrolysis of animal waste yields

protein hydrolysates, which possess biological properties and owns

solubility, foaming and emulsifying properties that allows it to use as

food ingredients (Fu et al., 2018; Lafarga and Hayes, 2014; He et al.,

2013).

Fermentation is one of the primaeval techniques utilized for gen-

erating value-added products. Solid-state, submerged and liquid fer-

mentation are most commonly used fermentation techniques. Among

these, solid-state and submerged fermentation methods are performed

for extracting economically important bioactives using substrates such

as food wastes (Subramaniyam and Vimala, 2012).

4.1. Solid-state fermentation

Solid-state fermentation is initiated by growing microbes (bacteria/

fungi) on solid substrates which force the microbes to give maximum

attention to the substrate. This technique is effective in waste valor-

ization as the microbes successfully convert waste to value-added pro-

ducts (Thomas et al., 2013; Chen and He, 2012). Low energy con-

sumption and high yield of value-added products from wastes make this

process very attractive (Yazid et al., 2017). This process is of two types

– (i) substrate act as support as well as a nutrition source, and (ii)

substrate act as support in semi-liquid medium (Pandey, 2003). Solid-

state fermentation is particularly gaining attention due to its com-

paratively easy process, use of low-cost biomaterials with minimal pre-

treatment requirement, less wastewater production, and provides a

supportivemicroenvironment for microbial growth (Wang and Yang,

2007).Solid-state fermentation has been reported to extract proteins,

lycopene, and phenolic contents from food wastes (Madhumithah et al.,

2011; Dhanasekaran et al., 2011; Jamal et al., 2016; Schmidt et al.,

2014). Bioethanol, indol-3 acetic acid, protease, xanthan, phenolic

content, antioxidants, neomycin, rifamycin, citric acid are a few of the

compounds produced by solid-state fermentation (Hossain and Fazliny,

2010; Swain and Ray, 2008; Chutmanop et al., 2008; Vidhyalakshmi

et al., 2012; Sousa and Correia, 2012; Dulf et al., 2017; Vastrad and

Neelagund, 2011, 2012; Ali and Vidhale, 2013).

4.2. Submerged fermentation

In this type of fermentation, the substrate is liquefied or immersed

in the water source. The only disadvantage is that the method requires

more space, energy and water. This method is widely used for enzyme

production than the solid-state fermentation. Enzymes such as pecti-

nase, amylase, galactouronase, cellulase have been produced from food

wastes using submerged fermentation (Knob et al., 2014; Vidyalakshmi

et al., 2009; Debing et al., 2006; Budihal and Agsar, 2015; Nema et al.,

2015).

5. Potential use of bioactive compounds from waste in the food,

cosmetic andpharmaceutical industry

Extraction of bioactives from food waste mainly generates income

for food, cosmetic and pharmaceutical industries due to the low cost of

source and abundant presence of these molecules in the discarded

waste. As mentioned earlier, bioactive molecules possess certain health

beneficial effect, which makes them useful as ingredients in developing

functional foods, nutraceuticals, cosmetics and pharmaceutical pro-

ducts. Now consumers are more health-conscious, and hence bioactives

incorporation in food cosmetics and nutraceuticals have been gaining

more importance.

Functional foods are made to enhance health and reduce the risk of

developing diseases. Bioactives are added to fortify the food with other

health beneficial property, and such foods are generally coined as

functional foods. The food wastes are rich in dietary fibre, proteins,

K.B. Arun, et al. Industrial Crops & Products 154 (2020) 112621

5



energy, minerals, vitamins and antioxidants that have been recognised

as a functional food ingredient. The biomolecules extracted from agri-

cultural and animal wastes can be utilized to manufacture functional

foods (Baiano, 2014). The bioactive components such as sterols, toco-

pherols, carotenes, terpenes and polyphenols extracted from food waste

possess antioxidant credential. Hence, these value-adding ingredients

extracted from food waste can be used to formulate functional foods

with enhanced antioxidant property. (Kalogeropoulos et al., 2012).

Plantain inflorescence, which is discarded as the agricultural re-

sidue is rich in dietary fibre and polyphenols and the solvent extracts

possess antioxidant, antidiabetic, cardiovascular protection an antic-

ancer efficacy (Arun et al., 2017a, b). The polyacetylenes falcarinol and

falcarindiol derived from carrots demonstrated anti-inflammatory effect

as it suppresses NFκB (Teodoro, 2019). Fish protein hydrolyzates are

rich in bioactive peptides and have anticoagulant, anticancer and hy-

pocholesterolemic potential. Moreover, fish oils are excellent sources of

omega-3 fatty acids, while crustaceans and seaweeds contain car-

otenoids and phenolic compounds with antioxidant properties (Lordan

et al., 2011).Curcumin, an important molecule with diverse biological

applications, extracted from Curcuma species, is widely used by the

traditional medical practitioners (Prakash et al., 2017). The extracts of

soy, tomato spinach, oats are rich in isoflavones, lycopene, lutein, an β-

Glucanrespectively and are used as food ingredients to enhance human

health (Hasler, 2002). Biologically active sulfur components - allicin

and allylic sulfides present in Allium sativum are known to reduce blood

pressure (Silagy and Neil, 1994). The essential oils are receiving con-

siderable notice of food industries due to its antimicrobial and anti-

oxidant potential (Prakash et al., 2017). Dietary fibres are effective in

stimulating the growth of probiotic bacteria and prevent cardiovascular

diseases (Arun et al., 2019; Beer et al., 1995; Bouhnik et al., 1997).

Linolenic acid inhibits carcinogenesis, and decrease body fat (Belury,

1995; Sébédio et al., 2003). Terpenes such as carotenoids, and limo-

noids are biological antioxidants and have a cryoprotective effect

(Snodderly, 1995; Meister et al., 1999); and saponins have an im-

munostimulatory and cholesterol-lowering effect (Rao and Gurfinkel,

2000). Phenolic acids, flavonoids and lignans have antioxidant prop-

erty, lowers the risk of colon cancer and heart diseases (Ferguson et al.,

2005; Mirmiran et al., 2009; Arts and Hollman, 2005).The phenolic

compounds, carotenoids, vitamin C and dietary fibre present in mango

peel are known to lower the risk of cancer, cataracts, Alzheimer’s dis-

ease and Parkinson’s disease (Ayala-Zavala et al., 2010).

Bioactive molecules obtained from winery wastes exhibit in vitro

and in vivo biological activities. They are successful agents for preven-

tion of degenerative processes during their assimilation in functional

foods, nutraceuticals, and cosmetics (Teixeira et al., 2014). These are

commonly utilized for the production of pharmaceuticals and as food

additives to increase the functionality of foods (Ayala-Zavala et al.,

2010). Rudra et al. (2015) had reported the usage of agro-industrial

residues for the development of value-added products such as cosmetics

and medicines. Cellulose from agro-industrial residues was used in

manufacturing pharmaceuticals and cosmetics (Klemm et al., 2005).

Ferulic acid extracted from pineapple peel is used in the food and

cosmetic industry (Rudra et al., 2015). Lycopene from tomato pomace,

tyrosol from olive cake, hesperidin and naringin from citrus pulp,

quercetin from apple pomace, proanthocyanidins and resveratrol from

grape pomace, ellagic acid from pomegranate pulp, anthocyanins from

onion pomace, alliin and allicin from garlic extract, and gallic acids

from mango pulp could be potentially used as skin photoprotectants

(Simitzis, 2018; Menaa et al., 2014; Lorencini et al., 2020).The tyr-

osinase inhibitory activity of polypeptides from oyster shell attributes

skin-whitening effects (Baiano, 2014).

Antioxidants extracted from food wastes such as citrus wastes and

lobster processing wastes have the potential to use as pharmaceuticals

(Mahato et al., 2018; Nguyen et al., 2017).Chitin derived from lobster

processing wastes has numerous applications in food, agriculture,

healthcare products, environmental sector, pharmaceuticals, and

Fig. 1. Schematic representation of valorization of orange and mango peel.
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biomedicine (Kaur and Dhillon, 2013; Muzzarelli, 1989; Sandford,

1989; Synowiecki and Al-Khateeb, 1997).Collagen isolated from var-

ious food wastes can be used for drug delivery (Friess, 1998). Gelatin is

used as a natural antioxidant and antihypertensive agent, and it also

and to improve the absorption of dietary calcium (Choonpicharn et al.,

2015). Melatonin, extracted from the pineal gland, is used for the

treatment of schizophrenia, insomnia, and other mental diseases

(Morera-Fumero and Abreu-Gonzalez, 2013). Bile, extracted from the

gall bladder, is used for treating bile tract disorders and constipation.

Calcium carbonate from oyster shells is used as calcium increment

(Baiano, 2014).

6. Current status of food waste valorisation around the world:

Special reference to orange and mango peel

Peels are one of the important by-products from fruits and some

vegetables and are an enormous source of bioactive compounds and

dietary fibre (Fig. 1) (Arun et al., 2016, 2017a, b; Arun et al., 2018).

Peel from citrus (50 %), banana (35 %), mango (35 %) and guava (10%)

are typically wasted without use (Gupta and Joshi, 2000). Citrus fruits

(oranges, lemons, clementines, limes, grapefruits, and tangerines), are

one of the important fruit commodities widely consumed by humans.

70 % of the world’s citrus production is owned by countries such as

Brazil, USA, India, China, and Japan. Peel accounts for 50 % of the

weight of the citrus. It is estimated that from 94.8 million tons of citrus

fruits produced globally,over 31.2 million metric tons of citrus fruits are

processed which results in generating 15.6 million metric tons of peel

(Lin et al., 2013). Sugars, cellulose, hemicellulose, pectin and D-limo-

nene are important chemical constituents present in citrus peels. Citrus

peels have been valorised to produce pectin, pectic enzyme, dietary

fibre, bioethanol, methane, succinic acid and D-limonene (Lin et al.,

2013). D-limonene is an important compound with an antiviral (Nagy

et al., 2018; Astani and Schnitzler, 2014), anticancer (Yu et al., 2018;

Mukhtar et al., 2018) and anti-inflammatory (Yu et al., 2017; d’Alessio

et al., 2013) activities. India is the largest producer of mangoes, and

these are processed to prepare various products (Berardini et al., 2005).

Peel and kernel, which account for 30–55% of the mango are the major

waste generating from mango processing industries (Puligundla et al.,

2014). Mango peel contains pectin, cellulose, hemicelluloses, lipids,

proteins, polyphenols and carotenoids (Ajila et al., 2007). Mango peel

has been valorised for the production of pectin (Kumar et al., 2012),

phenolic compounds (Palmeira et al., 2012), ethanol (Reddy et al.,

2011), pectinases (Kumar et al., 2012), cellulase (Saravanan et al.,

2012), lactic acid (Jawad et al., 2013), and biogas (Walia et al., 2013).

The main bioactive compounds isolated from mango peel were flava-

nols (epicatechin-gallate, epigallocatechin-gallate), flavonols (quer-

cetin-3-O-glucopyranoside and rutin), and phenolic acids (gallic acid, o-

coumaric acid, and syringic acid) (Coelho et al., 2019).

7. Safety aspects of animal waste for valorization

The industries which produce livestock commodities such as milk,

meat, poultry, and fish produce enormous wastes that are unsafe to the

environment if not managed properly (Ogbuewu et al., 2012). The

water effluent expelled by these industries possess high BOD/COD level

and is rich in nitrogen. Strictly regulated pre-treatment protocols are

implemented before the disposal of livestock wastes. These pre-treat-

ment protocols usually involve incineration (if the animals are diseased

or infected, and parts that are not suitable for consumption), anaerobic

digestion (dead animals, manure) and finally, recovery of value-added

products from discarded products (improper packaging, storage and

expiry date) (Meher et al., 2006; Kosseva et al., 2003).

8. Polyhydroxyalkanoates (PHA) production using food waste as a

carbon source

Among the different classes of bio-products derived from food waste

are the polyhydroxyalkanoates (PHAs), a class of very interesting bio-

polymer produced by different microbial cells in the form of granules

inside the cytoplasm. Extensive studies have been done so far for the

production of PHA using food waste. This includes optimization of PHA

accumulation, yield and production capacity. Carbohydrates like glu-

cose, fructose, maltose, lactose and alkanes like hexane, octane, alka-

noic acids like acetic acid, propionic acid, butyric acids, and oleic acid,

alcohols like ethanol, methanol, and glycerol, gases like methane and

carbon dioxide, and different acids are considered as key carbon

sources for the biosynthesis of PHA (Poli et al., 2011). Severalvaluable

carbon sources are employed in the industrial production of PHA such

as pure glucose and sucrose and alkanes, and fatty acids. The costly and

unaffordable nutrients like amino acids and phosphate are not eco-

nomical, and this results in difficulty in the execution of many devel-

oped bioprocesses. Cost-effectiveness is very important for developing

and implementing bioprocesses. So the selection of affordable nutrients

such as carbon and nitrogen nutrients plays a key role in microbial

fermentation (Liang and Qi, 2014).

Fruits and vegetables can be a potentialcarbon source for the fer-

mentativeproduction of PHA. Most of the fruit products (Apple juice,

citrus juice) are prepared through the extraction of 50% of fruits. This

resulted in the generation of fruits residues which remain as waste.

These wastes contain large amounts of sugars and low amount of pro-

teins. Recently jambul seeds were employed as sole carbon sources for

the production of PHA and production reached 41.7 g/l and 42.2 %

respectively (Preethi et al., 2012). Pomace fruits were investigated for

PHA production by Follonier et al. (2014). The achieved concentration

of biomass was 10.2 g L−1, which contain12.4 wt % mcl-PHA.

Ganzeveld et al. (1999) used fruits and vegetable waste to produce PHB

by the fermentation of R. eutrophus with the oxygen-limited atmo-

sphere. The working volume of fermentor was 750ml, with the con-

trolled temperature at 30 °C. Bacterial PHA production can be carried

out by using either pure or mixed microbial culture. Mixed microbial

fermentation with high PHA production capacity has been re-

commended as a solution for the reduction of the costs of pure cultures

and is highly efficient for the production of PHA from food waste

(Colombo et al., 2017). The concentration obtained was 1.1 g PHBV, or

40 % (w/w) of the cell dry weight, was obtained. Potent producers of

PHA are listed in Table 3, and engineered bacteria which produces PHA

is listed in Table 4.

8.1. Microbial fermentation techniques for PHA production from food waste

With the advent of a large number of cultivation techniques for the

production of PHA, the type of bacterial fermentation plays a key role

in the mass production of PHA. Industrial fermentation technology uses

batch and fed-batch fermentation technologies. For the production of

PHA, the fed-batch method was proven as the best method which yields

more amount of PHA compared to the batch process. The N/P ration is

less in the fed-batch process, and thus cell density can be monitored

easily by adjusting carbon feeding rate. Thus carbon source con-

centration can be adjusted to give high osmotic pressure for bacteria.

Hafuka et al. (2011) reported a two-stage cultivation technique had

been utilized for the mass cultivation of copolymer of PHB-P(3HB-co-

3 HV). In this technique, bacteria are allowed to grow up to a pre-

determined cell mass without any nutrient limitation. Then cells are

allowed to grow to another cultivation medium with fewer nutrients

and utilize only the supplied single carbon source for the accumulation

of PHA. The main advantage is that cells are not able to divide during

the scarce nutrient stage. However,an increase in cell size and volume

due to intracellular production of PHA.

Many bacteria produce PHB as a consequence of physiological
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stress. Bacterial like Ralstoniaeutrophus and B. megateriumare the potent

producers ofPHB upon stress (Laycock et al., 2014). SSF (Solid State

Fermentation)can be established without water or less water (Pandey,

2003). SSF has the advantage of less energy uptake, high productivity,

less process waste generation, decreased catabolic repression and gen-

eration of value-added products (Hölker et al., 2004). Sustainable uti-

lization of waste can be achieved through the implementation of SSF,

which can use a different variety of food and agro-industrial wastes as

substrates for the fermentation process.

8.2. PHA production using whey protein

Whey is a by-product of dairy industriesand is one of the most in-

teresting food wastes. It is the by-product of cheese making industry

which contains carbohydrate lactose, fats, proteins, minerals, vitamins,

and other essential components for bacterial growth. Many of the sur-

plus whey has to be disposed of, and this disposal leads to severe en-

vironmental issues due to its high pollutant characteristics, and ma-

jority of whey is disposed of in wastewater treatment (Prazeres et al.,

2012; Pescuma et al., 2015).

Recently one study proved that 1.5× 108 tons of whey are produ-

cing worldwide (Koller et al., 2007). When proteins like lactoferrin are

produced using huge whey volume of whey retentate remains as waste

and need to be disposed of. Moreover, acid whey is the by-product of

many dairy products like cream cheese, cottage cheese etc. Processing

of acid whey is difficult due to its highly acidic nature (Lievore et al.,

2015; Ryan and Walsh, 2016). So efficient whey is a major issue faced

by the dairy industry, and thus it makes potential substrate for a carb

for PHA production at industrial scale (Girotto et al., 2015). The in-

efficient disposal of a large volume of whey into the environment can

destroy the chemical and physical nature of the soil, groundwater and

atmosphere (Zhong et al., 2015). C. necator is the best reported highest

producer of PHA, but this bacteria is not capable for lactose or galactose

utilization (Gomez et al., 2012). C. necator was engineered to express β-

galactosidase and galactokinase (Pries et al., 1990). Still lactose hy-

drolysis could not be improved. So recombinant E. coli with the C. ne-

cator PHA biosynthetic genes which utilize glucose is considered as

potential bacteria for PHA production from whey (Lee et al., 1997).

8.3. PHA from waste oil

Waste oils have been used in industries and for food production and

are no longer viable for human use. They are a potential substrate for

the production of PHAs. The main advantages of these oils are ready to

use nature, and it doesn’t require any pre-treatment and can be used

directly in growth media. The potential of Cupriavidus necator H16 to

transform waste oils and tallow to PHAs has been reported by Taniguchi

et al. (2003) The highest PHA accumulation was achieved in this study

when palm oil was used as the substrate (6.8 g/l and 80 % PHB accu-

mulation).

In another study by Fukui and Doi (1998), various plant oils or oleic

acid were used as the substrate for PHA production by C. necator H16.

The bacteria were also tested on other different oils like olive, corn etc.

The copolymer of 3HB with 5mol% (R)-3-hydroxyhexanoate, P(3HB-

co-3HHx) was produced by the engineered strain of C. necator from

soybean oil (Kahar et al., 2004). The fermentation medium used was a

mineral salt medium, and the ammonium chloride concentration (In-

itial) was 4 g l−1. Ammonium chloride was added intermittently to

fermentation medium to restrict nitrogen depletion. The initial con-

centration of Soybean oil was 20 g l−1. The final content of P(3HB) was

85–95 g l−1 and a PHA was 71–74 % (w/w). Füchtenbusch et al. (2000)

cultivated P. oleovorans and R. eutropha with waste for PHA production

under aerobic conditions. Recently Vastano et al. (2019) produced PHA

from waste frying oil using recombinant Escherichia coli and native

Pseudomonas resinovorans, and they achieved 1.5 g L−1 of medium chain

length PHAs and conversion yield of 80%.

8.4. PHA production from spent coffee grounds (SCG)

Spent coffee grounds are the by-product of coffee processing. The

major content (9–15%) of spent coffee grounds is oiled and can be

utilized for further valorization purposes (Al-Hamamre et al., 2012).

The unspent content of the coffee grounds is mainly biomass that can be

hydrolysed and used for the production of PHAs. Obruca et al. (2014a)

reported the use of Burkholderia cepacia for the production of PHA. In

another study by Obruca et al. (2014b) compared the SCG with other

waste generated oil in C. necator H16 for the production of PHA and

concluded that SCG served as the best substrate. In thelaboratory flask

Table 3

Wild type bacteria producing PHA from food waste.

Strain Biopolymer Food source Biopolymer percentage Reference

Cupriavidus necator PHB Pressed juice from oil palm 30 Zahari et al. (2012)

Cupriavidus necator PHB Wheat bran and Rape seed meal 78.9 Kachrimanidou et al. (2016)

Thermus thermophiles HB8 PHA Whey 35.6 Pantazaki et al. (2009)

Cupriavidus necator H16 PHB Soy bean and rapeseed oil 79 Taniguchi et al. (2003)

Psuedomonas PHA Corn oil 35.63 Chaudhry et al. (2011)

Cupriavidus necator PHB Spent coffee Grounds oil 89 Obruca et al. (2014b)

Bacillus firmus PHB Rice straw 89 Sindhu et al. (2013)

Psuedomonas PHA Molasses 20.63 Chaudhry et al. (2011)

Burkholderiasp PHB Sugarcane bagasse 48 Lopes et al (2014)

B. megaterium PHA Cheese whey 51 Obruca et al.(2011)

Methylobacterium sp. PHA Cheese whey 67 Nath et al (2008)

H. pseudoflava PHA Cheese whey 40 Koller et al (2007)

Table 4

Engineered PHB producing organisms from food waste.

Food waste Bacteria Construct Source PHA Biomass % accumulation Reference

Whey E.coli pJC4 Alcaligenes latus PHB 119 80 Ahn et al, 2000

Whey E coli pJP24K Azotobactersps PHB 70 72 Nikel et al, 2006

Whey E.coli – Pseudomonas hydrogenovora DSM 1749 P(3HB) 1.27 12 Koller et al., 2007

Soy waste E. coli pUC19 C. necator PHBV – 23 Law et al, 2004

Starch Aeromonassp pRK415H16 C. necator PHB 1.83 32 Chien and Ho (2008)

Starch E coli pTAmyl, SKB99, pLW487, pET24ma Panibacillus sp. Ralstoniaeutropha PHB 1.24 57.4 Bhatia et al, 2015
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level experiment with SCG oil resulted in the biomass content of 14.2 g/

land PHB content of 70 %. The scale-up of the process enhanced the

biomass weight to 55 g/l and PHB concentration to 89 % in fed-batch

fermentation. The main disadvantage of using SCG is its foaming

nature. In another study, Obruca et al. (2015) extracted oil from SCG

and efficiently transformed into PHA employing Cupriavidus necator

H16. The remaining solid residues after oil extraction can be con-

vertedinto fermentable sugars, which can be further used as a carbon

sourcefor the production of PHAs byBacillus megaterium (YP/

S= 0.04 g/g or Burkholderia cepacia (YP/S=0.24 g/g).

8.5. PHAs production from sugar beet and molasses

Sugarcane industry generated waste has been investigated for the

production of PHA. Molasses are residual syrup which is the by-product

from sugar refining mills. This contains high sucrose and is not good for

consumption (Gomez et al., 2012). Chaudhry et al. (2011) compared

different sugar industry generated waste for the production of PHA

using a Pseudomonas species and found that molasses as the best sub-

strate with the PHA accumulation of 20.63–35.63 %. In another study

by Kulpreecha et al. (2009) Bacillus megaterium BA-019 was cultivated

in molassesand achieved cell weight of 72.7 g /1 and PHA content of 42

%. Sugar beet is another source of high sucrose. Wang et al. (2013)

testedAlcaligeneslatus with sugar beet as the carbon source along with

other nutrient supplements and achieved biomass content of 10.3 g l1

and a PHB yield of 38.66 %.An Italian company has developed several

PHA polymers, Bio-on, based on sugar beet (Babu et al., 2013; Dietrich

et al., 2017).

9. Future prospective

The food loses, and food waste occurring throughout the food chain

from production to household level should be minimized by exploiting

the waste by producing value-added products. Even though various

methods are there for extraction of bioactives and biopolymers from

food waste, new technologies should be dug out for maximum yield

with less investment. This has to be expedited so that the resource and

energy consumption for food processing can be significantly reduced.

Bioactives and biopolymers extracted from food waste must be pro-

moted, which will reduce the expense of fortified foods and increases

the acceptance.

Future valorization techniques should be moulded in such a way

that it should be economically feasible with less environmental impact.

Some of the protocols used for food waste such as anaerobic digestion;

well-crafted chemical techniques for separation; unified bio-conversion

of base compounds to essential molecules and significant prototypes of

biofuel; and advanced extraction techniques for recovering bioactive

molecules have a less environmental impact with better economic

benefits. However, most viable and revolutionary techniques can be

developed only by joining the hands from various scientific disciplines.

For the execution of these cutting-edge techniques to yield best results,

there should be a strong alliance between the scientific community,

industry and government. Efforts should be made from each sector in

food production, processing, marketing and final consuming to mini-

mize generating food waste. Governing bodies should monitories that

industries are adopting novel technologies that reduce food waste and

make aware consumers about the importance of using value-added

products developed from food waste.

10. Conclusion

All these reports reviewed here suggested that food waste, whether

plant-based or animal-based, they are abundant sources of bioactive

molecules and biopolymers which can be effectively incorporated to

develop functional foods, nutraceuticals, beauty care products and

pharmaceuticals. They can also be used for wastewater treatment, bio-

packaging, biodiesel production, enzyme production and so many ap-

plications. Proper identification of waste sources and optimized ex-

traction procedures will give a better yield of bioactives with economic

importance, and this will reduce food waste. However,adequate

awareness should be made among the people to reduce the food loses

and food waste so that we can save the resources for the future gen-

eration.
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