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ABSTRACT: High-throughput screening (HTS), as one of the
key techniques in drug discovery, is frequently used to identify
promising drug candidates in a largely automated and cost-effective
way. One of the necessary conditions for successful HTS
campaigns is a large and diverse compound library, enabling
hundreds of thousands of activity measurements per project. Such
collections of data hold great promise for computational and
experimental drug discovery efforts, especially when leveraged in
combination with modern deep learning techniques, and can
potentially lead to improved drug activity predictions and cheaper
and more effective experimental design. However, existing
collections of machine-learning-ready public datasets do not
exploit the multiple data modalities present in real-world HTS
projects. Thus, the largest fraction of experimental measurements, corresponding to hundreds of thousands of “noisy” activity values
from primary screening, are effectively ignored in the majority of machine learning models of HTS data. To address these limitations,
we introduce Multifidelity PubChem BioAssay (MF-PCBA), a curated collection of 60 datasets that includes two data modalities for
each dataset, corresponding to primary and confirmatory screening, an aspect that we call multif idelity. Multifidelity data accurately
reflect real-world HTS conventions and present a new, challenging task for machine learning: the integration of low- and high-fidelity
measurements through molecular representation learning, taking into account the orders-of-magnitude difference in size between the
primary and confirmatory screens. Here we detail the steps taken to assemble MF-PCBA in terms of data acquisition from PubChem
and the filtering steps required to curate the raw data. We also provide an evaluation of a recent deep-learning-based method for
multifidelity integration across the introduced datasets, demonstrating the benefit of leveraging all HTS modalities, and a discussion
in terms of the roughness of the molecular activity landscape. In total, MF-PCBA contains over 16.6 million unique molecule−
protein interactions. The datasets can be easily assembled by using the source code available at https://github.com/davidbuterez/
mf-pcba.

■ INTRODUCTION
Machine learning (ML) techniques have enabled remarkable
progress in the chemical and physical sciences, particularly in
terms of fast and precise modeling of computationally expensive
processes. Graph neural networks (GNNs), a class of geometric
deep learning algorithms, have recently emerged as one of the
leading ML paradigms for learning directly on the data types
occurring in the life sciences. Thanks to their ability to naturally
learn from non-Euclidean data structures, represented as objects
(nodes) and their connections (edges), GNNs have the
potential to model complex relationships and dependencies
between nodes. Successful examples include but are not limited
to tasks from particle physics,1 simulations of fluid dynamics and
other physical systems,2 quantum chemistry,3 and drug
discovery.4 However, such data-driven efforts are highly
dependent on the quality, quantity, and availability of suitable
data. Thus, a significant amount of research has been devoted to
the development of high-quality datasets that support the
rapidly advancing field of graph representation learning. In

particular, challenging computational chemistry tasks such as
quantum property prediction, drug-like molecule generation,
and few-shot learning have put molecular data at the forefront of
geometric deep learning research.
Publicly available molecular benchmarks span several areas of

chemistry and are often tailored to domain-specific needs. For
example, MoleculeNet is a suite of 16 molecular datasets and
their variations, with tasks from quantum mechanics, physical
chemistry, biophysics, and physiology.5 Consequently, there is a
large variability in terms of the supervised learning task
(regression or classification), number of output predictions/
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classes (multitask learning), dataset size (ranging from under
1000 compounds to over 430,000), and ML-specific concerns
such as the node featurization strategy (atomic coordinates,
atom type, etc.) and the random split strategy. A similarly diverse
effort is Atom3D, a collection of eight tasks formulated
specifically for learning based on three-dimensional molecular
structures, for example, protein-interface prediction and
prediction of ligand binding affinity and small-molecule
properties.6

Experimental and computational advances paved the way to
increasingly large, diverse, and challenging datasets. For
example, althoughQM9 is one of the most well-known quantum
mechanics benchmarks, concerns regarding its size (around
130,000 compounds) and composition (only five atom types
and a maximum of nine heavy atoms per molecule) led to
projects such as Alchemy7 (up to 14 heavy atoms),
PubChemQC8 (quantum properties for up to 3 million
molecules), QMugs9 (over 665,000 diverse molecules, up to
100 heavy atoms per molecule, and quantum properties at
multiple levels of theory), and ANI-1x and ANI-1ccx10

(quantum properties at different levels of theory for 5 million
and 500,000 molecules, respectively). For drug discovery, the
well-known PCBA dataset11 is a collection of high-quality dose
response data, formulated as a multitask learning benchmark
from 128 high-throughput screening (HTS) assays. Models
trained on experimental data of this nature are often used in a
virtual screening setting, with the goal of identifying novel
compounds of therapeutic interest. For the specific task of
virtual screening, an alternative benchmark named LIT-PCBA
was developed,12 addressing limitations of existing datasets such
as hidden molecular biases.
We identified a lack of machine learning benchmarks that

accurately reflect the practical aspects of drug discovery based on
HTS, thus also limiting the potential for innovation in early-
stage drug discovery projects. HTS follows a multitiered
approach consisting of successive screens of drastically varying
size and fidelity, most commonly a low-fidelity primary screen
consisting of up to 2 million molecules in industrial settings and
a high-fidelity confirmatory screen of up to 10,000 compounds.
Usually, the screens are used as successive filters to select the
most promising molecules for further optimization. Despite the
success of HTS in identifying clinical candidates and FDA-
approved drugs,13−15 computational methods have traditionally
neglected the multitiered design of HTS. Existing datasets and
applications, such as PCBA, LIT-PCBA, and approaches based
on HTS fingerprints, are formulated on single-fidelity
data.11,12,16−19 The single-fidelity measurements generally
correspond to the highest-fidelity measurements available
(dose response), which leads either to extremely small datasets
for machine learning (<10,000 compounds) or to highly sparse
representations extracted from hundreds of assays.
Neglecting the multiple modalities of HTS experiments has

the major downside of discarding millions of lower-fidelity
measurements that cover an orders-of-magnitude larger and
more diverse chemical space. Integrating all of the available data
has the potential to improve drug potency predictions, help
guide the experimental design, save costs associated with
multiple expensive experiments, and ultimately lead to the
identification of new drugs. Indeed, we have recently
demonstrated considerable uplifts in predictive performance
when multifidelity data are incorporated through a novel,
specifically designed GNN approach.20 We have also demon-
strated transfer learning capabilities between the different data

modalities, an area that has also recently received interest in
quantum machine learning.3,21

In this work, we expand upon our initially reported collection
of public multifidelity HTS datasets, reporting a total of 60
datasets with over 16.6 million unique protein−molecule
interactions extracted from PubChem. We cover in detail the
search, selection, and filtering steps and also provide a
performance evaluation based on the methodology proposed
by Buterez et al.20 We envision that the provided datasets will
motivate the development of new graph representation learning
methods capable of multifidelity modeling and transfer learning,
thus advancing the state of the art in computational drug
discovery projects. At the same time, we believe that the
challenging properties of multifidelity HTS data will provide a
new benchmark for evaluating machine learning algorithms,
particularly in terms of molecule-level regression tasks, which are
not well represented at this scale in existing work. It is important
to note that the MF-PCBA datasets are representation-agnostic,
as themolecular information is presented in the form of SMILES
strings, such that a variety of machine learning techniques are
applicable (not exclusively deep learning). Ultimately, we hope
that the MF-PCBA datasets will motivate further research and
competition, thus advancing the field and enabling new
possibilities for drug discovery and molecular modeling. The
datasets can easily be assembled using the provided scripts
(https://github.com/davidbuterez/mf-pcba).

■ METHODS
Data Acquisition. We manually searched the PubChem

BioAssays database using the terms “high-throughput screen-
ing”, “HTS”, “primary”, “confirmatory”, “single dose”, “dose
response”, “SD”, and “DR”.We selected the latest version (at the
time of writing) for each assay. The date range of the assays is
2008−2018 (the exact versions, revisions, and dates are
provided in the Supporting Information (SI)). The manual
search step is necessary due to the nature of reporting HTS
results. Primary and confirmatory screening results might be
reported in the same bioassay, e.g., assay identifier (AID) 1445,
or as separate bioassays that are part of the same project, e.g.,
primary AID 602261 and confirmatory AID 624326. Fur-
thermore, different primary and confirmatory projects use
different formats and conventions when reporting measure-
ments. Among the selected bioassays, primary screens might be
reported at different concentrations and with multiple replicates.
Similarly, confirmatory screens can be reported in different
formats (usually IC50, AC50, or EC50), but the units (e.g., μM or
μg/mL) are not always consistent. The smaller collection of 23
datasets previously discussed by Buterez et al. focused on a
diverse but restricted number of assays to allow for an in-depth
analysis of both PubChem and proprietary data while also
emphasizing certain dataset attributes such as the (linear)
correlation between the single dose (SD) and dose response
(DR) values. The updated collection presented in this work
further increases the diversity of the assays and the number of
curated datasets, allowing a more comprehensive view of HTS
modeling strategies and challenging current methods.
Once our selection of 60 datasets was finished, we could

automate the remaining steps. To this end, we used PubChem’s
representational state transfer application programming inter-
face (REST API) to retrieve each assay as a comma-separated
values (CSV) file based on its AID, downloading at most 10,000
compound rows at a time. The raw CSV files contain the
compound ID (CID) for each molecular entry but no molecular
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Table 1. Summary of the 60 Multifidelity HTS Datasets, Including the PubChem AIDs, Assay Types, SD and DR Measurement
Types, Dataset Sizes (Denoted by #), Numbers of DR Compounds Lacking SD Measurements (Denoted by “# DR (no SD)”),
the Pearson Correlation Coefficients (r) for the Paired SD/DR Measurements, and the Associated p Valuesa

SD AID DR AID Assay SD type DR type # SD (unf.) # DR (unf.) # DR (no SD) SD/DR r p value

1619 − chem. inh. @ 30 μM IC50 217,147 827 0 0.47 7.51 × 10−45

488975 504840 cell B-score @ 10 μM IC50 306,595 1544 15 −0.10 5.17 × 10−3

2097 434954 chem. act. @ 10 μM log EC50 302,503 2198 13 −0.35 3.10 × 10−18

624330 − chem. inh. @ 30 μM IC50 342,291 2057 0 0.66 2.30 × 10−198

504558 588343 cell act. @ 12.5 μM pAC50 345,298 1241 0 0.08 4.75 × 10−2

2221 449749 chem. act. @ 7.5 nL log AC50 293,466 2133 8 0.44 1.42 × 10−76

1259416 1259418 cell act. @ 100 nL pAC50 69,082 3560 189 −0.37 1.97 × 10−24

1979 2423 org. act. @ 7.5 nL EC50 302,509 1838 20 −0.07 7.26 × 10−3

2732 504313 cell inh. @ 10 μM IC50 219,164 940 39 −0.09 5.84 × 10−3

2216 435026 chem. act. @ 100 nL log EC50 302,453 1016 11 0.26 2.04 × 10−7

2553 2696 cell B-score @ 10 μM EC50 305,679 900 3 −0.22 2.07 × 10−3

651710 652116 chem. act. @ 18.71 μM pAC50 355,860 996 4 0.49 5.44 × 10−23

652162 720512 chem. act. @ 9.99 μM pAC50 352,852 931 18 0.62 9.55 × 10−13

1903 − chem. inh. @ 20 μM IC50 306,015 1203 0 0.26 2.50 × 10−18

2099 488835 chem. act. @ 2.35 μM log AC50 328,736 1413 4 0.26 2.26 × 10−3

489030 588524 chem. act. @ 20 μM IC50 331,760 476 1 0.32 6.73 × 10−11

1662 1914 cell act. @ 7.5 μM EC50 303,545 3266 4 0.09 8.11 × 10−6

743445 1053173 chem. act. @ 12.48 μM pAC50 309,831 1503 2 0.48 1.83 × 10−30

2227 434941 cell B-score @ 10 μM EC50 305,669 2267 11 −0.22 1.11 × 10−1

435005 449756 cell act. @ 100 nL log AC50 303,588 2288 3 0.25 3.59 × 10−27

2098 2382 cell act. @ 7.5 μM EC50 301,406 2448 25 −0.24 1.29 × 10−29

2650 463203 chem. act. @ 10 μM log AC50 315,508 2352 172 0.42 1.83 × 10−31

686996 720632 chem. act. @ 12.48 μM pAC50 347,992 962 46 0.45 1.73 × 10−21

873 1431 chem. inh. @ 5 μM IC50 214,261 1260 0 0.08 8.22 × 10−3

652115 720591 chem. act. @ 14.98 μM pAC50 326,679 1194 65 0.20 8.96 × 10−3

504582 540271 org. act. @ 12.5 μM pAbsAC1000 336,846 826 1 0.19 2.02 × 10−5

1259416 1259420 cell act. @ 100 nL pAC50 69,082 1220 191 −0.28 1.86 × 10−4

1117319 1117362 chem. inh. IC50 262,345 3634 3 −0.10 3.99 × 10−1

1445 − chem. inh. @ 30 μM IC50 217,157 673 0 0.78 6.06 × 10−137

504621 540268 org. act. @ 9.4 μM pAC50 307,324 930 10 0.10 3.25 × 10−3

504408 435004 cell act. @ 9 μM log EC50 301,246 1953 2 0.34 7.88 × 10−17

624304 624474 org. inh. @ 21.8 μM IC50 364,167 1381 3 0.58 1.43 × 10−121

652154 687027 cell act. @ 12.62 μM pAC50 356,670 1810 109 0.10 1.72 × 10−3

720511 743267 cell act. @ 7.58 μM pAC50 347,956 1170 12 0.01 7.67 × 10−1

602261 624326 chem. act. @ 15 μM IC50 362,387 1011 2 0.68 1.03 × 10−133

1224905 1259350 chem. Z-score (FI @ 535 nm) FP (mP) 206,863 579 0 0.41 2.11 × 10−24

652115 720597 chem. act. @ 14.98 μM pAC50 326,679 964 103 −0.01 9.49 × 10−1

488895 504941 org. act. @ 7.5 nL pAC50 337,881 1215 2 0.63 4.15 × 10−19

493091 540297 chem. act. @ 20 μM IC50 340,929 1011 3 0.23 1.08 × 10−12

2237 434937 cell B-score @ 10 μM EC50 305,669 2267 5 0.03 4.85 × 10−1

504329 − chem. inh. @ 12.5 μM IC50 335,445 1010 0 0.79 7.85 × 10−192

2221 449750 chem. act. @ 7.5 nL log AC50 293,466 2133 10 0.29 4.45 × 10−29

588489 602259 chem. act. @ 20 μM IC50 359,520 1186 1 0.37 2.74 × 10−38

485317 493248 chem. act. @ 7.5 nL pAC50 288,803 2345 4 0.25 1.46 × 10−20

588549 624273 chem. act. @ 12.48 μM pAC50 355,325 1047 3 0.70 1.55 × 10−54

2247 434942 cell B-score @ 10 μM EC50 304,070 2267 16 0.01 7.38 × 10−1

504558 588398 cell act. @ 12.5 μM pAC50 345,298 1241 0 0.23 2.29 × 10−2

651658 687022 chem. act. @ 9.99 μM pAbsAC1 343,072 1025 29 0.02 7.05 × 10−1

1832 1960 chem. act. @ 10 μM EC50 301,856 1691 12 −0.47 2.45 × 10−89

2629 435023 chem. act. @ 7.5 nL log EC50 323,875 1430 1 0.34 1.17 × 10−3

1832 1964 chem. act. @ 10 μM EC50 301,856 1691 10 −0.45 9.01 × 10−82

485273 493155 chem. inh. @ 20 μM IC50 330,481 1210 5 0.58 3.80 × 10−88

588689 − chem. inh. @ 25 μM IC50 338,853 1013 0 0.51 6.07 × 10−65

449762 − cell inh. @ 25 μM IC50 327,669 1938 0 0.20 6.04 × 10−18

488899 493073 cell act. @ 100 nL pAC50 331,578 1241 17 0.23 5.40 × 10−10

2221 435010 chem. act. @ 7.5 nL log EC50 293,466 2133 9 0.56 1.27 × 10−149

1465 − org. fold ind. @ 50 μM EC50 215,402 159 0 0.05 5.42 × 10−1

1949 − cell inh. @ 10 μg/mL IC50 100,697 1688 5 −0.06 2.20 × 10−2

449739 489005 cell B-score @ 10 μM log EC50 104,742 895 1 −0.30 1.80 × 10−15
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structure information. To address this, we again used the REST
API to retrieve the Simplified Molecular-Input Line-Entry
System (SMILES) string representation for each entry based on
the CID. Any replicate measurements present for the primary
screens are aggregated by taking the mean. In the associated
source code, the option of using the median is also provided.
Only 23 out of the 60 primary screens have more than two
replicates, and even in these cases only a fraction of the entire
compound library is present in the replicates, leading to a small
difference between the mean and median (Table S3 and section
SI 2). The resulting SDmeasurements are not further processed.
In contrast, for the DRmeasurements the aggregation step is not
necessary, as generally there are no replicates in the same
bioassay. However, the DR values, which are often reported as
“XC50” (IC50, AC50, or EC50) values or variations involving the

logarithm, are always converted to the corresponding pXC50
values (pXC50 = −log XC50). The entire collection of 60
multifidelity datasets is summarized in Table 1 along with details
specific to each dataset. These datasets cover a wide spectrum of
assay technologies and end points, from biochemical inhibition
data to phenotypic experiments on whole organisms.
Filtering Steps. The raw molecular information is subjected

to a number of filtering steps that ensure a high-quality,
consistent representation suitable for various machine learning
algorithms. In the majority of cases, the primary and
confirmatory screens are reported as separate bioassays in
PubChem. Thus, the filtering steps are applied independently on
the SD and DR datasets. In the case where the primary and
confirmatory data are reported in a single bioassay, the same
filtering steps are applied on the single data table. Filtering is

Table 1. continued

SD AID DR AID Assay SD type DR type # SD (unf.) # DR (unf.) # DR (no SD) SD/DR r p value

1259374 1259375 chem. inh. @ 2.6 μM log IC50 646,073 474 10 0.10 6.89 × 10−2

aIf the confirmatory data are available separately, both AID columns are populated; otherwise, the SD dataset includes the DR data. Abbreviations:
inh., inhibition; act., activation; ind., induction; FP, fluorescence polarization; FI, fluorescence intensity; unf., unfiltered.; chem., chemical; org.,
organism.

Figure 1.Main steps of assembling a multifidelity HTS dataset from the corresponding primary and confirmatory screens, which might be reported in
the same or different PubChem assays. First, the SMILES string for each molecule is loaded into RDKit, which removes invalid structures. This
procedure is followed by a number of filtering steps that ensure a high-quality data collection for drug discovery and machine learning projects,
including selection of only the largest fragments, removal of stereoisomers, and removal of electric charges. Finally, missing DR values in the
confirmatory assay are set to a default value corresponding to the minimum activity (“pXC50”) observed in the project.
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always applied after the preprocessing steps described above.
The filtering pipeline consists of four major steps implemented
using the open-source library RDKit22 (also illustrated in Figure
1):
1. Sanitization with RDKit: The function Chem.Mol-
FromSmiles from RDKit was used to construct a
molecular object, represented by the Mol class. This
representation provides access to the molecular structure
and to other filtering-relevant functions regarding stereo-
isomers, removal of charges, etc. Importantly, loading the
SMILES string into RDKit acts as an initial filtering step
by itself, as RDKit uses a sanitization procedure internally.
This resulted in a number of entries (molecules) being
removed, most commonly due to valence errors or
SMILES strings consisting only of hydrogen atoms.

2. Largest fragment selection: Next, we used RDKit’s
rdMolStandardize.LargestFragmentCh-
ooser function to remove molecules where the CID
contained a combination of compounds, most commonly
a counterion. The option to remove smaller fragments but
keep the largest one is also provided in the source code.
There is also an option to report small fragments that are
not encountered in the MF-PCBA collection when
assembling data from different assays. For MF-PCBA,
almost all encountered small fragments are counterions or
solvents.

3. Stereoisomer removal: The function rdmolops.Re-
moveStereochemistry was used to remove all of
the stereochemistry information contained within the
molecules, followed by generation of new SMILES
representations for all of the resulting molecular objects.
Molecules that were previously differentiated only by the
stereochemical information now have identical represen-
tations. Thus, we select only the unique molecules based
on the SMILES representation and consider the task of
modeling the activity of racemic mixtures. It should be
noted that many GNNs operate on molecules only at the
level of “2D” graphs, such that the stereochemical
information is not considered. An option to keep the
molecules that would be removed by this step is also
provided, as well as an option to record the number of
stereocenters for each molecule.

4. Neutralization (removal of electric charges): This step
is achieved by adding or removing hydrogens for charged
atoms. Only compounds that can be recorded with a
formal charge of 0 are retained. Generally, compounds
that cannot pass this threshold are difficult to transform
into safe drugs, motivating our filtering procedure. The
calculations are performed using atom-level RDKit
functions such as GetFormalCharge, GetTotal-
NumHs, SetFormalCharge, SetNumExpli-
citHs, and the filtering of molecules is based on
rdmolops.GetFormalCharge.

We report the average number of compounds removed by
each step in the Results. The numbers of SD andDR compounds
after each filtering step are reported for all datasets in Tables S1
and S2, respectively. Generally, the filtering steps that removed
the most compounds are largest fragment selection and
stereoisomer removal. With a few exceptions, the filtering
pipeline did not radically change the size of the dataset.
However, one important issue was observed for the DR datasets
that originated in different PubChem bioassays. Although the

confirmatory bioassays contain partial experimental measure-
ments for all of the compounds listed in Table S2, actual DR
values such as the IC50 are often reported only for a fraction of
the dataset, for example, only for active compounds. Although
some DR datasets do not suffer from this issue (e.g., AID 1445),
others are at the other extreme of the spectrum, with up to 97.8%
of filtered compounds lacking explicit XC50 measurements (AID
1117362). On average, 35.57% of compounds do not possess
experimentally derived XC50 labels because they were
insufficiently active at the top concentration. To address this
limitation, we associated the compounds missing this
information with the lowest activity value recorded in each
dataset (“Minimum pXC50” in Figure 1), providing a training
target for machine learning models. This is done to provide a
consistent value for inactivemolecules and should be interpreted
as a lower bound on the pXC50 value. Wemaintain a flag for each
molecule indicating whether its confirmatory activity was
experimentally derived or set to a default value.
Implementation. The data acquisition and filtering steps

are implemented as a Python script (pubchem_retrie-
ve.py) with a simple command-line user interface. The
program allows downloading and filtering all 60 MF-PCBA
datasets as well as any other PubChem assays with similar
formats. The main arguments are --AID, indicating the AID of
a PubChem assay corresponding to an SD experiment;
--AID_DR, optionally indicating the AID of a PubChem
assay corresponding to a DR experiment that is separate from
the SD dataset; --list_of_sd_cols, indicating the
names of the SD activity value columns (including replicates)
as displayed on PubChem; --list_of_dr_cols, indicat-
ing the names of the DR activity value columns; and
transform_dr, allowing the conversion to the correspond-
ing pXC50 value. More advanced filtering options are
documented in the source code. The GitHub repository
contains customized scripts (i.e., with all of the arguments
already set) for all 60 MF-PCBA datasets, such that they can be
simply downloaded and assembled with a single call to the
intended script. Once downloaded and filtered, the DR datasets
can be split into train, validation, and test sets according to the
provided five random seeds, enabling easy comparison to the
results obtained by previous work and in this article. Splitting is
demonstrated with an interactive notebook that is part of the
source code.
MF-PCBA Format and Problem Specification. After

filtering, each of the 60 multifidelity datasets contains the
PubChem CID for each molecule, the corresponding molecular
structure (SMILES), and the SD and DR activity values. If the
SD and DR data originated from the same bioassay, both the SD
and DR modalities are provided in the same CSV file. In this
case, the name of the multifidelity dataset is given by the original
assay name, e.g., AID 1445. Otherwise, separate SD and DR files
are provided, and the naming scheme reflects the two data
sources, with the DR dataset first (e.g., AID 624326 − 602261).
One of the intended purposes of MF-PCBA is to enable high-

quality confirmatory-level predictions by modeling of DR data.
Thus, the prediction problem can be naturally formulated as a
supervised regression task. At the same time, the binary activity
labels from PubChem are included for each dataset. Large
amounts of SD activity values are available to support the goal of
multifidelity integration for improving the quality of con-
firmatory-level predictions. Furthermore, we provide five
random splits per dataset (80%/10%/10% split ratios for the
train/validation/test sets) for the DR data. The accompanying
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source code allows easy conversion of the CSV files obtained
previously into individual train/validation/test CSV files
corresponding to each random split seed. A wide range of
machine learning techniques are applicable on MF-PCBA,
including any algorithm that operates on fixed-dimension vector
representations (molecular fingerprints, physical and chemical
descriptors, atom and bond encodings, etc.).
As the MF-PCBA collection is based entirely on real-world

data generated by HTS experiments, it enables the design and
evaluation of new machine learning architectures specifically for
drug discovery. Additionally, MF-PCBA can be used as a suite of
benchmarks for evaluating the performance of newly developed
machine learning applications. For example, MF-PCBA can
support the rapidly developing field of representation learning
with graph neural networks, particularly in terms of graph-level
regression tasks, which are currently underrepresented. At the
same time, the collection offers a unique challenge in the form of
multifidelity (multimodality) integration. This is a characteristic
of drug discovery by HTS that presents new opportunities for
computational modeling and ultimately for improved exper-
imental and hybrid wet-lab and in silico workflows. We also
envision that the data curated here can be used for other modern
machine learning techniques such as generative approaches and
few-shot learning.
AssayOverlap and Size Considerations. Since PubChem

and ChEMBL23,24 are frequently used as data sources for
machine learning, it is important to fully characterize MF-PCBA
in terms of size, scope, and intended applications. Although
many previous studies considered drug bioaffinity data (the

ChEMBL 20-derived subset of Mayr et al.,25 PCBA,11 LIT-
PCBA,12 and FS-Mol26 are just a few examples), to the best of
our knowledge no previous work explicitly considered HTS data
of different fidelities or proposed transfer learning in this
context. Despite not being purposefully designed to be
orthogonal to existing datasets, MF-PCBA shares no overlap
in terms of common assays with the 128 assays of PCBA.
Twenty-seven of the confirmatory assays that we use are also
present in the 1310 assays reported by Mayr et al. There is no
overlap in terms of the primary screening assays. We would like
to note that a small level of overlap is expected considering that
Mayr et al. focused on a large number of generally confirmatory
assays extracted from the ChEMBL 20 database. Furthermore,
our motivation and our preprocessing and evaluation pipelines
are different.
In terms of size, MF-PCBA consists of over 16.6 million

unique compound−target interactions, with over 1.1 million
unique compounds. In contrast, the largest dataset based on the
number of compounds that is reported in the comparison
provided by the FS-Mol study has 955,386 compounds. The
number of measurements is also larger than in FS-Mol and
LSC.27 Moreover, rigorously tagged primary and confirmatory
data are more limited compared to other data types. An example
search through PubChem returns 407 confirmatory DR datasets
(the search steps are described in section SI 10). However, not
all of them qualify for MF-PCBA. For example, some assays
study toxicity effects or are missing an associated primary screen.
As such, some degree of manual selection is required to satisfy all
of the previously defined criteria. Overall, the MF-PCBA

Figure 2. A multifidelity integration workflow illustrated with three high-level steps. Confirmatory-level data (DR) can be modeled directly using
various machine learning techniques such as RF, SVM, or GNN. Despite not leveraging hundreds of thousands of bioaffinity measurements from the
primary screens, this is the prevalent type of modeling in early-stage drug discovery. Instead, an alternative is to model the primary screening (SD)
separately and incorporate the learned information through techniques such as transfer learning. Here, this is achieved through graph or molecular
embeddings. The embeddings can be included (by concatenation) in the DRmodeling step, a procedure we denote as augmentation. We also consider
the addition of the SD label to the DR model as an alternative augmentation strategy.
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collection aims to provide a diverse set of multifidelity datasets
that is easily extensible through the open source implementa-
tion.
Finally, we note that we currently only consider single-task

learning, such that a separate model is trained for each of the
datasets present in MF-PCBA. This also has the advantage of
enabling the use of a wide range of machine learning algorithms
other than deep learning. While multitask learning is a common
occurrence in chemical modeling projects (e.g., PCBA, FS-Mol),
it is not one of the main objectives for MF-PCBA. Since the data
uploaded to PubChem originate from various groups using
different compound libraries and protocols, the overlap between
the chosen assays in terms of common compounds is limited. If
we associate all of the unique compounds of MF-PCBA with
their activities in the primary screens (or NaN if a compound is
not screened in the assay), we find that over 75.6% of values are
NaNs. For confirmatory screens, this grows to over 97.7%.
Previous work on HTS fingerprints assigned a default activity
value (usually 0) to all missing values. Since the true activity is
not known, this would lead to a multitask learning scenario
where over two-thirds of the data have false values. Sturm et al.19

succeeded in assembling a collection of only 57,124 molecular
fingerprints with reduced sparsity, despite starting with an
industrial collection of 1250 HTS assays that are generally
expected to use the same or similar compound libraries.
However, multitask learning for a subset of MF-PCBA with a
larger overlap could be an interesting direction for future
research.
Evaluation Strategies and Multifidelity Modeling. As a

first step, we provide an evaluation of the multifidelity
integration performance for all 60 datasets based on the
multifidelity modeling workflow recently proposed by Buterez
et al.20,28 (Figure 2). In this context, the machine learning task is
formulated as a supervised learning problem on confirmatory
data, i.e., molecules with DR measurements. Thus, the simplest
task is training and evaluating models exclusively on data points
with DR labels, corresponding to training sets with typically less
than 2000 instances, and ignoring the orders-of-magnitude
larger SD datasets. Multifidelity modeling is achieved through
two augmentation strategies that integrate information derived
from the SD data. The first augmentation corresponds to the
inclusion of the experimentally determined SD activity value in
the internal representation (fixed-dimension vector) of each
compound in a machine learning model, corresponding to an
append/concatenation operation. All compounds that possess
DR activity values typically have an associated SD value, making
this strategy generally applicable to HTS datasets. The second
augmentation requires a separate machine learning model (here,
a graph neural network) to be trained on the entirety of the
available SD data in a supervised fashion. In this process, the
GNN learns to produce SD embeddings, low-dimensional vector
representations that carry the molecular information and its SD
activity. The resulting SD embeddings can be appended to the
internal representation of a machine learning model exactly as
for the first augmentation, with the important advantage that the
embeddings can be produced for molecules that were not seen
during training. Both augmentations are applicable to any
machine learning method operating on fixed-dimension vectors.
The evaluation includes threemachine learning algorithms for

DR modeling: random forests (RF), support vector machines
(SVM), and deep learning (GNNs). Separately, we use GNNs
for the SD modeling step. The same hyperparameter
optimization strategy and the same steps for determining the

most suitable deep learning architecture as in the aforemen-
tioned study were are also applied. When designing models for
MF-PCBA, we recommend evaluating in terms of “DR only”
models, which are trained exclusively on confirmatory activity
data, and “SD +DR”models that integrate the twomodalities. In
terms of performance metrics, we recommend the use of R2
coupled with an error metric such as the mean absolute error
(MAE) or root-mean-square error (RMSE) for regression tasks
and the Matthews correlation coefficient (MCC) coupled with
the area under the receiver operating characteristic curve
(AUROC) for classification. The choice is based on both recent
recommendations from the literature29,30 and the nature of the
data.

■ RESULTS
In this section, we first report the effect of the filtering steps with
regard to the number of removed compounds. We then discuss
one of the intended uses of theMF-PCBA datasets by evaluating
multifidelity integration machine learning techniques. We use
the same modeling techniques previously proposed by Buterez
et al., focusing on the analysis of the additional 37 datasets that
complete the collection of 60 datasets, as the remaining 23 have
already been extensively investigated. In order to highlight
meaningful differences between the initial collection of 23
multifidelity datasets andMF-PCBA, we introduce the following
naming conventions: the terms MF-PCBA and MF-PCBA-60
are used interchangeably to refer to the entire collection of 60
multifidelity datasets; MF-PCBA-23 refers to the previously
analyzed subset;20 and MF-PCBA-37 refers to the remaining 37
datasets that complete the collection of 60 datasets. Thus, MF-
PCBA-23 and MF-PCBA-37 are disjoint.
Effects of Filtering on Dataset Size.
1. Sanitization with RDKit:On average, this step led to the
removal of 863 ± 1313.8 (average ± standard deviation)
compounds for the SD datasets (0.33% of the unfiltered
size) and 8.7 ± 42.7 for the DR datasets (0.46% of the
unfiltered size). For the DR datasets, more than 10
compounds were removed only for two datasets.

2. Largest fragment selection: After this step, 11207.9 ±
3594.3 compounds were removed for the SD datasets
(3.62% of the quantity at the previous filtering step) and
115.3 ± 110.3 for the DR datasets (7.83% compared to
the previous step).

3. Stereoisomer removal: After this step, 11396.3 ±
23859.4 compounds were removed for the SD datasets
(3.78% of the quantity at the previous filtering step) and
30.7 ± 92.3 for the DR datasets (2.49% compared to the
previous step). We choose to remove this information
because stereochemical annotations are not consistently
recorded and not effectively exploited by many baseline
methods.

4. Neutralization (removal of electric charges): After this
step, 396.6 ± 94.4 compounds were removed for the SD
datasets (0.15% of the quantity at the previous filtering
step) and 3.9 ± 5.1 for the DR datasets (0.31% compared
to the previous step).

Integration of SD Information Increases Predictive
Performance. Previously it was shown that the integration of
primary screening information leads to increased performance
for the augmented machine learning models. At the same time,
many of the datasets that exhibited considerable improvements
by multifidelity integration also possessed certain qualities such
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as high correlation between the SD and DR experimental
measurements.
It is thus encouraging to observe that we are able to obtain

similar uplifts in predictive performance for the augmented
models on the previously unanalyzed 37 multifidelity datasets
(Figure 3a). More specifically, the augmentation with SD labels
leads to uplifts in R2, on average, from 0.219 to 0.285 for RF,
from 0.228 to 0.279 for SVM, and from 0.244 to 0.312 for deep
learning. Similarly, for the SD embeddings augmentation, we
observe uplifts in R2, on average, from 0.219 to 0.245 for RF,
from 0.228 to 0.252 for SVM, and from 0.244 to 0.277 deep
learning. This lower performance compared to the SD labels
augmentation should be balanced against its unique ability
among these methods to produce predictions for unobserved
molecules.
As for MF-PCBA-23, we encounter several datasets that

benefit drastically from the augmentation strategies. For
example, on AID2247 − AID434942 (Figure 3c), an uplift
from 0.048 to 0.435 in average R2 is seen for RF with the SD
labels augmentation, and an almost identical uplift to 0.436 is
achieved for the SD embeddings augmentation. In this particular
case, the SD embeddings augmentation is also substantially
more effective in reducing the MAE compared to the
nonaugmented and SD-labels-augmented models, by almost
halving it (section SI 2). Large uplifts are also observed for other

datasets such as AID2237 − AID434937 (Figure 3). We also
provide an alternative metric in the form of the “unexplained”
variance (1 − R2) in section SI 3.
On average, and compared to the previously studied 23

multifidelity datasets, we generally observe both lower non-
augmented and augmented performance. In particular, the
average R2 for the nonaugmented models on MF-PCBA-23 is
0.253, while for MF-PCBA-37 the observed value is 0.230. The
average R2 achieved by augmenting with SD labels on MF-
PCBA-23 was 0.380, compared with 0.291 on MF-PCBA-37.
Finally, augmenting with SD embeddings led to an average R2 of
0.306 on MF-PCBA-23 and 0.257 on MF-PCBA-37. The lower
overall performance on MF-PCBA-37 could be explained by
lower SD/DR correlation or a notion of dataset difficulty, ideas
that are explored further below.
We also studied a variation of the SD labels augmentation

where for each compound we computed an “SD fingerprint”
(SD FP), a vector consisting of all primary screening activities or
0 if such data are unavailable. The SD fingerprint is used in place
of the SD label, similar to an SD embedding. We evaluated this
variation using deep learning models on MF-PCBA-60. On the
whole, the SD FP augmentation only marginally improved upon
the baseline models and severely underperformed compared to
the SD labels augmentation (section SI 11). This is not
unexpected considering the low compound overlap between

Figure 3. Predictive performance, as measured by R2, on (a) MF-PCBA-37 (the subset of 37 multifidelity datasets not discussed by Buterez et al.), (b)
MF-PCBA-60 (the entire collection of 60 multifidelity datasets), and (c, d) two examples of individual multifidelity datasets from the MF-PCBA-37
subset. The results in (a) and (b) aggregate metrics from each individual dataset. For each dataset, results are reported for augmented and
nonaugmented RF, SVM, and deep learning models. Each model was trained multiple times based on the five different random splits for each dataset.
For (a) and (b), the means across five different random splits for each dataset are used to generate box plots.
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assays in MF-PCBA and the low chance of the assay targets
being related.When considering individual dataset performance,
the SD FP augmentation often performed worse than the
baseline, alternatively matching the SD labels performance and
rarely improving upon it (section SI 12). We did notice that in
seven out of 60 cases the SD-FP augmentation outperformed the
SD labels augmentation: AID720632 − AID686996 (Figure
S53), AID1465 (Figure S67), AID2382 − AID2098 (Figure
S77), AID434954 − AID2097 (Figure S82), AID743267 −
AID720511 (Figure S84), AID435004 − AID504408 (Figure
S92), and AID463203 − AID2650 (Figure S99). Although this
augmentation does not offer consistent performance, it is an
interesting alternative for poorly performing datasets like
AID1465.
To validate the choice of using average R2 scores as part of the

evaluation procedure (e.g., as the basis of Figure 3), we
computed the average R2 across the five random splits for each
dataset and considered nine groups of 60 scores each
(corresponding to the 60 datasets). The nine different groups
correspond to the three different ML algorithms (RF, SVM, and
deep learning) and the three different augmentations (base
models, augmented with SD labels, and augmented with SD
embeddings). We performed paired t tests between each group
of augmented scores and the baseline scores (for each ML
algorithm), for six tests in total. The tests indicated statistically
significant results for all SD label augmentation groups (p <
0.0001) as well as for the SD embeddings (p < 0.01).
Relationship between the Predictive Performance

and Dataset Attributes. Previous work on multifidelity

modeling found the correlation between the SD/DR measure-
ments to be a good indicator of model performance and of
possible uplifts.20 Here we also performed an analysis of ΔR2
(the difference in performance between augmented models that
perform multifidelity integration of SD and DR and non-
augmented DR-only models) as an indicator of the gains
possible through augmentation, using both Pearson’s correlation
coefficient andmultiple linear regressionmodels, forMF-PCBA-
37 and MF-PCBA-60.
On MF-PCBA-37, no linear correlation is observed between

ΔR2 and the SD/DR correlation for all three machine learning
algorithms when augmenting with SD labels (Figure 4a−c) and
when augmenting with SD embeddings (Figures S45a−c).
However, on MF-PCBA-60 a moderate positive relationship is
still present (Figures 4d−f and S45d−f). Interestingly, this
indicates that the level of SD/DR correlation is not always
indicative of the performance uplift, as some of the highest gains
seen on MF-PCBA-37 were for datasets with extremely low
correlation (e.g., AID434942 − AID2247 and AID434937 −
AID2237). Multiple linear regression models did not indicate
significant contributions from any other dataset attribute other
than the SD/DR correlation, such as the number of DR
compounds or the number of SD compounds for MF-PCBA-60
(Tables S7−S12).
Evaluating the Difficulty of Learning with the Rough-

ness Index. The “roughness” of the molecular activity
landscape can provide insights into the level of difficulty that
machine learning models are expected to encounter and also
reveal challenging dataset characteristics such as activity cliffs.

Figure 4. Plots of the absolute SD/DR correlation (x axis) againstΔR2 (y axis) for RF, SVM, and deep learning models augmented with SD labels on
MF-PCBA-37 and MF-PCBA-60, with the Pearson correlation coefficient (r). Brighter colors correspond to higher ΔR2 values. Plots for the SD
embeddings augmentation are available in section SI 4.
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To quantify this property, we use the recently introduced
roughness index (ROGI),31 which can be applied only to the DR
datasets because its computation scales quadratically with the
dataset size. Intuitively, the ROGI works by coarse-graining a
molecular dataset at different levels and quantifying the change
in dispersion, which might be affected rapidly or slowly. The
notion of dispersion is quantified using the standard deviation of
the molecular property. This is related to the idea that similar
molecules with extremely different properties (e.g., activity) lead
to rapidly changing dispersion.
We computed the ROGI based on the 208 PhysChem

descriptors available in RDKit as of October 2022 (the
rdkit.ML.Descriptors.MoleculeDescrip-
tors.MolecularDescriptorCalculator func-
tion). The alternative, based on Morgan fingerprints also
computed by RDKit, led to small ROGI values for all MF-PCBA
datasets. Furthermore, the ROGI computation is applied to the
filtered datasets before setting missing DR values to the
minimum pXC50 value. This prevents artificially modifying the
ROGI, for example by “flattening” the activity space. In contrast,
all of the trained machine learning models use the entire set of
DR values, including the minimum defaults, to exploit the entire
amount of data available.
In general, the datasets introduced in the MF-PCBA-60

collection do not appear difficult in terms of the roughness of the
chemical space, with ROGI values ranging from 0.014 to 0.571,
with an average± standard deviation of 0.167± 0.135 and most

of the datasets scoring below 0.4 (see Figure S48 for a
histogram). The performance metric (R2) is not correlated with
the ROGI for the RF, SVM, and deep learning nonaugmented
(base) models (Figures 5a and S46a,c). However, it is possible
to observe statistically significant weak, negative linear
correlations for the augmented RF and SVM models (Figures
5b,c and S46d,g). The relationship between the ROGI and ΔR2
is not significant for any model at a significance level of 0.05
(Figures 5d,f and S47d−f), but in the case of SVM and deep
learning the p values are close, especially in the case of deep
learning (p = 0.05042). The highest uplifts in performance are
observed for datasets with relatively low ROGI (<0.3), with
extremely small or even negative performance differences for the
highest difficulty datasets (ROGI > 0.5). Finally, multiple linear
regression models did not indicate significant contributions
from the ROGI (section SI 9).

■ DISCUSSION
We have presented MF-PCBA, a new collection of 60
multifidelity molecular datasets that reflect the real-world nature
of HTS projects in drug discovery. With over 16.6 million
unique protein−molecule interactions in total, MF-PCBA
represents one of the largest collections of graph-level regression
datasets, with the possibility to easily adapt to classification. The
multifidelity aspect, enabled by the inclusion of primary and
confirmatory screening data, is underrepresented in existing
molecular modeling efforts, most likely due to uncertainties

Figure 5. (a−c) Plots of the ROGI (x axis) against R2 (y axis) for nonaugmented (base), SD-labels-augmented, and SD-embeddings-augmented SVM
models. (d−f) Plots of the ROGI (x axis) against theΔR2 (y axis) for RF, SVM, and deep learningmodels augmented with SD labels. All panels include
the Pearson correlation coefficient (r). Brighter colors correspond to higherR2 orΔR2 values. Plots for the rest of the models are available in sections SI
5 and SI 6.
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regarding the noisiness of the data and the vastly different
numbers of compounds between the primary and confirmatory
screens. Here we have further validated the value of utilizing
multifidelity bioactivity measurements, for example by observing
uplifts in R2, on average, between 33% and 40% when using SD
labels and depending on the algorithm, further supporting the
need for an effective and public multifidelity benchmark, as
provided here. Moreover, we have shown that while the SD/DR
correlation is a factor in the level of benefit gained by using
multifidelity modeling, it is not as strong a factor as had
previously been thought.
We showed some tentative signs that the roughness of the

activity landscape, as measured by the ROGI, might be another
factor, but further work is needed to clarify this and identify
additional factors in similar or larger collections. As shown
previously, multifidelity modeling can also lead to other
desirable properties such as more selective models and new
candidate selection workflows. Thus, we envision multifidelity
data and models to be a natural step forward for early-stage drug
discovery projects based on high-throughput screening. To
support this vision, the 60 MF-PCBA datasets are available
publicly, aiming to capture the heterogeneity of HTS campaigns
in terms of, for example, assay type, targets, screening
technologies, primary and confirmatory screen sizes, concen-
trations, and scoring metrics. Moreover, due to the challenging
nature of multifidelity integration, MF-PCBA can act as a
representation learning benchmark for future machine learning
research and, in particular, for the rapidly advancing area of
graph neural networks. At the same time, MF-PCBA is not
limited to deep learning, as a multitude of existing machine
learning techniques can be applied, enabling more varied
comparisons. Overall, we believe that the presented datasets can
be used as a basis for advancing both computational drug
discovery efforts and molecular machine learning techniques.

■ DATA AVAILABILITY
The source code to download, filter, and assemble all 60 MF-
PCBA datasets (individually) is available at https://github.
com/davidbuterez/mf-pcba. The run time for AID 504329
(335,445 SD molecules) is 554.52 s (9 min 15 s) on a
workstation equipped with an AMD Ryzen 5950X processor
with 16 cores and 64 GB of DDR4 RAM running Ubuntu 21.10
with an Internet connection speed of 85.81 Mbps (download).
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*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01569.

Molecule counts after each filtering step and distributions
of primary screens for each dataset in Table 1, extended
version of Figure 3 including metrics for all datasets,
Pearson correlation between evaluation metrics and
dataset attributes, multiple linear regression results
between evaluation metrics and dataset attributes, and
augmentation results for primary screening fingerprints
(PDF)
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