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1. Introduction

Brain tumors arising from glial cells are
malignant growths in the central nervous
system (CNS).[1] Before 2016, the World
Health Organization (WHO) classified
CNS gliomas into grades I–IV according
to the histological characteristics of a diverse
group of tumors. A particular subset of
brain malignancies generated from glial
cells is referred to as gliomas.[2] The cen-
tral[3] and peripheral nervous systems’ nerve
microenvironment is partly maintained by
glial cells, including oligodendrocytes,
astrocytes, ependymal cells, and microglia.
Owing to the complex biological makeup
of glial cells, tumors originating from this
subset of nervous system cells known as gli-
omas can be further classified into several
functional subgroups, each of which may
have originated from a distinct functional
subgroup.[4] Gliomas are the most prevalent
primary CNS tumors in the brain, account-
ing for 80% of brain tumors that are malig-
nant.[5,6] The WHO has classified tumors
into grades 2–4 based on their aggres-

siveness, with higher grades indicating more malignant tumors.
Commonly, grade 2 gliomas are commonly known as low-grade
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Glioblastoma is the most common adult brain tumor, significantly impacts
disability and mortality. Early and accurate diagnosis of glioma subtypes is
essential, but manual categorization is challenging due to their complexity,
prompting the need for automated solutions. We developed an innovative mixed
convolution-transformer model to classify glioma subtypes, including astrocytoma,
glioblastoma, oligodendroglioma, and normal brain tissue, using whole slide
images. The novelty of this model lies in its remarkable efficiency and precise
results. Multiple advanced and complex layers are incorporated during its devel-
opment to enhance its performance, ensuring that it delivers fast and accurate
classification results for glioma. This proposed model obtains an overall training
accuracy of 97.41%, peaking at 98.12% for validation and 97.35% for testing. Next,
our model architecture is independently evaluated by comparing its training
performances on the CIFAR-10 and CIFAR-100 datasets with the vision transformer
and compact convolutional transformer models. Results across various datasets
demonstrate that the model consistently outperforms existing models. This per-
formance underscores the effectiveness of our proposed approach in classifying
glioma subtypes accurately and efficiently, highlighting its potential impact on
healthcare and disability. This system enhances the classification of glioma sub-
types and facilitates swift identification, ensuring appropriate and timely treatment.
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gliomas (LGG), whereas grade 3–4 gliomas are referred to as high-
grade gliomas (HGG).[7] The stereotactic[8] brain biopsy is the
established approach used to diagnose brain cancers. However,
it is intrusive and carries the potential for inconsistencies between
different readers and inaccuracies in the sampling process.

Early diagnosis of glioma[9] is more essential, as glioma sub-
types represent some of the most dangerous forms of brain
tumors. Identifying the molecular patterns of these subtypes
is essential for accurate diagnosis, prognosis, and treatment plan-
ning. While initial human classification is unnecessary, it is often
inaccurate and time-consuming. As a result, automated classifi-
cation systems have proven to be more successful in diagnosing
glioma subtypes, offering greater accuracy, efficiency, and faster.

Several authors have focused on classifying glioma subtypes,
employing machine learning and deep learning[10–12] algorithms
to achieve this task. Their approaches highlight various glioma
subtypes and utilize different datasets for classification. The
paper Martin et al.[13] focuses on analyze low grade Gliomas,
in particular most adult grade 2 and 3 gliomas had mutations
in Isocitrate Dehydrogenase (IDH) 1 and 2, which was indicative
of therapy of distinct glioma subtypes. The prognostic difference
between grade 2 and grade 3 was lessened when 1p/19q codele-
tion was used for categorization. As a result, low-grade glioma
formerly used to describe gliomas of grade 2 was substituted with
the term lower-grade glioma, which now includes grade 2 and
grade 3 tumors. Recent advancements and future directions
for the surgical, radiotherapeutic, chemotherapeutic, and long-
term management of adult lower-grade gliomas were examined to
improve knowledge and treatment approaches. Fatemeh et al.[14]

examined three adult-type diffuse glioma subtypes microvascula-
ture without enhancement using vascular size imaging (VSI) mag-
netic resonance imaging (MRI), Oligo, Astro, andGBM comprised
38% of nonenhancing gliomas. VSI mapping assesses each indi-
vidual’s cerebral blood volume (CBV), microvasculature (μCBV),
and vascular size. The histopathology and microvasculature of
21 patient tissue samples were examined. Astro showed lower
CBV and μCBV than Oligo

(IDH-mut&1p/19q-codeleted) (p= 0.004 and 0.001, respec-
tively) and larger vessels than GBM (IDH-wt) (p= 0.01). The his-
tology study revealed that GBM (IDH-wt) exhibited more
irregular vessel morphologies than the other two subtypes
(p< 0.05). VSI helped writers understand the microvasculature
of the three adult-type glioma subtypes without augmentation.

Benny et al.[15] assessed WHO-classified adult metabolic
markers for the classification of glioma subtypes. The method
cross-platform global metabolomic profiling with clinical,
genetic, and pathological characterization of 224 glioma tumor
—oligodendroglioma (n= 31), astrocytoma (n= 31), and
glioblastoma (n= 162). All six glioma subtypes had different
metabolic properties, and IDH-mutated 2-hydroxy glutaric
acid-expressing subtypes were readily distinguishable from the
types. In addition to the altered IDH pathway, IDH mutants
had high glycerophosphates, inositols, monosaccharides, and
sugar alcohols and low levels of sphingosine and lysoglycero.
Grade 4 gliomas had significant glycine and 2-aminoadipic acid,
while low-grade astrocytomas and oligodendrogliomas had N-
acetyl aspartic acid. The authors Wei et al.[16] supervised deep
learning for glioma subtype categorization. This hybrid convolu-
tional neural network (CNN) based glioma subtype classification

approach utilizes WSI and multiparametric magnetic resonance
imaging. The authors created WSI and mpMRI methodologies.
The WSI-based 2D CNN classified glioma subtypes. They
avoided label restriction using poorly supervised sample patch
extraction for glioma subtype classification. Utilizing mpMRIs,
they developed a 3D CNN. Brain tumors were segregated by
mpMRI. Finally, using a confidence measure, they combined
WSI- and mpMRI-based data to improve prediction.

Finding Bounding box areas versus annotated tumor,
Muhaddisa et al.[17] trained a deep learning classifier to identify
glioma subtypes using tumor ROIs defined by elliptical bound-
ing boxes versus manually annotated data. US and TCGA multi-
modality MRI datasets were used for experiments, with the US
dataset only encompassing diffuse low-grade gliomas. The US
dataset predicted 1p/19q codeletion status at 69.86% and the
TCGA dataset predicted IDH mutation/wild type at 79.50%.
The average deterioration using annotated GT tumor data for
training was 3.0% (2.92% for 1p/19q codeletion status and
3.23% for IDH genotype). Sihan et al.[18] focused TCGA and
GEO data to classify glioma subtypes (GSE4412). They searched
GSEA for tumor microenvironment-related genes. Through gene
set variation analysis (GSVA) enrichment, cancer subtypes were
classified. GSVA enrichment analysis found three glioma sub-
types. Additional survival prognosis and biological function
research identified 13 tumor microenvironment gene sets and
14 core genes that impacted patient survival. Targeted medicines
and illness detection might target these genes. The main problem
is the inadequate capacity to accurately classify glioma subtypes.

Themotivation for this research is the possibility of transform-
ing present diagnostic processes by incorporating sophisticated
deep-learning algorithms into medical systems. Implementing
automated classification methods can significantly increase the
efficiency of glioma diagnosis, reduce the work of healthcare
employees, and ultimately improve patient care and outcomes.
Glioblastoma is the most common primary brain tumor and
is a significant cause of death in individuals with cancer. Fast
and precise identification of several forms of glioma is crucial
for successful therapy and enhanced patient results. The current
diagnostic techniques need help due to the complex nature of
glioma subtyping, often depending on human categorization,
which is time-consuming and susceptible to mistakes. As a
result, there is a strong need for automated classification systems
that can provide improved accuracy, efficiency, and time-saving
advantages. The advancement and utilization of deep learning
models provide a hopeful approach to fulfilling this requirement.

To enhance healthcare through improved automatic classifica-
tion of glioma subtypes, we focus on specific benchmark meth-
ods to ensure successful classification. This study involved the
identification of many subtypes of glioma, such as astrocytes,
glioblastomas, oligodendrogliomas, and normal brain tissue.
These categories are very high risk and require fast categoriza-
tion to guarantee the patient’s well-being. Figure 1 depicts exam-
ples of various glioma variants we classify in this study. By
applying advanced deep learning and deep learning techniques,
we aim to achieve precise glioma subtype classification, impor-
tant for patient diagnosis and treatment planning. Our approach
implements a highly advanced and customized layer-based novel
model, mixed convolution transformer (MCT), designed for
efficient, fast, and accurate classification of glioma subtypes.
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This innovative model leverages cutting-edge technology to provide
robust performance, significantly improving the accuracy and
speed of medical image analysis in glioma subtype identification.

2. Methodology

This study focuses on categorizing the glioma subtype across
various stages, presenting a distinctive MCT model. To assess

the robustness of the MCT model, we conducted experiments
on two distinct datasets, namely CIFAR-10 and CIFAR-100.
Figure 2 illustrates the comprehensive categorization criteria
using our proposed MCT model alongside the evaluation criteria
for other models on different datasets. This figure showcases the
various datasets utilized within our system, detailing the prepro-
cessing tasks undertaken and the different models implemented
to achieve our results. This framework thoroughly compares the
MCT model’s performance against alternative models across

Astrocytoma Glioblastoma Oligodendroglioma Normal brain

Figure 1. The figure provides an example of a representative sample of four different groups of images from the dataset.
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Figure 2. The schematic overview of the Glioma subtype classification workflow. The data handling process is shown in the diagram, which starts with
data collection and continues with preprocessing and augmentation. Specifically designed models for the classification of glioma subtypes, such as MCT
and transfer learning, are then applied to the data.
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varied datasets, enlightening on its effectiveness and versatility in
glioma subtype categorization.

2.1. Data Collection

In this study, we have collected an image dataset (sized of
19.2 terabytes) from the Zenodo repository[19] that represents
the core characteristics of 28 different instances of adult-type dif-
fuse glioma. The cases were carefully collected at the National
Center of Pathology, housed within the Luxembourg National
Health Laboratory (Laboratoire national de santé), between
2017 and 2021. The resource mainly contains WSI, which is
highly judged for its detailed depiction of internal subtleties.
These images were taken with a Philips IntelliSite Ultra Fast
digital slide scanner. They provide a high level of detail with a
20x/0.75 NA Plan Apo objective lens, resulting in an average
slide resolution of 0.25 μmpixel�1. Referred to as the 20x
magnification data, this extensive compilation contains 42 718
images, each showcasing the distinct characteristics of various
glioma subtypes. These images have great meaning and may
be divided into five categories: astrocytoma, glioblastoma,
oligodendroglioma, normal brain, and necrosis. Each category
expresses its own nature, representing the core of the glioma
spectrum. The subtypes of this dataset and the quantity of data
used for our model’s train and test are displayed in Table 1.

2.2. Data Preprocessing

In this study, we used advanced image augmentation techniques
to solve dataset overfitting. These guide us toward a balanced and
robust dataset. For preprocessing, we used several techniques
that help effective training. First, the data cleaning step is
employed to remove errors, inconsistencies, and irrelevant data,
ensuring the accuracy and quality of the dataset. To balance our
data, we applied a data reduction technique, ensuring that the
class with an excess of data was reduced to align with the other
classes. This approach allowed us to achieve a balanced dataset
across all classes. Next, we utilized an effective preprocessing
technique known as augmentation. Augmentation is used in data
preprocessing to artificially expand the size and diversity of a
dataset, improving the model’s generalization through the input
data. This helps to prevent overfitting and enhances the robust-
ness of the model. During the augmentation step, we utilized
various techniques such as normalization, rotation, flipping
(both horizontally and vertically), zooming, cropping, and bright-
ness adjustment. Before augmentation, the distribution of our

training data was as follows: necrosis class accounted for 1.0%,
astrocytoma class accounted for 9.7%, glioblastoma accounted
for 4.2%, oligodendroglioma accounted for 8.8%, and normal
accounted for 75.2%. Before augmentation, the test data consisted
of the following proportions: 2.2% necrosis class, 11.1% astrocy-
toma class, 5.8% glioblastoma, 10.3% oligodendroglioma, and
70.6% normal. Due to the poor performance of our model on this
dataset, we have decided to employ the augmentation strategy.
Following augmentation, our dataset has been expanded. After
augmentation, the training data distribution for each class is as
follows: astrocytoma, 24.1%; glioblastoma, 19.2%; oligodendro-
glioma, 25.3%; and normal, 31.4%.We excluded the necrosis class
from the analysis due to its limited data and its behavior as an
outlier. After augmentation, the test data for the astrocytoma class
is 25.0%. The test data for glioblastoma is also 25.0%, while the
test data for oligodendroglioma and normal cases is 25.0%. This
data is highly beneficial formodel use. Figure 3 displays the graph-
ical depiction of data distribution before and after augmentation.
Each of our creative methods is carefully intended to balance and
diversify our repository. These methods include geometric and
geographical adjustments to arrange the dataset. Flipping
images—horizontally or vertically—provide a larger view of our
data. We’ve also welcomed random cropping, rotation augmenta-
tion, and modest but powerful image translation. Each move adds
depth and complexity to our dataset, like a brushstroke. Strategic
zooming enhances our dataset’s depth, revealing delicate informa-
tion that might otherwise be lost. Our technique relies on atten-
tively augmenting training data to broaden our dataset. This
ambitious expansion protects our models from overfitting and
allows them to generalize and understand the domain’s many
patterns and complexity. The training method data and the after-
augmentation outcome are displayed in Table 2.

We attentively split our dataset into an 80–20 split, allocating
80% for training and 20% for validation to create a balanced and
dependable model. To balance the test data, we apply under-
sampling, ensuring that each class has an equal representation.
Specifically, we select 241 instances from each class. In this care-
fully created environment, we found an imbalance in the class
Necrosis, which might cause overfitting. A deliberate choice
was made to address this imbalance and traverse this difficulty.
Thus, we remove Necrosis to focus on astrocytoma, glioblastoma,
oligodendroglioma, and normal brain. This systematic protection
conscious to join and present our dataset more effectively, reduc-
ing overfitting and improvingmodel performance. To protect our
test data, we used a thorough method. Precision under-sampling
improved the quality and dependability of our test set. To
strengthen our testing routine, a careful selection method was
used to select the most representative and high-quality images
from this modified test set of 964 images. Table 3 displays
the four classes—train, validation, and test—for which we have
finally completed system development.

2.3. Mixed Convolution Transformer (MCT) Model
Implementation

This article presented a novel deep learning model, namely the
MCT. It is an innovative design that interacts with the Conv2D
and Transformer portions. The Transformer is an encoder in this

Table 1. Subtype-wise training and testing image distributions within the
dataset.

Class Train data Test data

Astrocytoma 3755 465

Glioblastoma 1633 241

Oligodendroglioma 3384 431

Normal brain 29 383 2947

Necrosis 389 90
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innovative model, which uses Conv2D for data training. Several
parameters in the Conv2D and Transformer sections are
essential to implementation and optimization. In the end, the
classification of glioma subtypes is the function of this model.
Our design, which captures the complex interaction between
Conv2D and Transformer components, is depicted in Figure 4
and describes the whole glioma subtype classification process.

2.3.1. Conv2D Layer Execution Process

Convolutional neural network models were used to train the wall
quality dataset to identify the critical elements from the images.
The Gaussian function used for feature extraction is shown in
Equation (1). The Gaussian function’s variance is indicated by
the parameter r.

Figure 3. The effectiveness of augmentation strategies in expanding dataset proportions across multiple categories is demonstrated by a pie chart that
compares the percentage distribution of data before and after augmentation.

Table 2. Comprehensive table showing the distribution of original training
images, enhanced training images, and the total number of training
examples in the dataset per class.

Class Train Augmented data Total train

Astrocytoma 3755 18 775 23 530

Glioblastoma 1633 16 330 17 963

Oligodendroglioma 3384 3384 20 304

Normal brain 29 383 0 29 383

Necrosis 389 0 0

Table 3. Tabular representation providing a thorough overview of the
dataset, showing how images are distributed throughout training,
testing, and validation sets.

Class Train Validation Test

Astrocytoma 18 024 4506 241

Glioblastoma 14 371 3592 241

Oligodendroglioma 18 951 4737 241

Normal brain 23 507 5876 241
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Feature i, j, rð Þ ¼ 1
ffiffiffiffiffiffiffi
2πr

p exp
i2 þ j2

2r2

� �
(1)

Equation (2) illustrates the Gaussian orientation function
utilized for image filtering. Here the features are declared as F.

O i, j, r, θð Þ ¼ Fiicos2 θð Þ þ Fiicos θð Þ þ Fjjsin2 θð Þ (2)

Consequently, shown in Equation (3)–(5), Featureii,
Featureij, Featurejj stands for the Gaussian function’s second
derivatives.

Feature i, j, rð Þ ¼
i2 � r2ð Þexp

�
�
gi2þj2

�� �

ffiffiffiffiffi
2π2

p
ffiffiffiffiffiffiffi
2πr

p (3)

Feature i, j, rð Þ ¼
j2 � r2ð Þexp

�
�
gi2þj2

�� �

ffiffiffiffiffi
2π2

p
ffiffiffiffiffiffiffi
2πr

p (4)

Feature i, j, rð Þ ¼
ij exp

�
�
gi2þj2

�� �

ffiffiffiffiffi
2π2

p
ffiffiffiffiffiffiffi
2πr

p (5)

The final output of the wall quality dataset was produced by
applying four-layer Conv2D layers to the input image, repre-
sented by Equation (6)–(8). These layers included convolution
filtering, sigmoid filtering, linear transformation, and linear sig-
moid.

Z ¼ Featureij � Filter (6)

Con R,C½ � ¼ Featureij � Filter R,C½ � (7)

Con R,C½ � ¼
X

j, kKernel j, k½ �Feature R� j½ � C � k½ � (8)

where the rows and columns of the input image matrix are
denoted by R, C. Apply the sigmoid function as demonstrated
in (9) and (10) to the preceding problem.

ASig ¼ Sigmoid Zð Þ (9)

Reshape(bxdxhxw -> bxh*wxd)

Tokenizer

Scaling

Input 224X224

Softmax

MLP Head

Transformer Encoders

Sequence Pooling

+

MLP

Norm

Multi - Head
Attention

Norm

Embedded
Patches

L  X

Positional
Embedding

Stochastic Depth

Stochastic Depth

+

SeparableConv2D,128, 3x3

Zeropadding2D

Conv2D, 64, 3x3

Maxpooling2D

For 0  num_layers:

Astrocytoma

Glioblastoma

Oligodendroglioma

Normal brain

Classes

Output

Figure 4. MCT, our novel proposed architecture, is conceptually visualized.
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Sigmoid Zð Þ ¼ 1
1þ e�z (10)

In order to process the CNN’s third layer, the linear
transformation was performed to the layer above, as shown in
Equation (11).

ZLinear ¼ WeightT � ASigþ Bias (11)

2.3.2. Transformer Layer Execution Process

The transformer portion functions as an encoder, employing
various techniques before the multilayer perceptron (MLP)
locates the classification process component. The model can
attend to input from many representation subspaces at different
locations at the same time thanks to multiheaded attention.

MultiHead Q ,K ,Vð Þ ¼ Concat head1, : : : ., headhð Þ � ω0 (12)

headi ¼ Attention QWQ
i ,KW

K
i ,VW

V
i

� �
(13)

Another complex execution of the transformer is MLP; the
MLP is a feed-forward neural network with dense and dropout
layers. These MLP blocks get identical stacked layer blocks
and structures. For example, consider X as the token character-
istics with n sequence length and d dimension. A mathematical
definition of each block is as follows.

Z ¼ σ XUð Þ, Z̃ ¼ s Zð Þ,Y ¼ Z̃V (14)

z0 ¼ xclass; x1pE; x2pE, .., xnpE
� �þ Epos,EεR Nþ1ð Þ�D (15)

z1l ¼ MSA LNzl�1ð Þ þ zl�1, l ¼ 1, : : : .., L (16)

zl ¼ MLP LNzll
	 


, zl1, l ¼ 1, : : : ..L (17)

Z ¼ LN z0l
	 


(18)

σ is the activation function, U and V represent the channel’s
linear projection dimensions, and s(.) is the identity mapping.
According to Equation (14), the layer captures spatial interaction,
but individual tokens are calculated without interaction. In
Equation (15) and (16), the layers’ class token, learnable embed-
ding placement, and patch embedding are detailed before stack-
ing in Equation (18). The final output of the encoder is shown in
Equation (19).

S Zð Þ ¼ Z ⊙ f w;b Zð Þ (19)

where the dot product or element-wise multiplication is
represented by ⊙. By combining the Separable Conv2D with
Conv2D, we created a unique layer. The layer’s functionality
is completed when these elements come together. The separable
convolution’s outputO has the following mathematical represen-
tation.

O ¼ I � K r � Kc (20)

Our MCT model (Figure 4) illustrates a neural network
architecture designed for glioma classification, featuring a hybrid

approach combining convolutional layers and transformer
encoders. The input is an image resized to 224� 224 pixels,
which is first processed through a series of convolutional layers,
including standard Conv2D and SeparableConv2D, followed by
max pooling and zero padding for feature extraction. These fea-
tures are then tokenized, reshaped, and passed through multiple
transformer encoders equipped with multihead self-attention
mechanisms to capture global relationships within the image.
Positional embeddings are added to retain spatial information.
The output from the transformer encoders undergoes sequence
pooling and is processed by an MLP head, followed by a softmax
function to generate class probabilities. Additionally, the archi-
tecture incorporates residual connections and stochastic depth,
providing regularization and improving the training process
by allowing specific layers to be bypassed or randomly skipped,
enhancing the model’s ability to generalize well.

The implementation above represents the execution of our
MCT model. The functioning of our constructed MCT model
is explained in a step-by-step manner. Therefore, our advanced
model effectively functions to categorize different subtypes of
glioma.

2.4. Hyperparameter Tuning of MCT Model

We have implemented a list of the hyperparameter tuning pro-
cesses for our MCT model. Hyperparameter tuning refers to
selecting the optimal set of hyperparameters for a deep learning
model. Hyperparameters are configuration settings used to con-
trol the learning process and the structure of the model, which
are set before the training process begins. Unlike the model
parameters (e.g., weights in a neural network), they are not learnt
from the data but can significantly impact the model’s perfor-
mance. Hyperparameter tuning is needed because it helps opti-
mize a machine learning model’s performance by finding the
best configuration of hyperparameters. Hyperparameters, set
before the training process, significantly affect how well a model
learns from data and performs on unseen data. Proper tuning
can lead to better accuracy, faster convergence, and improved
generalization, ensuring the model fits the training data well
and performs effectively on new, unseen data. With tuning, mod-
els may avoid overfitting, where they learn the training data too
well but fail to generalize, or underfitting, where they need to
learn the data better. Thus, hyperparameter tuning is crucial
for achieving the best possible model performance. We have ana-
lyzed many factors, such as weight decay, kernel initiator, pool,
padding, optimizer, learning rate, batch size, and attention. To
perform hyperparameter tuning, start by defining the search
space by selecting the hyperparameters and their possible values.
Next, choose a strategy or algorithm. Split the dataset into train-
ing and validation sets and then train models using different
combinations of hyperparameters. Each model’s performance
is evaluated using a chosen metric, and finally, the hyperpara-
meters that yield the best validation performance are selected.
Here, we identify a specific range of parameter values, constitut-
ing the search space for the most optimal results in classifying
glioma subtypes. Then, we select a value from this range
to implement our system. Table 4 displays the outcomes of
the hyperparameter tuning process for our MCT model.
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By conducting methodical experiments, hyperparameter tuning
optimizes the model’s performance, improving its ability to
accurately forecast outcomes and its resilience.

3. Result Analysis and Findings

This section presents the comprehensive results generated by
our classification system using the MCT model. We evaluate
the accuracy and loss of our system and evaluate the precision,
recall, and F1 score to gauge the effectiveness of our model. Our

precise evaluation process has led to the creation of a detailed
diagram demonstrating the highly efficient subclassification
of gliomas.

3.1. Performance Measuring Metrics Evaluation and Benefits

We evaluate our glioma subtype classification working model
using a set of important metrics, namely, True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative
(FN), to determine its accuracy, precision recall, and F1 score.
When taken as a whole, these numbers show how well the model
performs in classifying glioma subtypes classification. The MCT
model has demonstrated outstanding performance, with a train-
ing accuracy of 97.12% and an even more remarkable validation
accuracy of 98.12%. Training and validation accuracy have differ-
ent but complementary roles in evaluating the effectiveness of
deep learning models. Training accuracy judges the degree to
which a model accurately represents the training data all over
the learning process. On the other hand, validation accuracy eval-
uates the model’s ability to generalize to new and unseen data.
The training accuracy indicates the model’s proficiency in recog-
nizing the patterns in the training set. Additionally, the accuracy
of validation assesses its capability to make precise predictions
on data not used for training. It is essential to monitor both
metrics to comprehend a model’s performance and guarantee
its efficacy in practical situations. The exceptional statistics dem-
onstrate the model’s strength and expertise in acquiring and
applying patterns from the dataset. Figure 5A displays the

Table 4. Several hyperparameters that were experimented with and
highlight the combinations that yielded the optimal performance for
our model.

Parameter Search space Selected value

Weight decay [0.0001–0.001] 0.02

Pool [Max, Average] Max

Kernel initiator [he, glorot, normal] normal

Padding [Valid, same] same

Optimizer [SGD, Adam, RMSprop, Nadam] Adam

Learning rate [0.01, 0.001, 0.0001, 0.02] 0.0001

Batch size [8,16,32] 16

Attention [Self, Multihead] Multihead

Figure 5. A) Model’s training and validation accuracy and B) Model’s training and validation loss, to demonstrate its efficacy.
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graphical depiction of training accuracy and validation accuracy
as a function of the number of epochs.

We conducted a comprehensive study that goes beyond mea-
suring accuracy, including examining loss measures in both the
training and validation phases. Notably, our approach has sur-
prisingly few losses, which indicate the model’s effectiveness
and accuracy in learning from the data. The advantage of finding
training loss and accuracy is their capacity to offer immediate
feedback on the learning progress of a deep learning model
based on the data. By tracking the training loss, we can assess
the convergence of the model during training, aiding in the
adjustment of hyperparameters and the detection of potential
problems such as overfitting and underfitting. Training accuracy
measures a model’s performance on the training dataset, indicat-
ing its capacity to learn from the given data. These indicators are
essential diagnostic tools for optimizing model performance and
directing the training process toward desired outcomes.
Figure 5B provides a clear visual image of the train and validation
loss. This image highlights the model’s ability to reduce loss in
training and validation, further confirming its efficiency and
reliability in capturing complex data patterns.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(21)

Precision, recall, and F1 score are essential measures used to
assess the effectiveness of deep learning models. Precision is a
metric that evaluates the correctness of optimistic predictions by
verifying that the recognized positives are genuinely positive.
Recall measures the model’s capacity to correctly identify all
relevant instances, explicitly capturing the percentage of actual
positives that are accurately predicted. The F1 score achieves a
trade-off between precision and recall by calculating their har-
monic mean. These metrics are crucial for comprehending
the effectiveness of a model, particularly in tasks where accu-
rately recognizing positive instances is of absolute importance
in medical diagnosis sector. They assist in developing models
to reach an optimal trade-off between false positives and
false negatives, enhancing overall efficacy and dependability.
Table 5 illustrates the implemented and suggested models’ pre-
cision, recall, and F1 scores. The formula is expressed below.

Precision ¼ TP
TP þ FP

(22)

Recall ¼ TP
TP þ FN

(23)

F1 score ¼ 2� Precision� Recall
Precisionþ Recall

(24)

The receiver operating characteristic (ROC) curve thoroughly
assesses a binary classifier’s performance by considering all
potential classification levels. It demonstrates the balance
between sensitivity and specificity, assisting in choosing the best
threshold for a particular use case. The area under the curve
(AUC)–ROC measures the classifier’s capacity to differentiate
across classes, regardless of the threshold. It is an invaluable tool
for evaluating and choosing models based on their overall
performance. The class of astrocytomas have an astounding
AUC of 0.99, glioblastomas have an AUC of 0.98, oligodendro-
gliomas have an AUC of 0.96, and a normal brain has an AUC of
0.99. Figure 6 displays the ROC curve for four classes.

A confusion matrix is an essential machine learning method
for assessing a classification model’s efficacy. It details the mod-
el’s classifications and how well we match the real class labels.
Usually, the matrix is set up as a table with rows and columns
denoting the real classes and the categorized ones. In our inves-
tigation, we created a visual representation of the confusion
matrix that displays four unique classes: astrocytoma, glioblas-
toma, oligodendroglioma, and normal brain. The matrix is visu-
ally depicted in Figure 7, effectively illustrating the categorization
ranges for each class using yellow and green boxes. This image
accurately represents the model’s classification performance in
these precise categories, offering a concise and enlightening
perspective on its precision and accuracy in this multiclass
classification assignment.

3.2. Testing of MCT Architecture with CIFAR-10 and CIFAR-100
Dataset

While assessing the performance of our MCT architecture on the
CIFAR-10 and CIFAR-100 datasets, we observed interesting
findings compared to the vision transformers (VIT) and compact
convolutional transformers (CCT) models at various stages of
training, as performed by Hassani et al.[20]

Table 5. Model performance metrics on the test set: a comprehensive
overview of the evaluation measures and performance indicators.

Class Precision Recall F1 Score

Astrocytoma 0.84 0.99 0.91

Glioblastoma 0.94 0.81 0.87

Oligodendroglioma 0.80 0.84 0.82

Normal brain 1.00 0.91 0.95 Figure 6. A figure showing ROC curves produced in a test set by the MCT
model.
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In CIFAR-10, the VIT models at 100th epoch the training accu-
racy of 94.36% and a validation accuracy of 80.83%, at 200th

epoch the training accuracy of 95.47% and a validation accuracy
of 80.99%, and at 300th epoch the training accuracy of 96.01%
and a validation accuracy of 82.35%, consisting of 4.7 million
parameters. By the CCT models 100th epoch the training accu-
racy of 86.96% and a validation accuracy of 79.40%, at 200th

epoch the training accuracy of 88.68% and a validation accuracy
of 83,08%, at 100th epoch the training accuracy of 89.25% and a
validation accuracy of 83.10% utilizing 0.4 million parameters.
Remarkably, our proposed MCT model, after 100th epochs,
attained a training accuracy of 92.44% and a validation accuracy
of 83.54%, at 200th epoch the training accuracy of 94.09% and a
validation accuracy of 84.88%, at 300th epoch the training accu-
racy of 97.02% and a validation accuracy of 85.18%, employing
0.4 million parameters. Our model demonstrated exceptional
accuracy while using the same settings, highlighting its ability
to handle complex data formats effectively. To summarize,
our MCT model not only showed vital accuracy in the fewer
epochs but also showed significant improvement, outperforming
current models in later stages. This indicates its potential for
better learning and representation skills. Table 6 displays the
CIFAR-10 result.

During our assessment of the CIFAR-100 dataset, we per-
formed comparative studies of the VIT, CCT, and MCT models.
We ensured that all models kept the kernel sizes and convolu-
tional parameters similar. When analyzing the CIFAR-100 data-
set, the VIT models 100th epoch achieved a training accuracy of
41.78%, at 300th epoch the training accuracy of 52.42%, using
3� 3 kernel. In the CCT model, after 100th epochs, the training
accuracy showed a slight improvement to 69.97%, at the 300th

epoch the training accuracy of 80.10%, using a 3� 3 kernel
and a convolution setting of 2. Remarkably, our suggested
MCT model achieved superior performance compared to both
predecessors, with 100th training accuracy of 82.10%, at the
300th training accuracy of 87.36%. This was accomplished using

the identical convolution parameter of 2 and a 3� 3 kernel. Our
MCT model demonstrated superior performance in terms of
accuracy compared to other models with identical convolutional
and kernel configurations. The findings emphasize the excep-
tional performance and flexibility of our MCT model, especially
when compared directly with the same convolutional settings.
This highlights its potential to improve the learning and repre-
sentation of complex features in the CIFAR-100 dataset. Table 7
displays the CIFAR-100 result.

3.3. Improvement and Effectiveness of Our System

Our study has focused on categorizing glioma subtypes using a
Zenodo dataset containing ≈42 718 WSI across five classes:
astrocytoma, glioblastoma, oligodendroglioma, normal brain,
and necrosis. Using a novel MCT model, which integrates
complex conv2D layers and transformers, we achieved remark-
able results with an overall accuracy of 97.41%. Specifically,
our model achieved a validation accuracy of 98.12% and a testing
accuracy of 97.35%, surpassing previous methods. Performance
evaluations against VIT and CCT models on CIFAR-10 and
CIFAR-100 datasets consistently demonstrated superior accuracy
throughout various epochs. Figure 8 displays the dataset used for
training, validation, and testing in our system for classifying gli-
oma subtypes. Additionally, we rigorously assessed precision,
recall, and F1 scores for each class, providing insights into the

Figure 7. Showing the confusion matrix produced by our proposedmodel,
MCT, which provides a thorough analysis of the classification results.

Table 6. On the CIFAR-10 dataset, the following table compares the
number of epochs, top-1 training accuracy, and top-1 validation
accuracy (Bold are indicating the results generated by proposed model).

Epoch Model Train accuracy Validation accuracy Parameter

100 VIT 94.36% 80.83% 4.7 M

200 VIT 95.47% 80.99% 4.7 M

300 VIT 96.01% 82.35% 4.7 M

100 CCT 86.96% 79.40% 0.4 M

200 CCT 88.68% 83.08% 0.4 M

300 CCT 89.25% 83.10% 0.4 M

100 MCT 92.44% 83.54% 0.4M

200 MCT 94.09% 84.88% 0.4M

300 MCT 97.02% 85.18% 0.4M

Table 7. On the CIFAR-100 dataset, the following table compares the
number of epochs, top-1 training accuracy (Bold are indicating the
results generated by proposed model).

Epoch Model Train accuracy Conv Kernel

100 VIT 41.78% – 3� 3

300 VIT 52.42% – 3� 3

100 CCT 69.97% 2 3� 3

300 CCT 80.10% 2 3� 3

100 MCT 82.10% 2 3� 3

300 MCT 87.36% 2 3� 3
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model’s strengths and weaknesses. Furthermore, ROC curves
illustrated the discriminatory capability of our classification
system. The physical expressions of our system’s capabilities
are presented in Figure 9, demonstrating the remarkable align-
ment between actual and expected outcomes. Each of the four
glioma subtypes is defined by its anticipated structure, demon-
strating our process’s strength and automated nature. In addition
to categorization, our approach excels in speed and efficiency,
guaranteeing rapid and precise identification of different forms
of glioma. Our original glioma subtype classification method rep-
resents a significant leap forward in accurately categorizing these
complex tumors. Unlike existing systems, which often suffer
from limited data and less than precise classification, our study
introduces a novel approach that revolutionizes the landscape of
glioma classification. By leveraging a comprehensive dataset and
employing cutting-edge techniques, our method enhances
classification accuracy and offers a deeper understanding of gli-
oma subtypes. This advancement holds profound implications
for the field, paving the way for more tailored and effective
treatment strategies. In essence, our research marks a pivotal
moment in glioma classification, indicating a new era of preci-
sion medicine where diagnoses are more refined, diagnosis is
more informed, and patient care is significantly improved.

3.4. Finding Robustness of Implementation Models and
Comparison Showcase

The scope of our study includes a range of deep learning and
deep learning models, which consist of established architectures
such as VGG16, VGG19, ResNet50, ResNet101, ResNet201,
DenseNet121, InceptionV3, as well as emerging paradigms
such as VIT, convolutional vision transformer (CVT), and our
original contribution, the MCT. Table 8 shows these model’s

performance thoroughly. Our proposed MCT model has shown
to be exceptionally successful, demonstrating unmatched
accuracy in classifying gliomas. The MCT model has exceptional
performance in reliably distinguishing glioma types, with a train-
ing accuracy of 97.41%, validation accuracy of 98.12%, and test
accuracy of 97.35%, surpassing all other models. This accom-
plishment highlights the effectiveness and future possibilities
of our innovative MCT architecture in applications related to
medical image processing. Our model utilizes multichannel
information processing to achieve high accuracy and exhibit
robustness across various datasets and validation conditions.
Our implemented models collectively demonstrate the progres-
sion and variety within the field of deep learning for medical
imaging. Among these models, our MCT model stands out
for its superior accuracy in classifying glioblastoma.

To improve glioma classification, we thoroughly examined
recent studies in the field. We compared essential factors such
as age, gender, input data, methodology, target conditions, and
performance metrics such as AUC and accuracy. After conduct-
ing a comprehensive examination, it became evident that the
existing models needed to be revised regarding the amount
and quality of data they used, leading to suboptimal results.
However, our pioneering method, MCT, represents a significant
advancement. Utilizing a large dataset of 42 718 images, our
model surpasses the constraints of previous models. Using broad
and diverse datasets in glioma classification research establishes
a new standard, giving our model exceptional depth and robust-
ness. Table 9 compares the latest research in glioma classification
and the outcomes of our suggested model. In spite of that,
the ultimate proof of MCT’s supremacy can be seen in its
performance measurements. Our model achieves exceptional
AUC and accuracy rates, surpassing current approaches and
establishing a new standard for accuracy in glioma classification.

Astrocytoma Glioblastoma Oligodendroglioma Normal brain

Glioma subtype

Training accuracy
97.41%

Validation accuracy
98.12%

Training accuracy
97.02%

Validation accuracy
85.18%

Training accuracy
87.36%

Validation accuracy
76.39%Mixed Convolution Transformer (MCT)

CIFAR-10

CIFAR-100

Figure 8. The key discoveries of our system include the classification type, training and validation accuracy, and the results obtained from diverse datasets
for our model.
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This achievement highlights the effectiveness and dependability
of MCT as an advanced tool in detecting and categorizing
gliomas. We have initiated a new period in the categorization
of gliomas. Using MCT, we have exceeded the constraints of cur-
rent models and achieved a new level of precision and effective-
ness in this crucial field of medical research.

4. Discussion

Our research presents a highly effective glioma subtype classifi-
cation system that stands out for its accuracy, efficiency, and
robustness. We have focused on four subtypes: astrocytoma,
glioblastoma, oligodendroglioma, and normal brain. The dataset
consisted of high-resolution WSI images. Our system demon-
strates exceptional precision in the field, achieving a remarkable
training accuracy of 98.41%, an effective validation accuracy of
98.12%, and a testing accuracy of 97.35%. The outstanding
outcomes highlight the effectiveness of our methodology in pre-
cisely categorizing the wide range of glioma subtypes. This sig-
nificant advancement in glioma classification is pivotal for
clinical and research applications, offering improvements that
could directly benefit patient care and therapeutic decision-
making. The innovative nature of our system lies in its ability
to handle complex data and provide precise results, making it
a valuable tool in the healthcare sector. The potential applications
of our system extend beyond mere classification; it promises to
aid in the diagnosis, treatment planning, and prognostic evalua-
tion of glioma patients. By refining the classification process, our
research contributes to the broader goal of advancing medical
technology and improving outcomes for patients with gliomas.

By incorporating sophisticated classification criteria, our
system surpasses new methodologies in the field. In this study,
we demonstrate that our classification approach enhances the

 Original: astro
Predicted: astro

 Original: gbm
Predicted: gbm

 Original: normal
Predicted: normal

 Original: oligo
Predicted: oligo

 Original: normal
Predicted: normal

 Original: astro
Predicted: astro

 Original: normal
Predicted: normal

 Original: oligo
Predicted: oligo

 Original: gbm
Predicted: gbm

 Original: astro
Predicted: astro

 Original: gbm
Predicted: gbm

 Original: normal
Predicted: normal

Figure 9. Predicted image produced by our MCT model, demonstrating the precise predictions produced by our proposed model.

Table 8. A thorough overview of model performance on training and
validation sets, our proposed model using the glioma subtype dataset
and other models. It displays precision and validation accuracy metrics
(Bold are indicating the results generated by proposed model).

Model Train accuracy Validation accuracy Test accuracy

VGG16 90.96% 93.43% 92.56%

VGG19 87.61% 80.02% 79.35%

ResNet50 95.45% 92.39% 92.43%

ResNet101 96.22% 92.87% 91.78%

ReseNet201 94.45% 96.61% 95.28%

DenseNet121 87.15% 86.92% 85.61%

InceptionV3 77.18% 75.81% 75.38%

VIT 96.39% 96.48% 95.76%

CVT 84.35% 72.26% 70.28%

MCT(Proposed) 97.41% 98.12% 97.35%
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precision of glioma subtype identification and we present
Table 9, a comprehensive comparison between existing research
findings and our own results. It is noticeable from the data that
our classification results significantly outperform those reported
in previous studies. This highlights the efficacy and robustness
of our approach, demonstrating its superiority in achieving
higher accuracy and reliability in classification tasks.

To construct this system, we have created a novel MCT model
designed explicitly for categorizing glioma subtypes. The model
introduces several innovations that enhance its efficiency and
performance. First, the MCT model strategy efficiently extracts
features at different spatial resolutions, effectively capturing local
and global data. Second, stochastic depth regularization
improves training depth robustness by randomly dropping layers
during training, preventing overfitting and enhancing generali-
zation. Additionally, dynamic data augmentation enriches the
training dataset by applying various transformations, enhancing
the model’s ability to generalize to unseen data. The model
utilizes convolutional layers to extract features while preserving
spatial information, diverging from traditional tokenization
methods. This is complemented by optional positional embed-
dings that enable the model to understand spatial relationships
within the image. Stochastic depth regularization is incorporated
to prevent overfitting and enhance generalization, while a com-
prehensive data augmentation pipeline ensures robustness to

variations in input data. The model captures long-range depen-
dencies and hierarchies in image features using transformer
blocks, with a sequence pooling mechanism facilitating informa-
tion aggregation across patches. Additionally, the model uses
multihead self-attention transformer blocks to capture complex
dependencies across tokens. Sequence pooling is also utilized to
aggregate features effectively. The model’s attention mechanism
allows it to dynamically adjust focus on relevant regions, contrib-
uting to its effectiveness in various image-related tasks. While
several authors have employed CNN-transformer architectures,
our development of the MCT model introduces a novel approach
by incorporating two distinct types of convolutional layers
and transformers. We used the mixing of Conv2D and
SeparableConv2D layers in a neural network model to balance
computational efficiency with rich feature extraction. Conv2D
layers effectively capture complex spatial patterns by applying
multiple filters to the entire input space, making them robust
for learning complex features. However, they are computation-
ally expensive. On the other hand, SeparableConv2D layers break
down the convolution into depth-wise and point-wise operations,
significantly reducing the number of parameters and computa-
tions while still capturing essential features. By combining these
layers, a model can leverage the detailed feature extraction of
Conv2D where needed while using SeparableConv2D to reduce
computational costs in other parts of the network, leading to a

Table 9. Comparative performance analysis of our proposed approach with alternative models that used MCT (Bold are indicating the results generated
by proposed model).

Author and year Age Gender Method Target condition AUC (�SD) Test accuracy

Ahammed[21] NR NR Deep CNN Glioma grade NR 94.64

Bangalore[22] NR NR Dense-UNet IDH genotype 0.98� 0.146 97.14

Batchala[23] NR 50–52 Multivariate model 1p/19q integrity NR 81.1

Cao[24] NR 74–67 Elastic-Net SVM LGG/HGG 0.915� 0.356 NR

Carver[25] NR NR Elastic-Net RGL Model IDH genotype NR 74

Fan[26] 46.8 NR Elastic-Net, RGL, SVM glioblastoma,
oligodendroglioma

0.923 93.8

Gates[27] NR NR Random Forests Glioma grade NR 96

Jiang[28] 45.4� 13.1 43–44 Fusion Radiomics, SVM MGMT 0.898� 0.323 88.6

Jiang[29] NR 68–59 SVM, RF, LR IDH genotype 0.747� 0.228 NR

Lee[30] NR 47–41 KNN, SVM IDH genotype NR 83.4

Li[31] 60.0 37–32 SVM PTEN genotype 0.787 82.5

Lo[32] NR 28–11 LR IDH genotype NR 90

Matsui[33] 42 131–86 DLR LGG NR 58.5

Mzoughi[34] NR NR LR, SVM Glioma grade NR 96.4

Park[35] NR NR RF IDH genotype 0.900� 0.298 NR

Shboul[36] NR NR LR, MRF IDH genotype 0.84� 0.156 NR

Sun[37] NR NR LR P53 statusNR 0.709 81.3

Tian[38] NR 53–35 LR, RN TERT promoter mutation status 0.889� 0.335 84.2

Zhang[39] NR 61–47 CNN, SVM LGG/HGG 0.93 94

Zhao[40] 45.0� 14.4 19–17 RF Glioma grade II/III 0.861� 0.240 78.1

Proposed Model (2024) NR NR MCT astrocytoma, glioblastoma,
oligodendroglioma, normal brain

0.99, 0.98, 0.99, 96 97.35
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more efficient and scalable model. This unique combination
of CNN and transformer components provided significant
advantages, contributing to the novelty and effectiveness
of our research. These innovations culminate in a robust,
efficient, and adept model handling diverse image classification
challenges.

Combining convolutional layers and transformer blocks
enhances the model’s ability to capture local spatial features
and long-range dependencies. This hybrid approach enables
more effective feature extraction and improves the model’s over-
all performance in complex image classification tasks. Note,
while under-sampling would only allow us to build our model
using real datasets, here in our study, we have used an over-
sampling strategy rather than under-sampling. The rationales
behind that were, first, some of the “normal classes” of our
dataset are much higher than the other three remaining classes
(astrocytoma, glioblastoma, and oligodendroglioma), which may
cause severe over-fitting issues for a multiclass classification
problem if trained as it was. Second, although the under-sam-
pling approach may alleviate the class imbalance issue, it would
provide us with limited data points for training and testing the
model, which would lack generalizability. Third, although the
over-sampling strategies create new data but like existing ones,
the robustness of the advanced techniques facilitates greater gen-
eralizability of the model by reducing the over-fitting or under-
fitting issues, which is an extremely important aspect of a multi-
class classification task. This system implementation computa-
tional criteria was an Intel (R) Core (TM) i7 CPU, 16 GB RAM,
and 12 GB GPU was used for the entire training procedure on a
Windows 10 computer. TensorFlow 2.2.1 and Python 3.12.3
implemented all offensive automatic glioma subtypes classifica-
tion models. To edit this system code, we used Jupyter Notebook.
Additionally, the memory consumption size of our model was
3.43MB and the training time for our model was 57min and
45 s. However, our system also has certain limitations. The
MCT model was built explicitly for classification tasks. Its perfor-
mance may be reduced in the fields of NLP, segmentation, and
others.

Our system’s enhanced capabilities will set a new standard for
glioma classification, fostering advancements in clinical practice
and research in neuro-oncology. This accomplishment is a
notable advancement in the history of medical science, providing
a revolutionary instrument for doctors and researchers. Our
research contributes to advancing diagnostic capacities and
ultimately leads to improved patient outcomes by examining
the historical development in the medical industry.

5. Conclusion and Future Work

This research has successfully tackled the critical issue of glioma
subtype classification by introducing an advanced deep learning
model, MCT. The classification of glioma subtypes significantly
impacts both research and clinical settings. Accurate subtype
classification enables a deeper understanding of these diverse
brain tumor molecular and genetic foundations, facilitating
the identification of distinct prognostic and therapeutic targets.
Clinically, it enhances diagnostic precision, allowing for more
tailored and effective treatment plans that can improve patient

outcomes. It also aids in predicting disease progression and
response to therapies, thereby contributing to personalized
medicine approaches. Additionally, refined classification systems
support the development of more targeted clinical trials, advanc-
ing the discovery of novel treatments and ultimately improving
survival rates and quality of life for glioma patients.

In the future, we will enhance our model to improve effi-
ciency, by reducing the training time while delivering more accu-
rate results. To enhance the performance metrics more advanced
augmentation techniques, such as GANs, may be employed.
Additionally, we will incorporate more image data from various
hospitals to ensure better performance in glioma diagnosis and
the healthcare sector.
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