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A B S T R A C T

In this review, we present the main approaches developed around satellite and airborne Synthetic Aperture
Radar (SAR) imagery. The great range of SAR imagery applications is summarized in this paper. We organize
the most popular methods and their applications in a cohesive manner. SAR data applications are classified
into earth observation and object detection applications and the former are separated into land, sea, and ice
applications. We present the basic methodologies and recent advances in land cover classification and object
detection, as well as techniques for parameter retrieval from SAR data. We give advantages and disadvantages
and highlight the particular characteristics of each method. It is shown that usage of SAR contributes to the
amelioration of techniques and to the enhancement of reliability.
1. Introduction

SAR is a microwave remote sensing technology which was first
conceived in the early 1950s: researchers discovered that synthesizing
the antenna aperture of a side-looking radar mounted on aircraft could
improve angular resolution.1 Technology allowed the first airborne
SAR systems to be flown in the late 1950s. SAR technology has since
seen rapid progress, with a variety of radar modes developed. The
first spaceborne SAR mission, Seasat, was launched in 1978 and was
deemed successful. It was followed by numerous missions of advanced
SAR sensors providing fine resolution measurements which are used
in various disciplines. Today, SAR systems are operated from elevated
places on land, from manned and unmanned aircraft and spacecraft.
SAR can provide images on a 24-hour basis and in all kinds of weather
and has the ability to penetrate clouds, fog, and in some cases leaves,
snow and sand. A plethora of manuals explain the basics and guide
users through the applications of SAR (Jackson & Apel, 2004; Ulaby
et al., 2014).

SARs transmit microwave signals and measure the backscattered
portion of the signal. Then, they use the signal to derive the Radar Cross
Section and, from this, describe features of the surface or reflective
object. SAR images are maps of backscatter intensity in range–azimuth
dimensions. As SAR is a microwave sensing instrument with its own
illuminating source, the user can specify various parameters, such as
frequency, look angle and polarization. Lower frequency, or equiv-
alently longer wavelength, implies increased penetration into snow,
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vegetation and alluvial structures. Table 1 lists the microwave bands
and the corresponding frequencies and wavelengths used by the radar
community. L-, C- and X- bands are the most widely employed in
SAR instruments The look angle usually depends on the application
and determines swath and resolution. Different types of polarization
interact differently with objects. Most SARs transmit and receive lin-
early polarized signal, either horizontally or vertically polarized. Early
SAR instruments operated in one polarization mode, either VV (vertical
transmission and vertical reception) or HH (horizontal transmission
and horizontal reception). More recent and modern SARs provide dual-
and quad-polarized images, essentially giving multiple images of the
same scene. Quad-polarized SAR, also referred to as Polarimetric SAR
(PolSAR), captures diverse structural and texture information and al-
lows the recognition of different scattering mechanisms. The specific
frequency, look angle, polarization, and illuminated area of a SAR
dataset determine which applications the dataset is appropriate for.

Since the first spaceborne SAR mission, Seasat, in 1978, numerous
missions followed. These missions generated SAR datasets, many of
which are publicly available. Table 2 shows a list of the most popular
satellite sources of SAR data that were or will be launched. Meanwhile,
countless airborne SAR missions were and are launched in various
countries around the globe. Measurements provided by these SAR
platforms are widely used in a variety of SAR applications related to
earth observation and object detection as well as in the development
and testing of new techniques. Most of the SAR sensors work in several
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Table 1
Designation of microwave bands.
Source: Flores-Anderson et al. (2019).

Band Frequency Wavelength Typical application

Ka 27–40 GHz 0.8–1.1 cm Airport surveillance (rarely used)
K 18–27 GHz 1.1–1.7 cm H2O absorption (rarely used)
Ku 12–18 GHz 1.7–2.4 cm Satellite altimetry
X 8–12 GHz 2.4–3.8 cm Urban monitoring, Ice and snow (rarely used)
C 4–8 GHz 3.8–7.5 cm Global mapping; Change detection; Monitoring of areas with low to moderate

vegetation; Ice, ocean, maritime navigation (SAR workhorse)
S 2–4 GHz 7.5–15 cm Earth observation; Agriculture monitoring
L 1–2 GHz 15–30 cm Geophysical monitoring; Biomass and vegetation mapping; InSAR
P 0.3–2 GHz 30–100 cm Biomass; Vegetation mapping and assessment.
Table 2
Satellite SAR missions.

Sensor Lifetime Band (Wavelength) Polarization

Seasata 1978 L-band (24.6 cm) HH
ERS-1 1991–2000 C-band (05.6 cm) VV
JERS-1 1995–1998 L-band (24.6 cm) HH
ERS-2 1995–2011 C-band (05.6 cm) VV
ENVISAT 2002–2012 C-band (05.6 cm) HH, VV, VV/HH, HH/HV, VV/VH
ALOS-1a 2006–2011 L-band (24.6 cm) Single, Dual, Full (dependent)
Radarsat-1 1995–2013 C-band (05.6 cm) HH
TerraSAR-X; TanDEM-X 2007–; 2010– X-band (03.5 cm) Single, Dual, Twin
Radarsat-2 2007– C-band (05.6 cm) Single, Dual, Full
COSMO-SkyMed 2007– X-band (03.5 cm) Single, Dual
RISAT 2012–2017 C-band (05.6 cm) Dual
ALOS-2; PALSAR-2 2014– L-band (24.6 cm) Single, Dual, Full (dependent)
Sentinel-1a 2014– C-band (05.6 cm) Single, Dual (dependent)
SMAPa 2015 L-band (21.26 cm) Full
Tiangong-2; InIRA 2016–2019 Ku-band (2.2 cm) VV
Gaofen-3 2016– C-band (05.6 cm) Single, Dual, Full (dependent)
SAOCOM 2018– L-band (24.6 cm) Single, Dual, Quad (dependent)
PAZ SAR 2018– X-band (03.5 cm) aSee TerraSAR/TanDEM-x
RCM 2019 C-band (05.6 cm) Single, Dual, Compact, Full (dependent)
NISARa 2021 L-band (24.6 cm) Single, Dual, Full
BIOMASSa 2021 P-band (70.0 cm) Full
SWOT; KaRIn 2021– Ka-band (0.84 cm) VV (right), HH (left)
TanDEM-La 2023 L-band (24.6 cm) Single, Dual, Full (dependent)

aIndicates free and open access.
modes, each with its own polarization, resolution and swath. In addi-
tion, SAR data come in a variety of types and formats and are offered
in different processing levels.

Many applications and problems, such as land and ocean topog-
raphy, cannot be tackled with a single, two-dimensional, SAR image.
Instead, they require a three-dimensional image. Interferometric SAR
(InSAR) is a technology that addresses these problems by comparing
images from two synthetic apertures taken at slightly different antenna
look angles. It has received a lot of attention on its own and has
many and diverse applications (Zhou et al., 2009). The images differ
only slightly and differences are measures on a pixel by pixel basis.
The two sensors may be mounted together on the carrier and capture
signals simultaneously (single-pass interferometry). Alternatively, the
sensors may be mounted on different platforms which either accom-
pany each other (Chen, Dong et al., 2020) or follow the same track
at different times (repeat-pass interferometry). Generally, InSAR helps
retrieve target elevation and produce interferograms – maps of change
or deformation – and digital elevation models.

There is a large variety of SAR techniques developed over the
last decades and a plethora of applications in diverse fields. There is
no review covering all SAR applications for the interested user in a
cohesive manner, other than an early study (Elachi et al., 1982). Most
reviews focus on a specific technique, such as InSAR (Gens & Van
Genderen, 1996; Zhou et al., 2009), or on a specific field (Jawak et al.,
2015; Liu et al., 2019; Musa et al., 2015). In the current study, we
present the first, in decades, extended review of applications of SAR
data.

In addition, we organize and categorize SAR methods in a cohesive
manner. More precisely, we classify all uses and applications of SAR
2

data into three, very broad, categories: mapping and land classification,
parameter retrieval, and object detection (Table 3). The first tries to
identify and classify the type of surface, on land, sea, or ice. The
second consists in retrieving local parameters and information relating
to the Earth, such as soil moisture and wind speed. Object detection
aims at locating and identifying objects in SAR imagery. We present
the most common problems and techniques in each category and we
further classify SAR applications based on discipline, such as geology
and glaciology.

This introduction gave a brief summary of the history and attributes
of SAR technology and presented the most widely used datasets. The
rest of the paper presents SAR data uses and applications and is
organized according to the scheme in the previous paragraph. Sec-
tion 2 gives an overview of the applications of SAR in mapping and
land classification. Section 3 furnishes SAR applications in parameter
retrieval like ocean wind and soil moisture. Section 4 speaks of object
detection with SAR. Finally, Section 5 gives concluding remarks to this
review.

2. Mapping & land classification

SAR measurements are widely used in various earth observation
applications. Oceanography (Ye et al., 2016), glaciology, geography
and geology are among the fields that made use of SAR systems.
Mapping is a discipline that benefits from SAR data. SAR images have
helped generate various topographic products, such as high-fidelity
maps and sensitive detection maps.

SAR applications in this section constitute one family of problems
which uses similar techniques. Applications are found in land, sea, and
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Table 3
Taxonomy of SAR applications.

Category Applications

Mapping & Land classification Land cover classification, Forest monitoring, Shellfish & Oil spills, Sea ice, Glaciers
Parameter retrieval Ocean topography, Wind and wave retrieval, Soil moisture
Object detection Object detection and recognition, Navigation
ice problems. The problem of land mapping is commonly referred to as
land cover classification and abbreviated as LCC.

The properties of radar backscatter in various surfaces had been
studied before the advent of SAR systems. The growing availability of
satellite SAR data, beginning with Seasat in 1978, made possible an
innumerable amount of studies revolving around land mapping and
land classification.

2.1. Land mapping

Land Use and Land Cover is a problem receiving a lot of attention
given the need of developing land use policies, as well as mapping. It
consists in establishing the land cover in the areas of interest, such as
vegetation, water, or urban area and in detecting changes in land cover
or usage over time.

Land cover classification. Mapping land cover is a source of practical
information for purposes such as forest monitoring, agriculture, urban-
ization and flood monitoring. Estimates of land cover are necessary to
develop land use policies. SAR is sensitive to structural terrain features,
such as roughness, making it appropriate for land cover classification
into easily interpreted categories, such as arable land, grassland, or-
chards and forests. More generally, SAR can separate rural land from
urban areas, and thus help monitor land usage (Abdikan et al., 2016).
It can also distinguish among sea water, man-made structures, and
vegetation (Wang, Yang et al., 2017) in critical intertidal zones. Studies
on particular areas allow separation among specific structures, such as
plantations of oil palm, rubber and rice paddies (De Alban et al., 2018).
PolSAR data are an important source for land cover classification,
as they capture structural and textural information of the scattering
surface.

SAR datasets can be used to accurately monitor forest changes
(Hoekman & Quiñones, 2000), usually in combination with optimal
remote sensing. A crucial advantage of SAR is independence from
weather and clouds, particularly important in tropical zones. However,
backscatter from forests is not fully understood (Brolly & Woodhouse,
2012) and publicly available SAR data, especially long-wavelength,
were limited until recently.

The backscatter signal from soil and forest structure has been stud-
ied for decades (Ulaby et al., 1982). SAR captures changes in vegetation
and in moisture and standing water while optical sensing captures
changes in chemical composition (Yatsenko et al., 2004). The longer
the wavelength, the deeper the signal penetrates into the vegetation:
X-band scatters at the top of the canopy while L-band scatters at soil
and trunks and can detect flood. As a result, L-band data prove to be
more useful as larger components are less variant over time. Also, cross-
polarized data separate between surfaces better than co-polarized. Time
series methods can be used (Manogaran & Lopez, 2018; Reiche et al.,
2018) to track changes over time.

The various approaches differ in the classification scheme they em-
ploy. Early, physics-based methods use a decomposition theorem, such
as H/A/Alpha (Cloude & Pottier, 1997), Freeman–Durden (Buono et al.,
2017; Freeman & Durden, 1998), and Yamaguchi (Yamaguchi et al.,
2006), to model the scattering mechanism over the area of interest.
They produced poor results and are not popular today. However, they
are still used, either directly or as an intermediate step for feature
extraction.

Feature extraction is a critical step. Although the raw SAR data
3

can be fed directly to a classifier, they do not produce satisfying
classification performance. A preprocessing step is required in order
to extract and select appropriate high-level features. CNNs (Hu et al.,
2015) and DBNs (Chen et al., 2015) have been used for this purpose,
by feeding the SAR channel data to the neural network and retrieving
high-level features from the top or intermediate layers. These features
are then given as input to a classifier.

A series of models are based on the assumption that scattering
vectors follow a specific distribution. The Wishart classifier (Lee et al.,
1994) is an early and still popular method that uses a Bayesian classifier
but works well only in uniform regions. Regions with high variability
required mixture models (Wang et al., 2015). More advanced models
include Hierarchical classifiers (Kim & Hirose, 2019), Support Vector
Machines (Orlíková & Horák, 2019) and Random Forests (De Alban
et al., 2018). Deep learning methods, such as Autoencoders (De et al.,
2018) and Deep Belief Networks (Lv et al., 2015), were proposed
recently, while dimensionality reduction techniques for polarimetric
features were developed (Tao et al., 2019).

Forest monitoring. Forests play a major role in the global climate: they
store biomass and capture carbon emitted to the atmosphere, thus
mitigating climate change. Forests, as a result, help countries meet
their emission requirements. Forest mapping and monitoring is, thus,
pivotal for many countries and, as such, supported by initiatives such
as the Global Forest Observations Initiative (Global Forest Observation
Initiative, 2016). Of particular interest are mangrove forests, as they
are related to global temperature and cyclones (Simard et al., 2019),
and salt marsh plants (Lee et al., 2012).

The main tasks of SAR forest monitoring are: mapping deforestation
and forest degradation, estimating forest stand height and mapping and
monitoring forest biomass. A detailed handbook (Flores-Anderson et al.,
2019) can guide the interested reader in handling SAR data with forest
applications. The problem of monitoring deforestation and degradation
can be addressed either as a problem of land cover classification or by
quantifying change in Above Ground Biomass (Mitchell et al., 2017).

Forest Stand Height (FSH) gives information about the age and
history of a forest and about the natural habitats within the forest. The
relationship between backscatter and FSH is often obtained empirically.
Repeat-pass InSAR can be applied (Lei et al., 2018) in combination with
a digital elevation model to estimate FSH. However, measurements
must be simultaneous or at least very close together in time, otherwise
error, increasing with vegetation height, is introduced. Afterwards,
creating large-scale FSH maps requires mosaicking (Lei & Siqueira,
2015).

Mapping and monitoring Above Ground Biomass helps to under-
stand the global carbon cycle (Pan et al., 2011) and track carbon stored
in ecosystems, manage the timber industry and implement initiatives to
reduce deforestation and manage forest degradation, such as REDD+
(Reducing Emissions from Deforestation and Forest Degradation). It
consists in estimating structure – size, density and arrangement – and
mass of trees. It is more complicated than, and it incorporates estimat-
ing FSH. Radar-biomass models are typically site-specific and may be
statistical (Saatchi et al., 2011), physics-based (Bouvet et al., 2018) or
based on machine learning methods such as Random Forest (Xu et al.,
2015) and Support Vector Machine (García et al., 2017).

2.2. Geology

SAR data is utilized to image near-surface structures and rock

contacts and categorize sediments and map the surface. The L-band
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SAR can penetrate at shallow depth into the subsurface under certain
conditions: no vegetation and very high dryness. As a result, SAR can
locate near-surface geological features or help in lithographic analy-
ses (Hammam et al., 2018). The lithography problem can be cast as a
land classification problem in cases where the goal is to identify and
delineate a particular soil type, such as laterites (da Silva et al., 2013),
silica sand (Kausarian et al., 2017) and gold (Pedroso et al., 2001).
However, many studies are empirical (Guo et al., 2010).

SAR’s ability to penetrate the surface is particularly useful in desert
environments where sand forms temporary structures on the surface.
Mapping the underlying permanent structures is critical in understand-
ing local geological processes (Dabbagh et al., 1997). Indeed, SAR
can be used to map subsurface fluvial channels, basins (Mohamed &
Elmahdy, 2016) and palaeochannels (Elmahdy & Mohamed, 2015),
i.e. remnants of streams covered by younger sediments. These studies
however, rely on visual interpretation of SAR imagery by experts.
Recently, Liu et al. (2015) used polarimetric decomposition to retrieve
the depth of subsurface brine layers, which is critical in understanding
the local geological processes that shaped an area.

Recently, InSAR technology is used to monitor and model the
three-dimensional surface deformation caused by earthquakes. Study-
ing these deformations helps scientists understand tectonic plate move-
ment and crustal deformation. Two-pass InSAR helps to retrieve a
three-dimensional displacement field over the area of interest that
is then used to obtain geophysical properties such as fault parame-
ters (Haji-Aghajany et al., 2020) and earthquake epicenter (Guo et al.,
2010).

SAR is also used to monitor buildings and damage in the aftermath
of earthquakes. InSAR techniques, comparing pre- and post-earthquake
imagery and exploiting the backscattering mechanism (Chen et al.,
2016), polarimetric features (Park et al., 2013) and coherence-change
(Watanabe et al., 2016) have been explored. However, pre-earthquake
images are not always available; in this case, studies try to separate
damaged areas from undamaged ones by employing land classification
techniques (Guo et al., 2010) or extracting texture features (Cui, Wang
et al., 2018; Zhai et al., 2019).

2.3. Shellfish & oil spills

Intertidal flats, coastal areas between the land and the open sea,
are very sensitive to climate change and present significant interest to
researchers. Species such as oysters, native or invasive, have a huge
impact on nutrient cycling, water filtration, and the entire coastal
ecosystem (Regniers et al., 2015), rendering frequent monitoring cru-
cial. Recent studies use SAR data in order to locate oyster reefs (Choe
et al., 2012), farms (Cheng et al., 2013) and bivalve beds (Wang, Gade
et al., 2017) in the surrounding sediments in tidal flats. Oyster reefs
and bivalve beds are rougher than the surrounding surface and, thus,
cause stronger radar backscatter locally making them visible in SAR
imagery. Models for dual-polarized (Wang, Gade et al., 2017) and fully
polarimetric (Cheng et al., 2013) SAR data use classification and image
separation techniques.

The discharge of oil from ships, accidental or deliberate, is a prob-
lem that draws increasing attention, as maritime activity increases in
volume. The effect of oil spills on wind retrieval has been studied —
e.g., Shen et al. (2019). The need to monitor vast sea areas is better
met using satellite-based SAR (Salberg et al., 2014). Indeed, locating
and verifying oil spills using aircraft is both expensive and ineffective:
oil spills are rare events and dissolve fast to the extent that they
become difficult to distinguish after a few hours, before aircraft locate
them (Pavlakis et al., 2001).

Oil spills usually smoothen sea surface and, thus, form dark for-
mations in SAR imagery. Detection is severely hindered by other sea
features which appear dark as well, called look-alikes. SAR oil spill de-
tection involves three steps (Topouzelis & Psyllos, 2012): (i) dark-spot
4

detection, (ii) object-based feature extraction and (iii) classification into
oil spills and look-alikes using the features. Many different classifiers
have been used in the last step, such as, Bayesian classifiers (Brekke
& Solberg, 2008), Neural Networks (Singha et al., 2014), Decision
Trees (Topouzelis & Psyllos, 2012), and fuzzy classifiers (Singha et al.,
2013). In any case, accruing a sufficiently large number of training
samples is laborious and costly which led to techniques, e.g., Active
Learning (Cao et al., 2017), for selecting the optimal training samples.

2.4. Glaciology

The tasks of glaciology include sea ice and glacier charting and clas-
sification. Sea ice and glaciers are an essential component of the Arctic
and Antarctic ecosystems while glaciers are also essential in mountain
ecosystems. Sea ice affects navigation, fishing and maritime activity
in the Arctic environment (Apel & Jackson, 2004). The United States
National Ice Center (NIC) and the national ice services of Canada, Rus-
sia, Norway, Denmark and Finland produce ice charts regularly (World
Meteorological Organization, 2014). Monitoring glacier movement and
behavior is pivotal in climate monitoring. Glacier mass balance, i.e.,
difference in mass through time, is fundamental to glacier behavior
and may be used as a proxy indicator of climate change (Dyurgerov
& Meier, 2000). Accurately routinely mapping sea ice and glaciers in
(near) real time is restricted by the complexity of data acquisition from
various sources, financial means and computation time.

Sea ice classification. A fundamental objective of sea ice charting is
to identify the location of the boundary between ice and open water
(OW) (Scheuchl et al., 2004). Navigation relies heavily on this identifi-
cation and on determining ice thickness and several other parameters,
such as age and diameter. Ice categorization is hierarchical, based on
these parameters. Ice classification usually discriminates among all or
some of the following categories: multiyear ice, first-year ice, new ice
and OW, while seeking to identify cracks and floes. Some approaches
seek finer classification, e.g. they distinguish first-year ice into smooth
first-year ice and rough first-year ice or OW into smooth OW and
wind-roughened water.

The vast amount of sea ice in polar regions and difficulties with in
situ observations force analysts into using remote sensing data, such
as SAR and visual spectral range data. Most approaches are based
on expert analysis of such data which are received typically from
satellites. At present, fully automatic sea ice charting is not reliable.
The polar night, when sea ice monitoring is mostly needed, hinders
the acquisition of visual spectral range data. Moreover, the backscatter,
captured in SAR images, depends heavily on geographic region and
season (Barber, 2005; Ramsay et al., 1998) while different ice types and
OW can have the same backscatter value (Dierking, 2013). As a result,
pixel-wise classification cannot distinguish between ice categories.

Object-oriented classification using SAR data, on the contrary,
presents significant advantages. It allows extracting information about
image texture, making the sea ice parameters delineate more accurately
while removing the effect of speckle. The major steps involved are
allocation of ice objects, feature extraction and classification. SAR data
are the major source of information but the daily operation of sea ice
is done manually by ice analysts. Zakhvatkina et al. (2019) gave a
thorough review of SAR data-based techniques for sea ice classification.

Neural Networks and Support Vector Machines offer the highest
accuracy among automatic or semi-automatic methods. An early pulse-
coupled NN for ice edge detection, segmentation and ice classifica-
tion (Karvonen, 2004) became a basis for extensions and modifica-
tions (Karvonen, 2014, 2017). Neural Networks allow training with
SAR data with different polarimetric features (Ressel et al., 2016)
or frequencies (Aldenhoff et al., 2018) to achieve higher accuracy.
SVMs were part of the MAp-Guided Sea Ice Classification (MAGIC)
system (Maillard et al., 2005), which was tested multiple times and

gave way to approaches requiring fewer data (Hong & Yang, 2018).



Expert Systems With Applications 205 (2022) 117342A. Tsokas et al.
Glacier classification. Glacier monitoring relies on monitoring the dif-
ferent facies (zones) (Benson, 1959; Müller, 1962) of the glacier.
Glacier facies are distinguished by ice temperature, amount of surface
melting and overlay of ice, firn and snow. Thus, facies have different
reflectivity of microwaves, which makes SAR data suitable to be used
for facies delineation (Rott, 1984). The facies of a glacier are: the dry-
snow zone, the percolation zone, the wet-snow zone, the superimposed
ice zone, the bare-ice zone and the debris covered ice zone. However,
not all studies distinguishes among all zones.

SAR data successfully mapped glaciers in Greenland (Fahnestock
et al., 1993), Alaska (Partington, 1998), Svalbard (Norway) (Engeset
et al., 2002), the Himalayas (Ke et al., 2016; Venkataraman et al.,
2006) and the Antarctic (Arigony-Neto et al., 2007). Recently, dense
SAR satellite data time series mapped surface and subsurface glacier
properties that vary in time (Winsvold et al., 2018).

Segmentation of SAR images and classification into facies is typi-
cally based on ice properties. Knowledge-based techniques were com-
mon, with automatic methods developing in recent years. An early
unsupervised contextual non-Gaussian clustering algorithm is applied
to dual-polarization SAR data (Akbari et al., 2014) for image segmenta-
tion, with later modifications (Hu et al., 2019) and variations (Ghanbari
& Akbari, 2018) achieving higher computational efficiency. The use of
single polarization SAR data has gradually lost ground with the advent
of PolSAR, yet they can still prove to be very useful (Fang et al., 2017).

Difficulties in on site observations in these climates have led re-
searchers in using remote sensor data, including SAR data, visible
remote sensing and ground-penetrating radar (GPR). Interpreting GPR
data, however, is time-consuming and operator-dependent. However, a
calibrated backscatter coefficient (Langley et al., 2008) and an alter-
native application of Internal Reflection Energy (Barzycka et al., 2019)
were calculated from GPR data. In both cases, the results agreed with
the SAR-derived zones, suggesting that GPR data can be used as further
validation in SAR analyses.

3. Parameter retrieval

Parameter retrieval consists in estimating a parameter – is a piece
of information of interest to scientists – such as soil moisture and
wind and wave speed. Parameters have an impact on agriculture or
on climate. SAR has proven to be very efficient in addressing the
problem of estimating them. Parameter retrieval typically relies on a
model, physical or empirical, that connects the SAR backscatter with
the desired parameter.

Ocean and coastal monitoring presents great scientific interest.
Among its applications are wave studies, estimation of underwater
topography, wind retrieval, coastline and inter-tidal zone classification
and detection of oil spills, ships and other man-made objects. Informa-
tion on ocean waves and winds has bearing on many activities, such as
coastal engineering, ship design and navigation, and the dissipation of
marine pollution. SAR data can be used in all the aforementioned prob-
lems. It can capture information about meteorological parameters like
wind and wave action and topographic changes in coastlines and river
deltas, and the shifting of sandbanks and shellfish stocks. Dedicated
manuals (Jackson & Apel, 2004) guide users through all the information
that can be obtained from SAR, as well as existing techniques.

Littoral (next to the shore) zones are diverse areas of particular
interest to oceanology applications. However, SAR images of littoral
zones suffer from azimuth ambiguities, which deteriorate their quality.
Azimuth ambiguities are augmented in littoral zones as the, usually
calm, nearshore appears dark while there are strong sources on the
land. Azimuth ambiguities are difficult to be removed from SAR oceanic
images, but they can be using multi-temporal SAR images (Leng et al.,
2017).
5

3.1. Ocean topography

Ocean topography includes ocean surface topography and bathym-
etry. The former consists in estimating the deviation of the height of
the ocean surface from the geoid, i.e., the surface on which the Earth’s
gravity field is uniform. It is caused by ocean waves, tides, currents,
and variations in atmospheric pressure. Its applications include the
determination of large-scale ocean circulation, the development of
global tides models and the monitoring of mean sea level, heat and
mass in the Earth’s global ocean.

Ocean surface topography is measured by combining precise orbit
determination with accurate measurement of the distance of the ocean
surface to the satellite. The latter has been measured with an altimeter
for decades. However, an altimeter can only measure height across
one dimension and can map efficiently only large-scale (>300 km)
oceanic processes (Fu et al., 2012). InSAR can measure surface wa-
ter (Musa et al., 2015) with high precision and a wide swath. However,
as centimeter-level precision is required, distinctive features – near-
nadir look angle and short radar wavelength – are employed. The
interferometric imaging radar altimeter (InIRA) measured the ocean
surface of the South China Sea (Kong et al., 2017). It works at Ku-band
and at a 1◦–8◦ look angle, with a swath larger than 40 km. The Surface
Water and Ocean Topography (SWOT) mission is expected to launch
in 2021 and offer a 3-cm precision. It has been tested on airborne
systems (Fjørtoft et al., 2014) which helped to retrieve water surface
elevation of the Tanana River, Alaska (Altenau et al., 2017).

Ocean topography also includes bathymetry, i.e., underwater topog-
raphy. Shallow water bathymetry is critical to coastal environment re-
search and resource management. Traditional bathymetric techniques,
such as the use of sonars, offers high precision but is costly and
inefficient. Although the SAR signal does not penetrate through sea
water, it has been used to identify bathymetric features, i.e., sand ridges
and underwater mountains, for decades (de Loor, 1981), through their
interaction with the ocean current and the wind. However, quantitative
relationships between ocean bottom topographic features and SAR im-
agery features are, in general, not clear to researchers. Under low-wind,
strong-tidal-current conditions, shallow-water bathymetry features per-
pendicular to the tidal current can be imaged by SAR (Bian et al.,
2016; Li et al., 2010) with precision, using a physics model (Zheng
et al., 2006). Using swell patterns to detect wave fields and, from them,
water depth is less reliant to surface winds and currents (Bian et al.,
2017). Bathymetry features parallel to the tidal current require more
complicated models (Li et al., 2009; Zheng, Zhao et al., 2012).

3.2. Wind and wave retrieval

The normalized radar cross-section (NRCS) relies heavily on sur-
face waves and roughness, which are a result of surface winds and
currents. Therefore, SAR data can be used to retrieve surface wind,
wave and current fields. Ocean waves become visible in SAR images
because of their periodic modulation of the local incidence angle and
surface roughness (Romeiser, 2013). SAR provides images of ocean
surface waves scales of interest from space with high enough resolution,
independent of cloud cover and light conditions.

Originally, the scatterometer was designed to measure ocean winds.
However, SAR, following the same principles and offering higher
spatial resolution, has been applied for wind retrieval since 1978
and the launch of the SEASAT satellite. Methods developed for VV-
polarized scatterometry data (Hersbach, 2010) can be applied to SAR
data as well. Such methods for wind speed retrieval make use of the
NRCS (Horstmann et al., 2000). Empirical models use a Geophysical
Model Function (GMF) to express the NRCS as a function of wind
speed and direction 10 m above the ocean surface and of the local
incidence angle. Wind direction is obtained from SAR features, typically
with a 180 degree ambiguity using Fourier transforms (Lehner et al.,
1998), wavelet analysis (Du et al., 2002) or local gradients (Zhou
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et al., 2017). Afterwards, the GMF can be inverted to estimate wind
speed. Alternatively to such empirical models, the relationship between
wind, radar parameters and backscatter can be constructed based on
electromagnetic properties of the sea surface — e.g., Colliander and
Ylä-Oijala (2007) and Mouche et al. (2007). In comparison, empirical
methods are simpler to use and more accurate for low wind speeds
(up to 20–25 m/s) but they suffer from saturation when wind speed
increases beyond that mark (La et al., 2017).

SAR data sets of different polarization became available later in
time. HH-polarized SAR data can be transformed into VV-polarized
data via a polarization ratio (Liu et al., 2013; Zhang et al., 2011)
in order to apply the aforementioned models. Cross-polarized NRCS
shows some useful properties: it is independent of radar incidence
angles and wind directions and has a linear relationship with respect
to wind speeds (Zhang & Perrie, 2012). Moreover, it does not suffer
from saturation or ambiguity for high wind speeds (Shen et al., 2009)
and it can be used in integrated approaches (Huang et al., 2017). The
Doppler Centroid anomaly, a SAR feature, was proven to be increasing
in the direction of the wind and to depend on the same parameters
as the co-polarized NRCS, allowing for appropriate GMFs to be de-
veloped (Mouche et al., 2012). Other approaches retrieve wind speed
and direction from NRCS under assumptions of quasi-uniformity of the
wave field (He et al., 2005; Shen et al., 2006). Another approach esti-
mates wind speed from the degree of azimuth cut-off of the SAR image
spectrum. It employs models to relate the spectral width of the azimuth
spectrum, the ocean wave spectrum and the wind speed (Vachon &
Dobson, 2000). Recently, Duan et al. (2017) combined scatterometry
and SAR data and Nilsen et al. (2019) developed Bayesian approaches
to approach the problem.

The retrieval of ocean surface wave parameters from SAR imagery
is similar to that of wind. Obtaining parameters such as wave height,
wave length and propagation direction is critical to our understanding
of the oceans. SAR offers to do so from space and, thus, provide funda-
mental knowledge of the generation and propagation of waves, which
is unattainable by buoys or ships. A popular family of theory-based
models (Collard et al., 2005; Lin et al., 2017), which were developed in
as early as 1981 (Alpers et al., 1981), are based on the wave mapping
mechanism on SAR. They need an initial guess for the wave spectrum
and, afterwards, they invert the wave spectrum iteratively. Empirical
models employ a function to relate wave parameters, wind speed,
radar cross section and features derived from SAR intensity image.
Such models have been developed for C-band (Li et al., 2011) and
X-band (Pleskachevsky et al., 2016) while recent adjustments (Shao
et al., 2017) do not make use of SAR-derived wind. Grieco et al. (2016)
study the retrieval of significant wave height through azimuthal cutoff
wavelength.

Internal waves form within the ocean between water masses of
different density and can travel vertically and horizontally. They are
the subject of research and their role on ocean and climate dynamics
is investigated. Internal waves interact with surface waves and, thus,
affect backscatter. The imaging of internal waves aims to model the
interaction between the radar backscatter and the internal waves by
locating signatures of internal waves in SAR imagery (Jackson et al.,
2013). The ascending motion of water brings waters of different phys-
ical and chemical properties – such as low temperature and lower
salinity – to the upper layer, which are traced by SAR (Jackson & Apel,
2004). Recent models account for stratified ocean (Zheng et al., 2006)
and remove assumptions about surface waves (Chen et al., 2017). As
different internal waves may produce the same SAR signature, studies
have to be area-specific and take into account local bathymetry (Dong
et al., 2016; Zheng, Holt et al., 2012).

3.3. Soil moisture retrieval

Monitoring soil moisture is critical in preventing drought and over-
6

watering and in efficient use of irrigation systems. Polarimetric SAR
helps monitor soil moisture efficiently as it provides a variety of infor-
mation and penetrates the canopy. SAR soil moisture retrieval involves
mainly two steps (He et al., 2014): (i) decomposition of the backscat-
tering into components and (ii) soil surface parameter estimation via
inversion models. Polarimetric decomposition aims to separate the
vegetation backscattering from ground scattering component using a
decomposition technique, such as H/A/𝛼, Freeman–Durden, and Yam-
aguchi. The inversion models can be categorized into empirical (Dubois
et al., 1995) and semi-empirical (Oh et al., 2002) models, theoretical
models, such as the Integral Equation Model (Fung & Chen, 2004),
and machine learning models, such as Support Vector Regression (He
et al., 2014), and Neural Networks (Özerdem et al., 2017). Given the
complexity of the scattering mechanism and the fact that it changes as
crops grow, it needs to be studied in different growth stages. Retrieval
of crop growth stage can be cast as a land classification model (Xie
et al., 2018).

4. Object detection & recognition

Object detection and recognition is a problem that has been studied
extensively over the past decades. Object detection aims to locate
certain objects of interest in a set of images, visual or SAR ones. Object
recognition seeks to further the aforementioned process by assigning
a class label to each retrieved object. Object detection in SAR images
presents a lot of interest in many branches of the armed forces in
addition to research institutions, as target recognition and classification
is a critical problem for the general safety.

4.1. Object detection techniques

Object detection is widely viewed as a problem of computer vision
and most relevant work pertains to visual images. However, most
techniques apply to SAR imagery as well. SAR presents an advantage
over visual images as it can provide images in all weather conditions
and at night. On the other hand, there is a limited number of large
labeled SAR datasets which can be used for training, as labeling SAR
images is significantly more complicated than labeling visual ones.
Recent approaches address this problem by employing transfer learning
from visual imagery in the training of SAR object detectors (Rostami
et al., 2019).

The presence of speckle further hinders SAR object detection and
classification. Despeckling is a mandatory pre-processing step in SAR
image processing, with spatial filtering and transform domain schemes
being the most popular methods. The former ones include the Frost
filter (Frost et al., 1982) and the Lee filter (Lee, 1980) and are effective
in homogeneous areas but cause blur in heterogeneous ones. The trans-
form domain approaches are based on 2-D wavelet transform (Argenti
& Alparone, 2002) and suffer from shift-sensitivity and poor directional
selectivity. Recent variants present better performance using Gabor
wavelet (Vasuki & Mohamed Mansoor Roomi, 2012), curvelet (Devapal
et al., 2019) or bandlet (Rajamohanan et al., 2016) transforms.

After pre-processing, object detection and recognition typically in-
volves three steps (Wu et al., 2020): proposal generation, feature
extraction and region classification. Proposal generation searches in the
image for locations which may contain objects. Afterwards, a feature
vector is obtained on each selected location, which captures informa-
tion of the region covered. Finally, region classification trains classifiers
to assign categorical labels to the selected regions. Deep learning based
object detection techniques either merge proposal generation and fea-
ture extraction for a two-step method (Girshick et al., 2014) or merge
all three steps (Redmon et al., 2016).

Proposal generation is commonly based on the fact that targets
appear brighter in SAR imagery than the surroundings. However, iden-
tifying objects in a complex background is a challenge due to noise
and to the fact that some targets have weak backscatter. The most

popular methods are based on Constant False Alarm Rate (CFAR) (Gao
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et al., 2013) where the threshold for an area to be identified is locally
estimated. They work better when speckle is low. Among the CFAR
algorithms, the ca-CFAR (cell averaging) (Cui et al., 2011) and the
2p-CFAR (two-parameter) (Novak et al., 1997) detectors are widely
used. The os-CFAR (order statistic) (Sun et al., 2009) is preferred when
the surroundings are not homogeneous and IS domain CFAR (intensity
space) (Wang, Bi et al., 2017) fuses spatial characteristics with intensity
ones.

Feature extraction is a widely studied problem in itself. It consists in
extracting a feature vector which encapsulates semantic information of
the local region in question. There exist a plethora of methods tackling
feature extraction; the two main families are local descriptor-based and
Convolutional Neural Network-based (Zheng et al., 2018). In the former
ones, the feature vector is encoded by low-level local descriptors, with
Scale Invariant Feature Transform (SIFT) (Lowe, 2004) being the most
widely used due to its invariance to image transformation. SIFT has
been adjusted to SAR imagery (Dellinger et al., 2015). In 2012, image
representations based on Convolutional Neural Networks were intro-
duced (Krizhevsky et al., 2012) and quickly became the state-of-the-art.
They have received increasing interest and achieved impressive per-
formance (Girshick et al., 2014). Real-time object detectors were first
developed in 2016 (Redmon et al., 2016), which would require sensor
scheduling (Nikita et al., 2011; Sorokin et al., 2009). These methods
make direct categorical predictions for objects on each location; they
sacrifice performance to return real-time results.

4.2. Ships & other objects of great interest

Detection and recognition of military vehicles, such as aircraft
(Wang et al., 2016) and tanks, is a problem of particular military
interest. The U.S.A. Defence Advanced Research Agency (DARPA) has
released partially the Moving and Stationary Target Acquisition and
Recognition (MSTAR) data set to the public. The publicly available
dataset consists of images of seven vehicles of three types; it includes
around 230 images of each vehicle. It has been used extensively by re-
searchers to develop new techniques around object identification (Cui,
Dang et al., 2018; Vasuki & Mohamed Mansoor Roomi, 2012).

Detection of airports holds great significance as airports play a ma-
jor role in economy and also are military targets. Automatic detection
of airports can also aid in aircraft takeoff, landing and navigation.
Airports can be detected in SAR images as runways and taxiways can
be delineated from the environment (Chen, Tan et al., 2020).

Ships. The oceans covers approximately 71% of the Earth’s surface and
maritime activity plays a crucial role in economy. Maritime security
renders surveillance necessary for reasons ranging from environment
monitoring to rescue and anti-piracy. SAR has become a valuable tool in
maritime surveillance. Satellite SAR images have been widely used for
fishing vessel detection owing to their wide and continuous coverage.

Studies focusing on ship detection typically use techniques de-
scribed in Section 4.1 (Chang et al., 2019). Dedicated methods (Wang,
Bi et al., 2017) aim to locate either the ship itself or its wake. Other
studies focus on retrieving orientation after detection (Wang et al.,
2018) or on refocusing moving targets (Jin et al., 2017). Integrated
detection receives a lot of attention, with Automatic Identification
System and SAR being complementary (Zhao et al., 2014).

Ship classification has attracted researchers recently. The lack of
large labeled data sets poses problems and increases the risk of over-
fitting. Moreover, civil ships have huge differences and can be dis-
tinguished easier than warships. Physics-based models analyze the
scattering components that represent the structure, materials and ori-
entation (Zhang et al., 2013). Other methods employ Zernike mo-
ments (Amoon & Rezai-rad, 2014) and Shape Contexts Feature (Zhu
et al., 2017).
7

4.3. SAR for navigation

SAR is increasingly used to provide absolute platform position
information for navigation purposes of manned and unmanned aircraft,
as it has been proven to contribute in geopositioning (Zhu et al.,
2020). The need for SAR arises as the systems that are widely used for
position retrieval, the Inertial Navigation System (INS) and the Global
Positioning System (GPS), often fail to provide accurate location. The
INS calculates the position, velocity, and attitude of a vehicle with the
output of inertial sensors, which contain errors that accumulate over
time due to physical limitations (Gao et al., 2009). Thus, a separate
system is necessary to account for INS errors. The GPS is widely used for
this purpose. However, GPS is not always reliable: sampling rate may
be low and signal may be jammed, interfered or lost due to blocking
structures like tunnels and buildings (Grant et al., 2009).

SAR is used as either a complement or an alternative to GPS.
There are two main categories of methods for SAR use in position
retrieval: odometry and image matching with the help of geo-registered
databases (Reid & Ash, 2018). Odometry measures changes in aircraft
location and orientation by tracking reference features on the ground
through one or more on-board sensors. Tracking landmarks in con-
secutive frames and calculating inter-frame translation and rotation
is a difficult problem. With regards to SAR, methods employed to
solve this problem are the Hough transform (Quist & Beard, 2013), the
nearest neighbor algorithm (Kauffman et al., 2011), and the recursive-
RANSAC multiple target tracking algorithm (Niedfeldt et al., 2014).
Integrated systems fuse information from different sensors, such as SAR
and INS (Liu et al., 2020; Quist & Beard, 2013) or SAR, GPS, and
INS (Gao et al., 2009), to achieve higher precision and reliability.

Image matching requires a geo-registered database of landmarks
and possibly a digital elevation model. The aircraft operates the SAR
in a target recognition mode, recognizes landmarks and retrieves its
position (Greco et al., 2011). More specifically, the aircraft obtains
SAR images, referred to as inquiry images, which are used for proposal
generation and feature extraction. These features are then matched
to the onboard landmark database: distances of feature vectors of an
inquiry image and patch images in the database are compared in
order to select the closest patch image. From this patch image, the
location coordinates of the inquiry image are estimated. Furthermore,
the onboard SAR instrument can create 3D images of the land either
by InSAR techniques (Nitti et al., 2015) – if it is equipped with two
antennae – or by use of flight path information (shape, orientation,
elevation) available from other sensors (Reid & Ash, 2018). These 3D
images can then be matched with the onboard digital elevation model.
A successful matching allows global position retrieval in the absence
of GPS signal. This method can also help to adjust the flight path and
guide the aircraft towards known terrain landmarks or digital elevation
models (Greco et al., 2011).

5. Concluding remarks

Despite the existence of SAR technology with all-weather, all-time
capability for over 60 years and the first launch of a SAR instrument
into orbit more than 40 years ago, SAR was considered a secondary
option to visual and other sensors. Applied use of this technology has
proven difficult and has been met with reluctance. Today’s SAR sensors
feature unique capabilities and offer multiple modes. They capture
a great variety of information that can be used to retrieve several
parameters of interest.

Yet, many challenges remain. The scattering mechanisms are not
well known and studies to combine physical and empirical models are
still needed. Advanced models on multisource data, necessary to reduce
uncertainty, will be a focal point. Fundamentals tasks, such as sea
ice charting, are usually conducted manually by experts, as they lack
reliability when they are fully automatic. Efforts to automate daily tasks
will be made. Other problems, such as seasonal and annual ice velocity
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mapping, are still not addressed accurately enough. Finally, there exist
only limited benchmark datasets, especially labeled ones.

Machine learning and especially deep learning will receive a lot
of attention with regard to SAR data. A recent review (Zhu et al.,
2021) summarizes advances and perspectives in deep learning in SAR.
Machine learning techniques are still limited in SAR; however, more
and more problems and subproblems are expected to see machine
learning-based approaches. On the area of object detection, classical
matching and registration methods and deep learning techniques often
complement one another. Future works will use exclusively deep learn-
ing approaches. Techniques to enhance SAR image characteristics, such
as homograph transformations, will be explored in order to improve
object detection and SAR-based navigation overall.

The present review is addressed to researchers, local scientists and
SAR users. It summarizes theoretical and applied knowledge on using
SAR for a series of applications. Studies of several world-renowned
experts on SAR data analysis have been compiled and the methods
mentioned are applied by the community of SAR users. This review
aims to provide understandable introductory material to researchers
interested in leveraging SAR technology in a plethora of applications.
We also seek to outline the most popular SAR methodologies and guide
researchers and scientists into understanding these methodologies and
their corresponding applications.
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