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Abstract With advances in information and telecommunication technologies and
data-enabled decision-making, smart manufacturing can be an essential component
of sustainable development. In the era of the smart world, semiconductor indus-
try is one of the few global industries that are in a growth mode to smartness,
due to worldwide demand. The promising significant opportunities to reduce cost,
boost productivity, and improve quality in wafer manufacturing is based on the
integration or combination of simulated replicas of actual equipment, Cyber-Physical
Systems (CPS) and regionalized or decentralized decision-making into a smart fac-
tory. However, this integration also presents the industry with novel unique chal-
lenges. The stream of the data from sensors, robots, and CPS can aid to make the
manufacturing smart. Therefore, it would be an increased need for modeling, opti-
mization, and simulation to the value delivery from manufacturing data. This paper
aims to review the success story of smart manufacturing in semiconductor industry
with the focus on data-enabled decision-making and optimization applications based
on “Operations Research” (OR) and “Data Science” (DS) perspective. In addition,
we will discuss future research directions and new challenges to this industry.
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11.1 Introduction

11.1.1 Industrial Revolution and “Industry 4.0”

The importance of national manufacturing strategies such as “Advanced Manufac-
turing Partnership” (AMP) of USA since 2011 [1], “Industry 4.0” of Germany since
2011 [2], “La Nouvelle France Industrielle” since 2013 [3], “Future of Manufactur-
ing” of UK since 2013 [4], “Made in Sweden 2030” since 2013 [5], “Factories of
the Future” of European Commission since 2014 [6], “KoreaManufacturing Innova-
tion 3.0” since 2014 [7], “Industria Conectada 4.0” of Spain since 2014 [8], “Smart
Industry” of Netherlands since 2014 [9], “Industry 4.1J” of Japan since 2015 [10],
“Made in China 2025” since 2015 [11], “Fabbrica Intelligente” of Italy since 2015
[12], and “Innovation and Enterprise 2020 Plan” of Singapore since 2016 [13] have
reemphasized the shifting standard of manufacturing and production system which
led to the Fourth Industrial Revolution generation.

The industrial revolution streamdrives the deployment of novel concepts for smart
factories, new generation of monitoring and collaborating systems, or in general
words the smart manufacturing system which it is built upon the CPS [14], “Internet
of Things” (IoT) [15], and cloud and cognitive computing [16, 17]. The first step
toward the smart manufacturing is the connectivity [18]. All the components in
the industry must be connected to a single network, which is being allowed by
the CPS and IoT which further confesses information interchange and alliance to
attain a flexible and self-adaptive system of production. Moreover, by the integration
of information and technologies, cloud and cognitive computing can facilitate the
internet-based optimum interface and diagnostics, and can comprehend self-control
system (self-learning, self-optimization, and self-awareness).

The fundamental concepts for designing smart manufacturing concerning the
discipline and the precise distinction in their respective meaning and utilization are
as follows [19]:

• Adaptation to human needs,
• Advance development of products and services,
• CPS,
• Corporate social responsibility,
• New systems in distribution and procurement,
• Self-organization,
• Smart factory.

The concepts mentioned above might experience several kinds of challenges and
complications for smart manufacturing that may include technological, economical,
social, political, and scientifical issues [20]. This paper aims to review the area of
science and technology challenges and point out the industry which is one of the
most capital-intensive and complex that is semiconductor manufacturing industry.
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11.1.2 Semiconductor Industry and “Industry 4.0”

In this era as a part of the technology roadmap for semiconductors driven byMoore’s
law [21] systemscaling, there ismore andmore challenges by the poverty of resources
and emergence of information technology. While the goal of semiconductor industry
possesses the ability to continue technology migration to maintain overall perfor-
mance, it is practically challenging to secure this objective due to the demand for
appropriate action, together with all the steps required for the design to market-
ing. Therefore, the seamless interaction of smart manufacturing components such as
big data, instant data, information technology (cloud, and multimode sensors), high-
performance computing, mobile computing, and autonomous sensing and computing
is necessary for driving “More Moore” (MM) technologies [22].

The “International Technology Roadmap for Semiconductors” (ITRS) [23] iden-
tified several critical limitations faced by semiconductor industry in the near future,
will involve most, if not all, system integration, heterogeneous integration, hetero-
geneous components, external system connectivity, and factory integration.

ITRSdetermined a 35–40% less die cost [24], as one of the technical and reliability
requirements to sustainMMtechnology. To achieve this goal, ITRS identified process
integration, as one of the essential functional elements and critical challenges to
stimulate the need for research and development and to meet a sustainable level
of MM technology. The ITRS metrology chapter has underlined that the primary
drivers in dealingwith process integration are smart automotive, green energy,mobile
communication systems, big data, and medical and health technologies [25].

Process integration, in particular, is dealing with technology and requirements
associated with several phenomena such as:

• Cross leveraging factory integration technologies, across boundaries to achieve
economies of scale.

• Attaining financial development goals while margins are decreasing.
• Increasing global restrictions on environmental issues.
• Dealing with the growing complexity.
• Achieving factory requirements such as capability, cost, equipment reliability, and
productivity.

• Meeting adaptability, scalability and extensibility requirements of a profitable
pioneering factory.

• Post-conventional Semiconductor manufacturing uncertainty (i.e., manufacturing
requirements for new devices, timing uncertainty to identify new devices).

• Constantly responding to ever fluctuating, intricate business demands.

This paper is an extendedversion of [26] and aims to provide a systematic literature
review on the scientific progress of the fourth industrial revolution (“Industry 4.0”—
the most pointed national smart manufacturing strategy) with the perspective of
OR&DS for semiconductor manufacturing. Most precisely, three research questions
are given below
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1. What would be the main challenges in the OR&DS point of view, enabling the
industrial revolution in semiconductor manufacturing?

2. How are the OR&DS addressed the science and technology challenges in smart
manufacturing?

3. What are the managerial suggestions from the integrated information of reviewed
papers to prevail the unseen and future challenges in the path forward to the
implementation of smart semiconductor manufacturing?

In Section11.2, we identify the core challenges of wafer fabrication processes
addressed in literature and the reviewing criteria are used for categorizing the find-
ings and studies. In Section11.3, we detail how these studies are considered the
OR&DS fields into the intelligence semiconductor manufacturing, and how partic-
ular methods are distributed. Thereafter, from the gap in the literature, we propose
some managerial suggestions in Section11.4, for who are interested in walking into
the field of semiconductor intelligence from the OR&DS perspective and in the
domain of the “Industry 4.0”. We conclude the paper in Section11.5, by providing
recommendations for further research and align our mindset for the next step.

11.2 Semiconductor Manufacturing Engineering

In semiconductor fabrication facilities (fabs), in order to fulfill the volatile demands of
the high-mixed product, the related processes and electronic equipment are employed
to produce Integrated Circuits (IC) with the help of a vast number of processing
steps, batch processing models, sequence-dependent tool structures, the auxiliary
resources [27] and recirculating flows. Therefore, this industry remains the most
capital-intensive, for fully automated manufacturing systems [28]. The operations
control of manufacturing facilities of semiconductor is known as tough task and
is envisaged as one of the most composite manufacturing environments. One solu-
tion to deal with these difficulties is to choose the manufacturing and process data
to analyze and modeling processes to empower factories in order to intensify an
enhanced knowledge of the challenges associated with the production process and
to grow visions which can develop prevailing procedures. Hereupon, this is very
important to have enough understanding of the prevailing position of research about
decision-making-based data engineering technologies in semiconductor industry and
recognize fields for future research to maintain the further technologies for IC man-
ufacturing. Therefore, this study aims to detect gaps in the existing works, develop
significant research ideas, categorize existing research struggles and form a layout
that will deliver different ideas related to theOR&DS area in smart ICmanufacturing.
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11.2.1 Challenges in Control of Semiconductor
Manufacturing Process

Despite the sophisticated production process of wafer fabrication, the OR&DS tech-
niques are using basically for the purpose of throughput enhancement and qual-
ity assurance. Regards the general application and intention of using OR&DS
techniques, the main challenges in semiconductor manufacturing are categorized
as follows:

• Photolithography process as the cutting-edge process and being bottleneck in the
production process of semiconductor devices. The main challenge in the pho-
tolithography process is a misalignment between laser bean, wafer surface, and
patterning mask, the error caused by this misalignment is called overlay error.
Overlay error basically has a nonlinear relationship with overlay parameters and
overlay parameters are not independent of each other.

• Large number of processing steps, batch tools, random equipment failures,
re-entrant flows, sequence-dependent tool setups, and auxiliary resources for
some process (i.e., photolithography process) are another source of challenges in
semiconductor manufacturing process. Besides these facts, the semiconductor
manufacturing equipment is extremely costly and to save the cost and time, the
production schedule is mixed, or required to be patched. Dispatching the mixed
schedule from equipment with auxiliary resources to cluster tools is one of the
interesting topics which is required the state of the art of OR&DS techniques.

• Beside the dispatching, dynamic scheduling in semiconductor itself is a chal-
lenging topic. Scheduling system should design in a way such that consider the
bottlenecks, reduce the length of production time or in another word the cycle
time, maximize the throughput capacity and wafer capacity, and make a balance
between the raw material inventory, wafer in process inventory, and finish product
inventory.

• Run-to-run (R2R) control of semiconductor fabrication because of re-entrant flow
of production process, required a flexible, accurate, stable, and fast optimization
process. The main challenge is how to design the R2R control such that can deal
with high-mixed dynamic scheduling plan of wafer fabrication. In addition, ITRS
projected a roadmap for yield enhancement and error reduction which demanded
a highly reliable control system.

• Delay for characteristics measurement from Metrology tools is unavoidable in
semiconductor industry. This is a source of measurable and predictable uncertain-
ties, however, make a challenge for process engineers to design a quality control
system to deal with this source of uncertainty. Yet, there are several sources of
unmeasurable uncertainties which in brief call noise. Dealing with noise is another
challenge in semiconductor manufacturing environment.

• The final product in wafer fabrication is integrated circuit
packaging for protecting the semiconductor device. The main challenge in this
step is designing a packaging system which can protect the integrated circuit from
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environmental changes like thermal effect and particle effect, or in general distur-
bance effect.

• Semiconductor manufacturing process is engaged with chemical processing. Most
of the chemical processes are the source of uncertainties, they reduce the lifetime
of fabrication equipment, are the source of particle, and change the balance in
environmental factors. If the chemical process, doesn’t react well for any reason,
this will be affected on the quality of the wafer. One of the challenging processes
which deal with chemical reaction is the etching process. The lifetime of etching
tools is less than three days, and any uncertainty caused by quality reduction
of etching tools affect on edge, depth, and length of the wafer, called critical
dimension error.

• The automated material handling in semiconductor fabrication although brings a
huge source of benefits to this industry, however, the dynamic scheduling system
of wafer fabrication required a dynamic allocation system for material handling
as well.

11.2.2 Review Method

The methodological review used in this study is the systematic review with the
objective of history review, and status quo review [29]. In the first place, the duration
of review is narrowed by the milestone of national manufacturing strategies since
2011. We abstracted how with development the national manufacturing strategies
semiconductor industry is adapted to vision and evolution of the smart industry. From
studies conducted after 2011, especially recent trends since 2017, most prevalent
terms selected out of index terms of papers in the field of “smart semiconductor” or
“semiconductor intelligence”. The candidate search terms considered to be the most
linked items to the scope of this paper are summarized in Table11.1.

In this paper, the systematic review conducted based on several classification
methods to categorize the review papers as follows:

• Organize the type of research methods by Wieringa et al. [30] (including: vali-
dation, evaluation, solution, philosophical, opinion, experience).

• classify the areas of manufacturing by Meziane et al. [31] (including: qual-
ity management, design, process and planning, control, environment, health and
safety, maintenance and diagnosis, scheduling, and virtual manufacturing).

• categorize the formof contribution by keywordingmethod [32] (including: archi-
tecture, framework, theory, methodology, model, platform, process, tool).

• classify the type of analytic byDelen et al. [33] (including: descriptive, predictive,
and prescriptive).
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11.3 OR&DS Problems in Semiconductor

As mentioned previously in Section11.1, the main challenges and threats engaged
in semiconductor manufacturing and smart industry can be answered by OR&DS
perspective solutions. Following this section, we provide OR&DS role in smart
semiconductor industry by answering some additional research questions in this
direction.

11.3.1 By Growing the “Industry 4.0”, How OR&DS Related
Research Found Their Way into Semiconductor
Manufacturing Intelligence?

The milestone of smart manufacturing by national perspective plans started with
AMP by the US government in 2011, which indicates the timeline of our roadmap
design horizon based on OR&DS. The following is the historical review of the
infrastructure of smart semiconductormanufacturing alignswith theFourth Industrial
Revolution.

• before 2011
Methods such as

– data mining [34–42], artificial intelligence [43], heuristic algorithm [44–46],
machine learning [47, 48], data development management [49, 50], Fuzzy logic
[51], neural network [52–54], linear programming [55], statistical analysis [56,
57], optimization method [58–62], and decision analysis [63–67]

Table 11.1 Main and candidate search terms

Major terms Minor terms

Semiconductor manufacturing High-tech industry, integrated circuit, wafer fabrication

Smart manufacturing Advanced manufacturing, advanced robotics, agent-based
system, augmented reality, CPS, Industry 4.0, integrated
manufacturing, open manufacturing, smart manufacturing,
virtual factory

Data science Artificial intelligence, big data, classification, cloud computing,
clustering, data architect, data-driven technology, data
management, data mining, data visualization, deep learning,
IoT, machine learning, predictive modeling, statistics

Operation research Convex optimization, decision theory, dynamic programming,
forecasting, game theory, graph theory, linear programming,
mathematical programming, nonlinear programming,
optimization, queueing theory, soft computing
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and concepts such as

– advanced manufacturing [68], intelligence manufacturing [69], Enterprise
Resource Planning (ERP) [70], Overall Equipment Efficiency (OEE) [71, 72],
Decision Support System (DSS) [43, 73–77], risk management [78], virtual
manufacturing [79, 80], e-manufacturing [81], electronics manufacturing ser-
vice [82], research and development management [83, 84], digital management
[85], and “industry as a whole” [86]

have been appearing in literature to discover the challenges in semiconductor
industry and moving forward to the smart manufacturing.

• 2011
The birth of AMP.
Morse [87] reviewed the reputation and future of nanomanufacturing under the
AMP plan.

• 2012
The birth of “Industry 4.0”.
The first “International Symposium on Semiconductor Manufacturing Intelli-
gence” (ISMI) launched in Hsinchu, Taiwan [88].

• 2013
The first US patent [89] cited the “Industry 4.0” into semiconductor industry.
The earliest field in order of “Industry 4.0” was in the area of soft computing for
scheduling dilemma in semiconductor manufacturing [90].

• 2014
Digitalization of “Industry 4.0” has been discussed at AKL congress.
“Industry 4.0” is introduced as the Fourth Industrial Revolution [91].

• 2015
The “Industry 4.0” points of view appeared for the first time in the theoretical and
analytical researched. This trend was published in the area of the discrete event
[92] and scheduling.
SEMICONEuropa 2015 hold in Germany [93] with the primary context of “Indus-
try 4.0” of semiconductor industry, and among all the highlighted trend in semi-
conductor intelligence discussed in the area of:

– “Organization and Goals of the “Industry 4.0” Platform”
Five frameworks are considered to undertake the organization and structure of
the “Industry 4.0”: (1) reference architecture, standardization, (2) innovation
and research study, (3) safety of networked systems, (4) legitimate context, and
(5) labor training.

– “Cyber-Physical-Production-Systems at the BTU Model Factory”
Address the need for fast and adaptive reconfigurable approaches in produc-
tion planning, logistics and “Manufacturing Execution Control” (MES) for the
“Industry 4.0” platform.

– “The Right Security for the IoT”
Data security, system integrity, Intellectual Property (IP) and product and service
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quality were sanctioned as the requirement for fruitful application of “Industry
4.0”.

– “Technical Visions of “Industry 4.0””
Explained in what ways semiconductor industry can sustain its role as the inno-
vation driver in the area of manufacturing technologies and how it can grow
from “Industry 4.0” initiative.

– “Connecting things and services. How Industry 4.0 increases the benefit of
automation at the Bosch 200mm-Waferfab”
Showed how modularity guarantees a modest role of high-tech automation in a
current environment.

– “Interface A: Candidate for “Industry 4.0”? Adoption and Challenges in Semi-
conductor Industry”
Introduced InterfaceA as an on-proprietary web technology-based interface
which is equipped with data acquisition deliver a flexible interface among man-
ufacturing tools and other IT resolutions and advances the limitation on data
collection of the generic model for control of manufacturing equipment inter-
face.

• 2016
Following that, most industrial countries have their road map for Fourth Industrial
Revolution and digitized industry, researches focusedmore intensely on challenges
and adversities emerged with semiconductor industry and smart manufacturing.
Among all, some important researches are listed as follows:

– Dequeant et al. [94]: a comprehensive review on variability in semiconductor
manufacturing to meet the “Industry 4.0” obligations.

– Waschneck et al. [95]: a comprehensive review of job-shop scheduling. A dis-
cussion on the complexity issue with regards to the delegation of authority of
decisions, tractability and adaptableness, incorporation and interacting, human
aspects, and other “Industry 4.0” frustrations.

– Moyne et al. [96]: a discussion on the requirements of data analytics, merg-
ing, quality, rates, and volumes for digitalis semiconductor industry in control
process.

– Tang et al. [97]: a discussion on the application of big data and IoT for reliability
assessment in semiconductor industry.

– Weber [98]: an introduction to the e-manufacturing on semiconductor device
modeling.

– Herding and Mönch [99]: an introduction to agent-based planning control sys-
tem for semiconductor.

• 2017
Researches have exponential growth with 100% improvement compared to 2016.
Out of over 400 academic papers, the highest percentage of researches were in the
field of OR (∼50%), following by DS (∼25%), roadmap and management field
(∼12.5%) and image processing (∼12.5%) solutions.
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• 2018
The Sixth ISMI was held in February in Hsinchu, Taiwan and among all the
highlighted trends in semiconductor intelligence discussed in the area of:

– The future of smart semiconductor manufacturing
The remanufacturing issue will be a new topic in wafer industry; the sharing
economywill enter into semiconductor industry such that customers will design
the products and semiconductor manufacturers may not be known only for IC
products [100].

– Optimization of process tool operation for future semiconductor manufacturing
Chamber cleaning can meet the extreme in quality control while inducing the
complexity. However, optimization with reinforcement learning can reduce the
complexity [101].

– From smart machines to smart SCs: some missing pieces
The term “smart” doesn’t indicate of using the ICT technology to take the faster
decision. Smart means: better operations management decisions (more on-time
delivery, better asset utilization, less inventory, lower costs, higher quality) and
better systems design decisions (faster ramp, greater flexibility, higher adapt-
ability) [102].

– Manufacturing and SC optimization with “Augmented Reality” (AR) technol-
ogy and “Industry 4.0” concept
Discussion in a thriving industry and academic collaboration for the most exten-
sive shipbuilder in the world by integrating an optimization method and inno-
vative IT technology, AR. They developed an advanced SC and manufacturing
solution named SCM-AR based on AR and Mixed Reality solutions in collab-
oration with Samsung Heavy Industries Co. [103].

11.3.2 What Kind of Studies Is Being Carried out in the Field
of OR&DS in Semiconductor Manufacturing?

The main objective of the above inquiry is to focus on the sort of research is being
carried out in OR&DS field in terms of philosophical point of view along with prac-
tical assessments. To investigate this question, as the foremost step, Table11.1 is

Fig. 11.1 Class allotment of areas of manufacturing for smart semiconductor industry
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used to search all relevant articles since 2011. The articles (conference and journal
papers), which were included at least one of the minor terms in semiconductor man-
ufacturing and smart manufacturing and data science/operations research selected
for the further analysis. We explored over 900 academic publications within this
research. The classification result according to the definition of areas of manu-
facturing by Meziane et al. is depicted in Fig. 11.1. The result ratifies that there
is an extensive gap in fitting the manufacturing design for intelligence layout. The
intelligence layout design for manufacturing generally refers to system engineering
design, sensor allocation problems and design the software agent solutions merge
with high-tech computing technology or service-oriented computing. There is also a
lack of investigation on virtual manufacturing, simulation the physical environment,
e-manufacturing, and AR. In addition, trends related to the environmental issues and
health and safety such as green industry and remanufacturing are demanding topics
for smart manufacturing, which had less attention in semiconductor industry yet.

To determine the gap of the research for smart IC industry, we modified the
classification by Meziane et al. with semiconductor manufacturing context. Some of
the highlighted literature are cited as follows:

• OR

– scheduling [104–109], production planing [110–112], job-shop scheduling
[113], facility layout [114, 115], batch processing [115], bottleneck [116–
118], dispatching [119–121], cycle time reduction [122–125], material handling
[126], SC management [127, 128], inventory management [129, 130], demand
forecasting [131, 132], capacity planing [133–138], lead time [139], supplier
selection [140], purchase order [141], resource management [142, 143], pricing
[144, 145], predictive maintenance [146], condition monitoring [147], opera-
tions planing and control [148–150], product quality [151], new product devel-
opment [152, 153], industry development [154], user experience and interface
[155–158], customer behavior[159], performance measurement [160], portfo-
lio model [161], decision support system [162–164], large scale optimization
[165], and sustainability [166].

• DS

– Yield enhancement and prediction [167–172], WAT test [173], fault detection
and classification [174–176], pattern extraction [177–179], root-cause detection
[180], attribute decomposition [181], virtualmetrology [182], rule-based system
[183], and factor analysis [184].

Figure11.2, illustrates the contributions of each topic in smart semiconductor
industry. The scale of contribution defines such that the most relevant topic granted
the smart semiconductor industrywith the score of 100. Among all highlighted items,
the yield enhancement and prediction, the scheduling problems, supply chain man-
agement, sustainability, and control system, are the major field of interest in articles
since 2011. Due to dependency among process steps in wafer fabrication, challenges
are spread along the production process such that single solution cannot clear up the
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Fig. 11.2 Contribution of most frequent topics among the literature since 2011 related to smart
semiconductor industry

Fig. 11.3 Contribution ofmost frequent topics among the literature since 2011 related to scheduling
in semiconductor industry

problem. Therefore, the hybrid models are a ubiquitous solution in semiconductor-
related literature to deal with an epidemic dimension of problems. Figures11.3, 11.4,
11.5, 11.6, and 11.7 demonstrate how the hybridmethod is associatedwith each other
where we only selected the most common techniques from Fig. 11.1. The results
prove that the significant contribution is reminding among the most interesting top-
ics, and there is an obligation for forming the hybrid configuration ofOR&DSmodels
for overcoming the dynamicity and measurement/unmeasurement uncertainty.
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Fig. 11.4 Contribution of most frequent topics among the literature since 2011 related to supply
chain in semiconductor industry

Fig. 11.5 Contribution of most frequent topics among the literature since 2011 related to control
system in semiconductor industry

The classification study for the type of research method by Wieringa et al. [30]
is illustrated in Fig. 11.8a, b. Figure11.8a shows that how the type of research is
branched over topics, and Fig. 11.8b shows the contribution of each type of research
based on philosophical points of view. For simplicity of comparison, according to the
definition of “experience” in [30], and since this type of research his seldom happen
in OR&DS field, we remove the experience from the list. Concluded from Figs. 11.3,
11.4, 11.5, 11.6, 11.7, and 11.8b, the decision support system and digitization the
knowledge-based system have the lowest contribution among the other research topic
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Fig. 11.6 Contribution of most frequent topics among the literature since 2011 related to sustain-
ability in semiconductor industry

Fig. 11.7 Contribution of most frequent topics among the literature since 2011 related to yield
enhancement and prediction in semiconductor industry

in current status which are required to havemore inspection for advance development
of smart semiconductor industry.
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Fig. 11.8 Classification study

11.3.3 Which Areas of Semiconductor Manufacturing Are
OR&DS Techniques Being Applied In?

The objective of the above inquiry is to highlight the types of inputs and outcomes
from research struggles in the field of OR&DS. To categorize the literature according
to the form of their contributions [32], we divided the attributes of contributions into
two groups of variability on outcome and result (including architecture, framework,
model, methodology), and variability on input information (including theory, plat-
form, process, tool). In this category, platform indicates to the hardware or software
components which enable the applications to execute while framework is the soft-
ware solution for the problem. The process is the low-level processes to overcome the
solution for problem and methodology is the approach to reach to that solution. The
theory is the guideline or roadmap for entering to the mathematical model. Subse-
quently, the tool addresses to the utilities for proposing the solution, and architecture
is components which interact together to achieve the solution. Figure11.9, illustrates
the 2D plot between each category. The result shows that there is a vacancy for
research on integration the mathematical model with software utilities, and hard-
ware platforms. In addition, barely the mathematical solution has been used as the
roadmap for decision makers which can be investigated in the future. The theoretical
approaches for developing the smart semiconductor industry plus compatible utilities
with high-tech computing technology have opportunely for further study.

11.3.4 What Kind of Analytical Analysis Is Being Used in the
Area of OR&DS in Semiconductor Manufacturing?

The objective of the above inquiry is to discuss the analytics of OR&DS in the study
carried out to smart technologies in semiconductor industry.
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Fig. 11.9 Class allotment of areas of manufacturing for smart semiconductor industry

According to Delen et al. [33], the analytical analysis is classifying to descrip-
tive, predictive, and prescriptive analysis where the descriptive analysis enables the
business reporting, dashboards, data warehousing, and scorecards. Subsequently, the
predictive analysis facilities data mining, forecasting, text mining and web or media
mining and prescriptive analysis empower the expert systems, decision models, opti-
mization, and simulation.Althoughwe expect that the application of descriptive anal-
ysis andWeb mining or text mining in semiconductor manufacturing is sporadic, we
still considered all aspects of analytical analysis. The level of interest of each class of
taxonomy presented by Fig. 11.10. Apparently, for advancement, the smartness into
semiconductor industry, the descriptive analysis it will be an inevitable implement
mainly for visualization the production process from the event-driven process.

To concentrate more deeply on analytical methods and their applications on the
semiconductor industry, we come back to challenges discussed in Section11.2 and
review how analytic approaches applied to top challenges on control process of
semiconductor products. Generally speaking, the popularity of techniques strongly
depends on the popularity and severity of the challenges. The following are the details
of applied methods for each challenge.

• Photolithography process, overlay error—challenges for compensating over-
lay error can be investigated through image processing [185, 186] (such as deep
learning, and AI solutions [187]), optimal control algorithm design (such as lin-
ear and nonlinear programming and optimization [150, 188]), and learning-based
algorithm (such asMarkov decision process [189]) for enhancing the performance
of robots and automated devices.

• Scheduling and dispatching-techniques in this field are not varied, more focuses
are on optimization problems, however, the objective of optimizing models make
a big emphasization on researches. The general optimization techniques appear in
literature are meta-heuristic approaches or integer programming [104, 106–109,
113, 139, 190–194] in regards to the complexity and nature of problems. The
minor challenges are addressed the batch data processing and dealt with this phe-
nomena by simple techniques such as linear multivariate regression [195]. Recent
trends utilized the integration of scheduling and dispatching control problemswith
other challenges in the production process such as advanced process control or
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Fig. 11.10 Class allotment of areas of manufacturing for smart semiconductor industry

multi-agent-based system [196–198] and applied reinforcement learning for Het-
erogeneous sources [199–202] or AI models (e.g., neural network) [203] for the
propose of clustering machine subgroups. If the challenges are related to queueing
process, Markov processes also are alternative solutions in this field [204].

• R2R control—challenges for the R2R control in the semiconductor industry
is divided into the design, optimization, application and process improvement.
In the area of design, R2R controller could be designed for multi-input-multi-
output (MIMO), multi-input-single-output (MISO) and single-input-single-output
(SISO) systems, regards how is the dependency issue among the control vari-
ables [150, 168, 182, 205]. The most general structure of the R2R controller
in the semiconductor industry is exponentially weighted moving average algo-
rithm (EWMA) [206]. Consider the investigated problem and complexity of the
control system, the EWMA is adjusted to double-EWMA (for multi-stage tasks)
[207, 208] or threaded-EWMA (for the mixed process) [209]. In addition, smarter
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algorithms are intended to utilize optimal control design and replace it with tradi-
tional and popular EWMA techniques, recommended solutions are kernel-based
algorithm [210], proportional–integral–derivative controller (PID) [150], learning-
based algorithm [211], and game theoretical approaches (e.g., mini-max optimiza-
tion) [171]. Trends in this field has potential to integrate with other techniques to
deal with the different source of complexity in wafer fabrication process, such as
clustering or principal component-based model for identifying the similar batch
and design the decentralized R2R control for batch processing systems [212, 213].
The other major sources of challenges emerged with R2R control are addressing
the improvement the control process through auxiliary resources, such as stability
of control system under different sources of uncertainties and reach to steady-state
control design [214–216], introduce new indexes for measuring controllability
and reproducibility [211], enhance the precision of control parameters by auto-
mated or self-tuning algorithm [217], and emerge the control plant with metrology
equipment [210, 218–220]. In addition, the R2R controller can assist with other
phenomena rather than a control process, including, fault detection and root-cause
identification and classification [221], change point detection, and yield enhance-
ment [171]. Therefore, consider the application, the analytical approaches are spec-
ified (for details about model selection refers to other challenges). Other notable
questions are how to deal with small size of data, how to derive error smoothly,
how to design the R2R control system for dynamic system, and how to consider
within process and between process R2R control models.

• Disturbances and delay—the main purpose of researches in this field is an inves-
tigation on the stability of other solution on the presence of any source of uncer-
tainties. To do that, the first step is to simulate the unmeasurable uncertainties,
the highlighted techniques are generally based on virtual metrology tools and
can be classified on rule-based models such as fuzzy systems [222], or stochastic
processes (e.g., Gaussian and non-Gaussian processes) [223]. In addition, plans
for efficient and proper sampling can enhance the quality of data and reduce the
noise [224]. Trends for root-cause detection and classification can help to find the
source of uncertainties, the most approachable methods in this field are data min-
ing approaches (e.g., principal component analysis, neural network or in general
clustering or classification techniques) [225, 226]. In general words, challenges
are tightened up with disturbance rejection models basically are related in control
design and algorithm [227, 228].

• Packaging—since the quality of packaging strongly depends on thermal effects,
major researches are addressed this challenges through the reliability and survival
analysis such as degradation models or accelerated test [229]. In addition, before
testing the reliability of packaging the thermal effects are predictable by thermal
models based on Fourier series or Kalman filtering models [230]. To investigate
the quality of packaging, few studies indicated this phenomenon by image pro-
cessing [231, 232]. Furthermore, the packaging is almost the final production
process in wafer fabrication, therefore has a strong correlation with yield testing
result. Therefore, for the yield management purpose, one solution is to conduct
the root-cause detection and classification based on the result from the packag-
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ing process. Applicable methods in this step are clustering techniques with data
mining approaches [40, 233–235].

• Critical dimension—although most approaches in this field are related to chemi-
cal and nanoengineering area, yet from theOR&DS perspective, the challenges for
critical dimension enhancement are investigated by advanced process control and
statistical quality control approaches [236, 237]. However, the recent advanced
trends in this field are included the hybrid algorithm which could increase the
performance of controller by adding optimization into process control [238, 239].
The more intelligent hybrid techniques are combined with the sequential learn-
ing or kernel-based learning such as support vector regression or other machine
learning methods [167, 240, 241]. Some researches intended to produce virtual
data by virtual metrology tools [242] to be able to have enough data as the basis
requirements for applying traditional statistical inferences combined with learn-
ing techniques such as LASO and ridge regression [243, 244]. Other trends are
investigated on root-cause identification for identifying the source of uncertainties
and environmental protection through data mining approaches [171].

• Scheduling for automated material handling—scheduling challenges can be
cover by two approaches, first, design an intelligent scheduling system basically
through queueing theory and stochastic process [245], design the distributed net-
work system by mathematical modeling languages such as Petri net [246–248],
design the facility allocation by simulation optimization or design of experiment
techniques such as Taguchi method [249, 250]. Second, find the optimal perfor-
mance of dynamic multi-objective scheduling design through approaches such
as heuristic optimization [143], sequencing optimization [251], and combinatorial
optimization (e.g., Hungarian algorithm) [252]. The performance of the scheduling
system could be measured in the field of quality control.

11.4 Management Suggestion

In semiconductor, managers need to overcome different challenges which are being
mentioned in the above sections. Despite those challenges, in the following, we give
certain future circumstances to “Industry 4.0” standpoints.

Digitalize knowledge-based decision support system

• Incorporating the behavior of human decision makers with proposed solutions.
• Automating decisions made by humans.
• Highlighting the interface of information systems with humans

Incorporate the dynamicity into the solutions

• Developing stochastic anddynamic versions of solutions anddeterministicmodels.
• Anticipating the stochasticity in the models based on dynamic programming,
robust optimization, and stochastic programming.

Design software-based solution with user-friendly interface
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• Considering the role of high-tech computing techniques including cloud comput-
ing techniques in decision-making and parallel computing on Graphics Processing
Units (GPU).

• Knowing the restrictions of current packaged software for semiconductor man-
agement, process, and production.

• Proposing alternative software solutions including service-oriented computing and
software agents for semiconductor planning and scheduling applications.

Forming the hybrid configuration of OR&DS models

• Facilitating planning problems and decision-making-basedORperspective by data
mining techniques.

• Implementing “Manufacturing Execution System” (MES), “Enterprise Resource
Planning” (ERP), and “Advanced Planning and Scheduling” (APS) for developing
the integrated production planning and scheduling solutions.

• Decreasing the measurement uncertainty by merging the hybrid metrology with
state-of-the- art statistical analyses [253].

Simulation and data-driven solutions

• Simulating the physical environment in order to comprehend the connections amid
the real setting circumstance and planning to find solution approaches in the risk-
free environment before applying them.

• Visualizing production planning processes by the use of the event-driven process.
• Modeling and analyzing semiconductor challenges by utilization of various sim-
ulation paradigms (i.e., agent-based systems, hybrid models, reduced simulation
models, systems dynamics).

• Supporting the different aspect of decision-making in semiconductor by embed-
ding the actual simulation methods in existing and forthcoming information sys-
tems.

Process integration

• Integrating decisions made by the different elements in the system to avoid the ad
hoc situation.

• Integrating the high-tech computing procedures to derive the computationally
tractable models, and to discourse the diverse uncertainties come across in the
industry [254].

• Incorporating sustainability aspects into proposed solutions and deterministic
models.

• Integrating the product lifetime into account for demand planning [255].

11.5 Conclusion and Future Research Direction

As a conclusion and future research direction, we attempted to have a broader vision
on the requirements for industrial development and intelligence manufacturing of
semiconductor products. These requirements are barely indicated in literature with
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analytic context and are known as the new obligations for the next step toward smart
manufacturing. In the following, we discuss some of the highlighted topics in this
chain.

11.5.1 Supply Chain Management

Supply chain (SC) is growing exponentially and contributing substantially to the
global economy. This growth is accompanied by continuous technology migration
andminimizing cost for different applications in green energy, communication, com-
puters, automotive, medical, and electronics industries [110]. There are some survey
papers on SC in literature with the scope of needs, practices and integration issues in
[256]; (1)Research agenda framework for supply network integration (questionnaire-
based) in [257]; (2) Decision paradigms for SC management (questionnaire-based)
in [258]; (3) Successes and opportunities in modeling and integrating planning,
scheduling, equipment configuration and fab capability assessment in [259, 260];
(4) E-markets and SC collaboration in [261], and (5) Strategic SC network design
and SC simulation models in [262–264].

According to [265] and [262], one future direction of semiconductor industry
would be global SC simulation models based on a marketing operations perspective,
which lead another research direction in the area of operations management such as
production planning and demand fulfillment, inventory control, capacity and demand
planning, and marketing and sales models. Moreover, positioning the “Order Pen-
etration Points” (OPPs) in global semiconductor SC networks is another strategic
competitive decision, especially for novel product architectures with new options
which can be modeled with game theory (see [265, 266]).

11.5.2 Sustainability and Remanufacturing

Materials, products, and processes are becoming smarter, sustainable, energy aware,
and innovation driven. Sustainability includes (1) Lower use of energy andmaterials,
(2) Greater environmental friendliness [267], and (3) Circular economy and reman-
ufacturing [18]. Nowadays, semiconductor industry has significantly and exponen-
tially increased the rate of e-waste in daily life [268, 269]. There is a challenge for
inventing efficient and pollution-free high-tech recycling technologies for e-waste
which help to enhance the comprehensive utilization of resources, and consequently,
it will develop the cyclic economy. There is a critical future research direction on new
recycling electrostatic separation, which is simple and optimize energy consumption
without any wastewater discharge to recover the mixtures containing conductors
(copper), semiconductors (extrinsic silicon), and nonconductors (woven glass rein-
forced resin) in semiconductor [270].
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11.5.3 Green Smart Semiconductor Manufacturing

Another future research streamwould be data-driven decision-making and optimiza-
tion applications in integrated Smart and Green Manufacturing. Some application
challenges in this area would be: (1) Business Model Challenge: manufacturers face
threats from digital disruptors that are often quicker to adapt traditional products and
exploit new opportunities through the latest technology. (2) Data and Security Chal-
lenge: Smart manufacturing is heavily reliant on technology and data which brings
with it the challenges of protecting that data and ensuring it is secure. Smart man-
ufacturing systems and the generated data from that might also be targets for cyber
attacks. (3) Operations Challenges:Manufacturers need to be agile and respondmore
quickly to update their technology. Connecting different systems to get an end-to-end
picture of the manufacturing process, supply chain, and product usage are a further
challenge [271].

Eventually, the fast-growing semiconductor manufacturing requires a Knowledge
Management Systems (KMS) in order to support management DSS. This KMS will
identify and analyze research trend gaps and organize a future research agenda for
new product development [272].
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