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Failures in cortical control of fronto-striatal neural circuits may underpin impulsive and compulsive acts. In this narrative review, we

explore these behaviors from the perspective of neural processes and consider how these behaviors and neural processes contribute to

mental disorders such as obsessive–compulsive disorder (OCD), obsessive–compulsive personality disorder, and impulse-control

disorders such as trichotillomania and pathological gambling. We present findings from a broad range of data, comprising translational and

human endophenotypes research and clinical treatment trials, focussing on the parallel, functionally segregated, cortico-striatal neural

projections, from orbitofrontal cortex (OFC) to medial striatum (caudate nucleus), proposed to drive compulsive activity, and from the

anterior cingulate/ventromedial prefrontal cortex to the ventral striatum (nucleus accumbens shell), proposed to drive impulsive activity,

and the interaction between them. We suggest that impulsivity and compulsivity each seem to be multidimensional. Impulsive or

compulsive behaviors are mediated by overlapping as well as distinct neural substrates. Trichotillomania may stand apart as a disorder of

motor-impulse control, whereas pathological gambling involves abnormal ventral reward circuitry that identifies it more closely with

substance addiction. OCD shows motor impulsivity and compulsivity, probably mediated through disruption of OFC-caudate circuitry, as

well as other frontal, cingulate, and parietal connections. Serotonin and dopamine interact across these circuits to modulate aspects of

both impulsive and compulsive responding and as yet unidentified brain-based systems may also have important functions. Targeted

application of neurocognitive tasks, receptor-specific neurochemical probes, and brain systems neuroimaging techniques have potential

for future research in this field.
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INTRODUCTION

Whereas acts with impulsive or compulsive features may
contribute specifically to creativity and endurance and
generally to adaptive human behavior, disordered regulation
of impulsive or compulsive behavior may be associated with
adverse consequences and have a function in the develop-
ment of mental disorder. Impulsivity may be defined as ‘a

predisposition toward rapid, unplanned reactions to internal
or external stimuli with diminished regard to the negative
consequences of these reactions to the impulsive individual
or to others’ (Chamberlain and Sahakian, 2007; Potenza,
2007b). In contrast, compulsivity represents a tendency to
perform unpleasantly repetitive acts in a habitual or
stereotyped manner to prevent perceived negative conse-
quences, leading to functional impairment (WHO, 1992;
Hollander and Cohen, 1996; Chamberlain et al, 2006b). These
two constructs may be viewed as diametrically opposed, or
alternatively, as similar, in that each implies a dysfunction of
impulse control (Stein and Hollander, 1995). Each potentially
involves alteration within a wide range of neural processes,
including attention, perception, and coordination of motor
or cognitive responses.
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Neuroanatomical models posit the existence of separate
but intercommunicating ‘compulsive’ and ‘impulsive’ corti-
co-striatal circuits, differentially modulated by neurotrans-
mitters (Robbins, 2007; Brewer and Potenza, 2008). In the
compulsive circuit, a striatal component (caudate nucleus)
may drive compulsive behaviors and a prefrontal compo-
nent (orbitofrontal cortex, OFC) may exert inhibitory
control over them. Similarly, in the impulsive circuit, a
striatal component (ventral striatum/nucleus accumbens
shell) may drive impulsive behaviors and a prefrontal
component (anterior cingulate/ventromedial prefrontal
cortex, VMPFC) may exert inhibitory control. Thus, in this
model, there exist at least two striatal neural circuitries (one
compulsive and one impulsive) that drive these behaviors,
and two corresponding prefrontal circuitries that restrain
these behaviors. Hyperactivity within the striatal compo-
nents or abnormalities (presumably hypoactivity) in the
prefrontal components may thus result in an increased
automatic tendency for executing impulsive or compulsive
behaviors, depending on the sub-component afflicted.
Other possible abnormalities within cortico-striatal circuits
(eg related to diminished striatal activation to rewards) may
also contribute to seemingly impulsive or compulsive
behaviors during engagement in reward-related behaviors.
These pathologies can be explored using tasks of cognitive
performance that tap into these specific functions and/or by
functional imaging studies that measure activity within
these neural systems. Overlap between these functional
systems, so that what starts out as a problem in the
impulsive circuit may end up as a problem in the
compulsive circuit and vice versa, may contribute toward
the impulsive–compulsive diathesis model proposed by
Hollander and Wong (1995) (Brewer and Potenza, 2008).
There exist certain mental disorders for which impulsive

and compulsive behaviors seem, at least on phenotypic
grounds, to be the core and most damaging ingredient.
These often highly heritable disorders, currently classified
across several DSM-IV-TR (APA) diagnostic categories,
include obsessive–compulsive disorder (OCD), body dys-
morphic disorder, Tourette’s syndrome, trichotillomania,
attention deficit hyperactivity disorder (ADHD), pathologi-
cal gambling, and substance addictions (SAs). Of interest,
autism is characterized by both compulsive behavior (as
one of the three core symptom domains) as well as
impulsive behavior (as one of the associated symptom
domains).
Traditionally, compulsive and impulsive disorders have

been viewed at opposite ends of a single dimension; the
former driven by a desire to avoid harm and the latter by
reward-seeking behavior. However, convergent evidence
from translational studies suggests that a shared tendency
toward behavioral disinhibition, presumably resulting from
failures in ‘top–down’ cortical control of fronto-striatal
circuits, or alternatively from overactivity within striatal
circuitry, may crucially underpin both impulsive and
compulsive disorders. Thus, rather than polar opposites,
compulsivity and impulsivity may represent key orthogonal
factors that each contribute to varying degrees across these
disorders.
Many of these disorders tend to occur together, either

within the same individual or clustering within families,
implying the possibility of shared pathophysiological

mechanisms (Hollander et al, 2007b). Moreover, there is
evidence of overlap in the treatment-response across some
disorders. OCD typically responds to serotonin reuptake
inhibitors (SRIs; clomipramine and selective SRIs, SSRIs)
and to SSRIs combined with antipsychotic agents (Fineberg
et al, 2005). Antipsychotics represent first-line treatment for
Tourette’s syndrome, and it is, therefore, interesting that
their combination with SSRIs shows greater efficacy in tic-
related OCD (Bloch et al, 2006). Compulsions associated
with autistic disorders may also respond to low-dose SSRI
and to antipsychotics (Kolevzon et al, 2006). Trichotillo-
mania may respond to SRIs and to antipsychotics, though
confirmation in controlled studies is required (Chamberlain
et al, 2007d). ADHD, on the other hand, responds to
noradrenergic reuptake inhibitors as well as dopaminergic
agents (eg amphetamine), pathological gambling, and
substance abuse disorders may also share a therapeutic
response to opiate antagonists (Brewer et al, 2008).
Attribution of cause and effect, using clinical data alone,

may be confounded by the multiplicity of associated
symptom domains that occur within complex mental
disorders. Indeed, this group of disorders is characterized
by considerable phenotypic heterogeneity and overlap. For
example, some cases with autism show no symptoms of
ADHD or compulsive behavior, others show ADHD, others
OCD, and yet others show repetitive motor behaviors that
do not resemble OCD. Translational research investigates
from the perspective of underlying mechanisms, and may
thus be capable of pinpointing neural contributions driving
specific aspects of mental disorder. Endophenotypes are
measurable, heritable traits, theoretically situated in an
intermediate position between the clinical phenotype and
the disease-susceptibility genotype. Such ‘intermediate
phenotypes’ are hypothesized to be more directly related
to genetic risk for polygenic mental disorders than clini-
cally expressed behaviors (Gottesman and Gould, 2003;
Chamberlain and Menzies, 2009). Endophenotypic models
of disease may be helpful for clarifying our understanding
of the genetic basis of complex brain disorders and thus for
informing diagnostic classification. Currently, impulsive
and compulsive disorders are classified within disparate
DSM-IV categories. As the American Psychiatric Associa-
tion considers the re-classification of OCD, anxiety
disorders and impulse-control disorders (ICDs) for the
forthcoming DSM-V revision (Fineberg et al, 2007a), it is
timely to review the underpinning mechanisms of these
disorders.
In this narrative review, we consider the neural and

neuropsychological mechanisms associated with impulsive
and compulsive acts and their contribution toward exam-
ples of impulsive and compulsive disorders. We assemble
relevant findings from a broad range of complementary
data, comprising recently published and as yet unpublished
translational studies, human endophenotypic research, and
clinical treatment trials, including ongoing work from our
own units in the United Kingdom and the United States.
Our analysis focusses on probing the parallel, functionally
segregated, cortico-striatal neural projections from OFC to
medial striatum (caudate nucleus), proposed to drive
compulsive activity, and from the anterior cingulate/
VMPFC to the ventral striatum (nucleus accumbens shell),
proposed to drive impulsive activity, and the cross-talk
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between them (Robbins, 2007; Brewer and Potenza, 2008)
(Figure 1).
Using these data, we attempt to address key questions

including: (i) how much do compulsivity and impulsivity
contribute to these disorders, (ii) to what extent do they
depend on shared or separate neural circuitry, (iii) what are
the mediating monoaminergic mechanisms, (iv) do im-
pulsive or compulsive behavioral components have any
prognostic value related to clinical treatment, and (v) is
there a unifying-dimensional model that fully accommo-

dates these data? We also draw attention to prospects
for future research we believe may most fruitfully advance
the field.

TRANSLATIONAL MODELS OF IMPULSIVITY AND
COMPULSIVITY

Objective neurocognitive tests hold potential for elucidating
the mechanisms by which pharmacological agents exert
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Figure 1 Compulsivity and impulsivity: candidate neural processes contributing to mental disorders. Although impulsive and compulsive disorders can be
thought of as polar opposites, failures in cortical control of fronto-striatal neural circuits may underpin both compulsivity (orbitofrontal cortex
(OFC)Fcaudate) and impulsivity (right inferior frontal cortex (RIFC)Fglobus pallidus and anterior cingulate cortex (ACC)/ventromedial prefrontal cortex
(VMPFC)Fventral striatum/nucleus accumbens (NA) shell), and contribute to these disorders.
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their beneficial clinical effects and for predicting clinical
outcomes (Chamberlain et al, 2007e; Brewer and Potenza,
2008). Using sensitive and domain-specific neurocognitive
tasks, impulsivity and compulsivity may be fractionated
into separate and quantifiable neurobiologically specific
domains in human beings and experimental animals, with
specific aspects involving dissociable components of fronto-
striatal circuitry (Winstanley et al, 2006).
Data indicate that impulsivity may derive from one or

more distinct neurocognitive mechanisms. These include a
tendency to pre-potent motor disinhibition, measured by
the stop signal reaction time (SSRT) task (Aron and
Poldrack, 2005), mediated in human beings through
activation of right inferior frontal (RIF) cortex and its
subcortical connections (Rubia et al, 2003) and modulated
in rats and human beings by norepinephrine (Chamberlain
et al, 2006c, 2007a; Cottrell et al, 2008), but not serotonin
(Clark et al, 2005; Chamberlain et al, 2006d). Another aspect
involves difficulty in delaying gratification and choosing
immediate small rewards despite negative long-term con-
sequences, measured by decision making or gambling tasks
such as the Cambridge Gambling Task (CANTAB),
mediated through orbitofrontal and related cortical circui-
try under probable serotonergic modulation (Rogers et al,
1999b), and subcortical circuitry under joint dopaminergic
and serotonergic control (Winstanley et al, 2006). A third
component comprises insufficient information sampling
before making a choice, measured by information sampling
tasks such as the Reflection Task (Clark et al, 2006) and
possibly the 5-Choice Serial Reaction Time Task (5-CSRTT)
(Robbins, 2002) (Table 1).
Compulsivity is, perhaps, less well understood. Failures in

(i) reversal learning (ie the ability to adapt behavior after
negative feedback, measured by specific reversal learning
tasks) and (ii) extra-dimensional (ED) attentional set-
shifting, may each contribute toward its expression (Dias
et al, 1996; Clarke et al, 2005). Both deficits constitute
measures of cognitive inflexibility, but each seems sub-
served by separate neural circuitry.

Reversal learning is impaired by lesions to the OFC (but
not dorsolateral prefrontal cortex, DLPFC) across species
(Dias et al, 1996; Berlin et al, 2004; Hornak et al, 2004;
Boulougouris et al, 2007). In human beings, the OFC
activates selectively during reversal learning (Hampshire
and Owen, 2006). In contrast, lesions to the lateral PFC
impair ED set-shifting in primates (Dias et al, 1996), and in
human beings performance of the task is associated with
selective activation of the bilateral ventrolateral prefrontal
cortex (VLPFC) (Hampshire and Owen, 2006) (Table 1).
There is now considerable evidence linking reversal

learning with 5-HT mechanisms, including in rodents
(Masaki et al, 2006; Boulougouris et al, 2008; Lapiz-Bluhm
et al, 2009), non-human primates (Clarke et al, 2004, 2005;
Walker et al, 2009), and human beings (Park et al, 1994;
Rogers et al, 1999a; Evers et al, 2005) based on pharma-
cological, neurochemical and dietary manipulations, and
evidence of genetic polymorphisms in rhesus monkeys
(Izquierdo et al, 2007). Generally, reducing brain serotonin,
especially in specific regions such as the OFC (eg Clarke
et al, 2004), impairs reversal learning. Systemic adminis-
tration of a 5-HT-2A receptor antagonist has also been
shown to impair spatial reversal learning (Boulougouris
et al, 2008). A 5-HT6 receptor antagonist has also been
shown to enhance both reversal learning and attentional
shifting in rats (Hatcher et al, 2005). However, there have
been some failures to find effects on reversal learning, often
after tryptophan depletion, in human beings (Talbot et al,
2006) and rats (van der Plasse and Feenstra, 2008), and
serotonin transporter deficiency in rats also does not seem
to affect simple spatial reversal (Homberg et al, 2007).

5-HT2 RECEPTOR SUBTYPES MAY UNDERPIN
COMPULSIVE BEHAVIORS

A multiplicity of 5-HT receptors has been identified for
which specific ligands are under development. Preliminary
evidence from animal and human studies suggests a

Table 1 Subdividing Impulsivity and Compulsivity According to Neurocognitive Domains: Tasks and Neural/Neurochemical Correlates

Neurocognitive domain Definition Task Neural system Neurochemistry

Impulsivity

Motor impulsivity Prepotent motor disinhibition Stop signal reaction time task
(SSRT)

Right inferior frontal cortex
and subcortical connections

Norepinephrine

Decision-making impulsivity Difficulty in delaying
gratification and choosing
immediate small rewards
despite negative long-term
consequences

Decision making or gambling
tasks (eg Cambridge Gambling
Task (CANTAB), Iowa gamble
task)

Orbitofrontal cortex and
subcortical connections

CortexFserotonin
Subcortical circuitry-serotonin/
dopamine

Reflection impulsivity Insufficient information
sampling before making a
choice

Reflection task, 5-CSRTT Not known Not known

Compulsivity

Cognitive inflexibility:
reversal learning

Inability to adapt behavior
after negative feedback

Reversal learning tasks Orbitofrontal cortex and
subcortical connections

Serotonin

Cognitive inflexibility:
attentional set-shifting

Inability to switch attention
between stimuli

Extra-dimensional attentional
set-shifting (CANTAB)

Ventrolateral PFCFhumans.
Lateral PFCFprimates and
subcortical connections

Dopamine
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function for 5-HT2 receptors in compulsive behaviors.
Transgenic mice lacking 5-HT2C receptors develop com-
pulsive behavior patterns that constitute a plausible model
for OCD (Chou-Green et al, 2003). However, there is an
apparent mismatch of data obtained from this genetic
preparation with other data, possibly because of unspecified
developed compensatory processes in the transgenic pre-
paration, as recent pharmacological data indicate the
opposite finding that 5-HT2C receptor activation is
associated with increased compulsivity. Thus, in a rewarded
T-maze alternation rat model of OCD, Tsaltas et al (2005)
found that administration of m-chlorophenylpiperazine
(mCPP), a mixed serotonin agonist with potent 5-HT2C
agonist effects, increased persistence or compulsivity of
responding, whereas chronic pretreatment with an SSRI
(fluoxetine), but not a benzodiazepine or desipramine,
abolished the effects of mCPP. Challenge with the 5-HT1B
receptor agonist naratriptan had no effect on compulsivity
within this model, suggesting a specific function for the
5-HT2C receptor, which may be down-regulated by chronic
SSRI treatment. In OCD patients, acute pharmacological
challenge with mCPP exacerbated OCD symptomatology
(Hollander et al, 1991b). This effect was also attenuated by
pretreatment with fluoxetine (Hollander et al, 1991a) and
clomipramine (Zohar et al, 1988). Moreover, consistent with
these findings, Boulougouris et al (2008) found that a
5-HT2C receptor antagonist improved reversal learning. On
the other hand, activation of prefrontal 5-HT2A receptors
has been proposed to underpin the anticompulsive effect of
SSRIs (Westenberg et al, 2007). Second generation anti-
psychotics may exacerbate compulsive behaviors in patients
with schizophrenia, and it has been proposed that this
occurs through potent 5-HT2A antagonism (Poyurovsky
et al, 2008), though dopamine (DA) receptor antagonism
represents another possible mechanism. Moreover, second
and first generation antipsychotics show clinical efficacy
when combined with SSRIs in OCD (Fineberg and Gale,
2005), perhaps by increasing DA activity within the frontal
cortex (Denys et al, 2004).

PHARMACOLOGICAL DIFFERENTIATION OF
IMPULSIVITY AND COMPULSIVITY; RECEPTOR
LIGANDS

In animal models, an intriguing dissociation between the
effects of 5-HT2A and 5-HT2C receptor antagonists on
measures of impulsivity and compulsivity has been
observed. On the 5-CSRTT, systemic administration of a
5-HT2C receptor antagonist (SB24284) exacerbated the
enhanced impulsivity normally observed after global 5-HT
depletion produced by intracerebroventricular administra-
tion of 5,7-dihydroxytryptamine; a similar SB24284-related
enhancement in impulsivity was seen in sham-operated rats
(Winstanley et al, 2004). In contrast, systemic administra-
tion of a selective 5-HT2A receptor antagonist (M100907)
had opposite actions, remediating impulsivity in both
sham-operated and 5-HT-depleted rats. These contrasting
influences of the 5-HT2A and 5-HT2C receptor antagonists
were mimicked by infusions of the drugs into the nucleus
accumbens, but not the mPFC, in intact animals (Cottrell
et al, 2008). However, in variations of the 5-CSRTT, it was

possible to detect significant reductions in impulsivity after
intra-mPFC infusion of the 5-HT2A receptor antagonist.
The latter findings were consistent with observations that,
in a population of Lister hooded rats, it was generally the
most impulsive animals that had the greatest concentrations
of 5-HT in the mPFC, indicating that individual differences
and regional specificity are important considerations in
understanding the relationship between 5-HT and beha-
vioral disinhibition.
The effects of central 5-HT manipulations on impulsivity

stand in some contrast to their actions on attentional
function per se in the 5-CSRTT. Several papers have
observed either no effects or actual enhancement of
attentional accuracy when impulsive behavior is enhanced
(Harrison et al, 1997) or after treatment with systemic or
intra-PFC 5-HT2A receptor antagonists such as ketanserin
or M100907 (Passetti et al, 2003; Winstanley et al, 2003) as
well as the 5-HT1A receptor agonist 8-OHDPAT (Winstan-
ley et al, 2003). These findings are compatible with the
hypothesis that inhibitory control over impulsive behavior
and attentional function are only loosely coupled in this test
situation and suggests that there will be no simple
relationship between the two in such syndromes as ADHD.
An additional element of complexity is introduced when

considering the influences of these same drugs on measures
of compulsivity. Using a simple serial spatial reversal test
that is sensitive to lesions of the OFC (Boulougouris et al,
2007), it was found that 5-HT2C receptor antagonism
(produced by systemic administration) facilitated reversal
learning. M1000907 had the opposite effect of impairing it
(Tsaltas et al, 2005). Note that in terms of remediation, this
is opposite to what that was found for measures of
impulsivity. Similar enhancements of reversal learning after
treatment with the 5-HT2C antagonist were also found after
infusion into the OFC (Boulougouris, Glennon, Robbins,
unpublished results) (Table 2).
Regardless of precise elucidation of mechanism, these

data pharmacologically dissociate these forms of impulsiv-
ity and compulsivity, suggesting that they cannot hinge on a
common process of behavioral inhibition. The dissociation
cannot easily be explained in terms of differences in species,
drug, or dose of receptor antagonist used or the form of
motivation used; they must be task–dependentFas both
tasks require response inhibition for efficient performance.
Thus, we conclude that there is some other aspect of the
processes engaged by the task, which differentiates them.
These results also imply that impulsivity and compulsivity

Table 2 Differential Effects of 5-HT2C and 5-HT2A Receptor
Antagonists on Rat Models of Impulsivity and Compulsivity

Compulsivity
(reversal learning task) Impulsivity (5CSRTT)

5-HT2C antagonist
(SB24284)

Reduced Increased

5-HT2A antagonist
(M100907)

Increased Reduced

Hypothesized-
mediating
neuroanatomy

Neural projections
from OFC to the caudate
nucleus (dorsomedial
striatum in the rat)

Neural projections from
VMPFC (area 25) to the
shell of the nucleus
accumbens
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are functionally separate and reciprocally yoked, lending
support to the impulsive–compulsive diathesis model
(Hollander and Wong, 1995). They also suggest that
impulsivity and compulsivity can be dissociated by selective
5-HT2 receptor ligands and hint at new clinical applications
for such agents. However, it will be important to resolve
how these data fit with the consistent finding that 5-HT
depletion in the OFC impairs visual object reversal learning
in marmoset monkeys (Clarke et al, 2004, 2005; Yucel et al,
2007). In addition, it would seem likely that these seemingly
opposed effects are mediated through separate neural
pathways: in the case of impulsivity, through projections
from the infralimbic VMPFC (area 25), an area richly
innervated by 5-HT2A receptors and strongly implicated in
affective regulation, toward the shell of the nucleus
accumbens (Vertes, 2004) and, in the case of compulsivity,
in connections between the OFC and the caudate
nucleus (or the dorsomedial striatum in the rat) (Schilman
et al, 2008).

DISSOCIATING IMPULSIVE AND COMPULSIVE
DISORDERS USING NEUROPSYCHOLOGICAL TASKS

Impulsive and compulsive disorders usually involve a
relatively diminished ability to delay or inhibit repetitive
thoughts or behaviors. Thus, problems suppressing or
inhibiting inappropriate behavior could underpin both
impulsive and compulsive symptomatology (Chamberlain
et al, 2005; Stein et al, 2006). ADHD is a disorder of early
onset characterized by poorly conceived, impulsive actions
and robust impairment in motor inhibition as measured on
tasks such as the SSRT (Aron et al, 2003; Lijffijt et al, 2005).
Administration of cognition-enhancing agents such as
atomoxetine and methylphenidate improves symptoms
and ameliorates SSRT deficits in adults with ADHD,
presumably acting through increased noradrenergic (or
possibly dopaminergic) neurotransmission (Chamberlain
et al, 2007a).
Studies in OCD patients have revealed SSRT impairment

and poor performance on ED-shifting tasks (Chamberlain
et al, 2006a, 2007c; Menzies et al, 2007a), implying both
impulsive and compulsive contributions to the disorder.
Unaffected first-degree relatives of OCD probands share
similar impairment on SSRT and ED-shifting tasks (Cham-
berlain et al, 2007c) and thus seem to exhibit similar levels
of motor impulsivity and cognitive inflexibility, despite a
lack of OCD symptoms. In contrast to OCD, application of a
similar neurocognitive test battery to individuals with
trichotillomania showed a more focal and selective impair-
ment in motor inhibition, consistent with its DSM-IV
classification as an ICD (Chamberlain et al, 2006b, 2007b).
Whole-brain MRI in unmedicated trichotillomania identi-
fied increased gray-matter density in the left putamen and
multiple cortical regions (Chamberlain et al, 2008b).
Increased gray matter in striatal regions has also been
reported in studies of Tourette syndrome (Bohlhalter et al,
2006; Garraux et al, 2006) and OCD (Menzies et al, 2008a).
On the other hand, patients with Tourette’s syndrome were
found to share cognitive inflexibility and to be significantly
more impaired than OCD patients on decision-making
tasks, but less impaired on a task of motor inhibition

(Watkins et al, 2005), though another study investigating
adolescents with Tourette’s did not find evidence of
impaired reward learning compared with controls on a
gamble task (Crawford et al, 2005). Li et al (2006) failed to
show performance deficits compared with controls on the
SSRT in 30 children with Tourette’s syndrome.
The overlap of compulsive and impulsive responding

within OCD raises the question whether impulsivity
normally drives compulsivity, and thus whether it is
possible to show pathological compulsivity without motor
impulsivity. If so, which disorders might show ‘pure’
compulsivity? Individuals with obsessive–compulsive per-
sonality disorder comorbid with OCD showed increased
impairment specifically in the domain of ED shifting. This
finding is consistent with the clinical presentation of
obsessive–compulsive personality disorder, which is char-
acterized by excessive cognitive and behavioral inflexibility,
but does not involve repetitive behaviors (ie obsessions or
compulsions). Thus, obsessive–compulsive personality dis-
order may constitute a prototypic-compulsive disorder
(Fineberg et al, 2007b). Confirmatory studies using
individuals with non-comorbid OCPD would be welcomed.

NEUROCOGNITIVE ENDOPHENOTYPES, OCD, AND
BEYOND

Whereas neurocognitive tasks may be used to identify fairly
specific neuropsychological domains, complementary neu-
roimaging may be used to visualize the anatomical
substrates and neural circuits underlying genetic risk for a
disorder. By integrating neurocognitive and structural MRI
parameters, using a whole-brain multivariate analysis
(technique of partial least squares, McIntosh and Lobaugh,
2004) and a novel permutation test, Menzies et al (2007a)
identified familial effects on performance on a motor-
inhibition task (the SSRT) that were associated with
variation in multiple anatomical sites. Both OCD patients
and their unaffected first-degree relatives exhibited im-
paired motor inhibitory control, indexed by prolonged
latency of the SSRT and longer latency was associated with
both decreased gray-matter volume in the OFC and RIF
cortex (areas conventionally associated with OCD and SSRT
activation, respectively) and increased gray-matter volume
in areas of the striatum, cingulate, and parietal cortex.
These results argue for the first structural MRI endophe-
notype-mediating familial, and possibly genetic, risk for
OCD-related impulsivity. Future studies might profitably
test for specific genetic effects on variability in such
intermediate phenotypes, as an alternative to classical
association designs, for discovery of susceptibility alleles.
The findings with the SSRT, a relatively disease-non-

specific task of motor impulsivity, raise the possibility that
such an endophenotype may not be restricted to OCD, but
in addition relate to other disorders within, and perhaps
outside, the impulsive–compulsive disorders spectrum. For
example, individuals with ADHD and their relatives seem
impaired on motor-inhibition tasks (Crosbie and Schachar,
2001), but it is not yet clear whether the anatomical
correlates of impairment for those with familial risk for
ADHD are the same or differ from people with familial risk
for OCD.
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The within-subject correlation between decreased gray-
matter volumes within frontal areas of cortex and increased
volumes in the striatum resonates with empirical OCD
models derived from early functional imaging studies
(Baxter et al, 1987) and later structural and functional
MRI studies (for review see, Menzies et al, 2008a).
Preliminary findings from a subsequent study using
diffusion tensor imaging within OCD family members
(Menzies et al, 2008b) identified evidence of white-matter
abnormalities in complementary brain areas including the
right medial frontal (adjacent to anterior cingulate cortex,
ACC) and right inferior parietal (adjacent to parietal cortex)
zones, compatible with results from a prior study involving
OCD patients (Szeszko et al, 2005). However, by extending
this study to include unaffected OCD family members, we
have proposed these findings as possible white-matter
endophenotypes for OCD (Menzies et al, 2008b).
In addition to structural brain abnormalities in patients

with OCD and their relatives, research has started to probe
functional integrity of fronto-striatal circuitry using fMRI
paradigms adapted for this purpose. Using an fMRI
cognitive flexibility paradigm, it was shown that patients
with OCD and their unaffected first-degree relatives
exhibited under-activation of the bilateral lateral OFC
during reversal of responses; they also tended to under-
activate lateral aspects of the PFC during ED shifting at
trend levels (Chamberlain et al, 2008a).
Together, these findings indicate that neuroimaging

techniques can provide a rich source of candidate
endophenotypes for OCD. The results are compatible with
theories implicating failure of top–down cortical inhibition
of striatally mediated behaviors. They suggest that the
idiosyncratic obsessive ruminations and compulsive rituals
that characterize OCD are accompanied by more general
propensities toward rigid and disinhibited behavior that are
shared among non-affected family members. Thus, diffi-
culties in ‘cognitive inhibition and flexibility’ may causally
contribute to the development of symptoms of OCD. Future
work should examine whether this approach can be
successfully generalized to other disorders on the impul-
sive–compulsive spectrum. The clinical relevance of puta-
tive endophenotypes requires additional investigation to
determine whether (and how) unaffected relatives who
share trait markers with OCD probands might be differ-
entiated from non-OCD-related controls. An improved
understanding is needed of mechanisms by which environ-
mental factors might elicit OCD in genetically vulnerable
individuals, and whether or how treatments could help
modify disease onset.

ICDs AND MODELS OF REWARD

In contrast to compulsive disorders such as OCD, some
ICDs, such as pathological gambling, are characterized by
choosing short-term gratification irrespective of negative
long-term consequences. Berlin et al (2008) compared
individuals with and without pathological gambling on a
selected neuropsychological battery (Berlin et al, 2008).
Individuals with pathological gambling who scored more
highly on self-reported measures of impulsivity such as the
Barratt Impulsivity Scale had on average a faster subjective

sense of time (overestimated time) compared with controls
and showed deficits measured by a frontal behavior
questionnaire considered to reflect prefrontal-cortical
dysfunction. Subjects with pathological gambling also
showed disadvantageous decision making on the Iowa
Gamble Task (Bechara et al, 1994) and executive planning
deficits (eg on Spatial Planning and Stockings of Cambridge
subtests of CANTAB), implicating prefrontal circuitry
including the OFC/VMPFC region. In contrast to OCD
(Watkins et al, 2005; Chamberlain et al, 2006b), set-shifting
was unimpaired in pathological gambling. However, other
studies indicate that individuals with pathological gambling
score highly on specific measures of compulsivity or harm
avoidance, and that measures of impulsivity and compul-
sivity may change over time (eg, during the course of
treatment (Potenza, 2007a; Blanco et al, 2009). These
findings suggest that impulsivity and compulsivity are not
diametrically opposed and share a complex, orthogonal
relationship, with specific disorders showing a predomi-
nance of one construct over the other that may shift in a
temporally dynamic manner.
Hollander et al (2007a) compared three groups of age-

and gender-matched individuals, comprising pathological
gambling (predominantly impulsive) and OCD and autism
(predominantly compulsive) disorders, using a battery of
clinical, cognitive, and functional imaging tasks. During
execution of response-inhibition tasks (go/no-go) that
normally activate fronto-striatal circuitry, all three spec-
trum-disorder groups showed abnormal fMRI activation in
dorsal (cognitive) and ventral (emotional) regions of the
ACC compared with healthy controls. There were no
significant performance differences between the four
groups. However, between-group analyses showed de-
creased dorsal ACC activation in all three patient groups
relative to healthy controls. Thus, during response inhibi-
tion, both compulsive and impulsive disorders were
characterized by diminished dorsal ACC activation, which
may contribute toward failure to properly inhibit motoric
behaviors across these disorders.
When individual activation patterns of the ventral ACC

were correlated with measures of impulsivity or compulsiv-
ity, disorder-specific between-group differences emerged.
Within the pathological gambling group, increased ventral
ACC/ventral striatum activation correlated positively with
clinical measures of increased impulsive reward-seeking
behavior (as measured by TCI Impulsiveness and Total
Harm Avoidance, NEO-FFI Extraversion, Total Time
Estimation, and the Iowa Gambling Task). Furthermore,
gamblers with increased activation in the ventral ACC (area
25) showed lower compulsivity scores on tasks of cognitive
set-shifting (ID/ED stages completed). In contrast, in the
autistic (compulsive) group, increased ventral ACC/ventral
striatum activity correlated with increased severity of
compulsive distress-relieving (reinforcing) habits, and
increased activation within the same areas of the ventral
ACC (area 25) correlated with increased compulsivity (ID/
ED shift total errors adjusted) and decreased impulsivity on
the Time Estimation task.
This ‘double-dissociation’ suggests that in pathological

gambling and autism, prevailing differences in neuromo-
dulation impact on ventral corticostriatal pathways during
behavioral inhibition, which in pathological gambling may
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primarily drive impulsivity and in autism drive compulsiv-
ity. It is also reminiscent of data from rats described
elsewhere here showing opposing effects of 5-HT2C and
5-HT2A receptor antagonists on impulsivity in the 5-CSRTT
and compulsivity (spatial serial reversal learning) (Tsaltas
et al, 2005; Boulougouris et al, 2007)Fand also of the
doubly dissociable findings of Carli et alFthat infusions of
the 5-HT1A agonist into the infralimbic region reduced
perseverative behavior (on the 5-CSRTT) without influen-
cing impulsive responding, with a 5-HT2A receptor
antagonist having the opposite effect (Chambers et al,
2004). Together, these findings suggest that the same neural
circuitry may drive impulsive or compulsive aspects of
human behavior and that 5-HT subtypes in VMPFC
(5-HT2A) and OFC (5-HT2C), and dorsal ACC deficits,
may have a function in the failure of response inhibition in
predominantly impulsive (pathological gambling) and
compulsive (OCD, autism) disorders.

REWARD, REINFORCEMENT, AND DA

DA pathways in the mesolimbic system have an important
function in reward and reinforcement (Wise, 2002). In
disorders of impulse control, increased ventral ACC
activation during response inhibition may be related to
increased reward-seeking behavior. Preliminary results
suggest that pathological gamblers are less sensitive to
reward on the TCI reward dependence inventory than
healthy controls and seek higher levels of stimulation
(novelty seeking) (Berlin et al, 2008). However, other
studies of subjects with pathological gambling have found
relatively diminished activation of ACC, particularly in its
ventral component, during appetitive states and cognitive-
control experiments (Potenza et al, 2003a, b). With respect
to compulsive disorders, the positive correlation between
increased ventral ACC activation during response-inhibi-
tion tasks and increased compulsivity on ID/ED stages and
total errors adjusted may reflect increased dopaminergic
activity from a relative deficit, in line with a mesolimbic DA
model of OCD (Joel, 2006).
Hypothetically, intermittent and repeated stimulation of

mesolimbic DA pathways may ‘sensitize’ the reward system
and lead to escalation in reward seeking (Robinson and
Berridge, 1993), which, if combined with poor prefrontal-
cortex-mediated inhibitory control, may facilitate DA
related and seemingly impulsive-motivated behaviors.
Excessive DA release and stimulation may deplete DA
stores and lead to anhedonia and depression (Koob and
Le Moal, 1997). Indeed, in substance abusers, decreased
activity of the mesolimbic/mesocortical DA system, as
measured by electrophysiological recordings and in vivo
microdialysis, intensifies after escalations in drug intake.
This may generate an urge (compulsion) to seek stronger
rewards to ‘replenish’ the DA deficiency. The demonstration
of decreased striatal D2-like receptors in chronic cocaine
users, by PET imaging (Volkow et al, 1999), suggests down-
regulation in response to persistently elevated postsynaptic
DA concentrations, consistent with the hypothesis of a
dysregulated DA system after repeated stimulation of DA
release. Thus, what starts as increased DA release leading to
increased ventral ACC activity and increased reward

seeking (Wise, 2002) may end as a compulsive drive toward
increased levels of reward stimulation to restore a resultant
DA deficiency. This compulsive drive may be exacerbated
by deficient impulse control and decision making, linked to
the orbitofrontal, ventromedial prefrontal, and ACC (Adin-
off, 2004). However, the extent to which this hypothesis
relates to specific ICDs requires direct investigation.

INTEGRATING MECHANISMS OF INHIBITORY
CONTROL, REWARD, AND DA

Models of compulsivity and impulsivity posit a balance
between 5-HT (2A, 2C) receptor activity in VMPFC/OFC
regions regulating aspects of response inhibition, and DA
tone in the ventral loops linking ventral ACC with ventral
striatum/nucleus accumbens regulating reward and rein-
forcement behavior. DA neurotransmission, particularly
phasic release, in the nucleus accumbens has been
associated with reward seeking and reinforcement (Schultz,
2002). Unexpected punishment (monetary loss) has been
proposed to result in a dip in central dopaminergic activity,
reversal learning, and diminished reward seeking (Frank
et al, 2007). Pro-dopamanergic drugs, including levo-dopa
and pramipexole (a D2-like DA receptor agonist), have been
associated with altering reversal learning to unexpected
punishment and ICDs in patients with Parkinson’s disease
(Cools, 2006; Cools et al, 2006). Pramipexole has also been
associated with impaired acquisition of reward-related
behavior in healthy participants, consistent with data
suggesting that phasic DA signaling is relevant to reinfor-
cing actions leading to reward (Pizzagalli et al, 2008).
However, other data indicate that pramipexole, when
administered to healthy adults, does not alter behavioral
impulsivity, compulsivity, or related constructs including
delay-discounting, risk-taking, response inhibition, or
perserveration (Hamidovic et al, 2008). Furthermore,
olanzapine, a drug with antagonist properties at the
D2-like receptor family of DA receptors, has not showed
superiority to placebo in two controlled trials involving
subjects with pathological gambling (Fong et al, 2008;
McElroy et al, 2008), and another D2-like antagonist,
haloperidol, has been found to increase gambling-related
motivations and behaviors in individuals with pathological
gambling (Zack and Poulos, 2007). Radioligand studies are
important to clarify potential functions for D3 and D2
receptors in the pathophysiology of pathological gambling,
and such studies are complicated by these receptors sharing
affinities for existing radioligands.
Taking these findings into account, more research is

needed to better understand the relationship between
impulsivity, compulsivity, and DA function as they relate
to specific psychiatric disorders such as pathological
gambling. Impulsive or compulsive disorders may poten-
tially derive from a mesolimbic DA deficiency. However,
D2-like antagonists have shown a therapeutic benefit in
some (OCD), but not other (pathological gambling)
disorders characterized by impulsive and/or compulsive
features. Probing both the ventral and dorsal striatal
circuitry in human subjects with specific impulsive and
compulsive disorders using receptor-specific serotonergic
and dopaminergic ligands would be an important next step

Probing compulsive and impulsive behaviors
NA Fineberg et al

598

Neuropsychopharmacology



in understanding these conditions. It may be of particular
interest to explore the effects of 5-HT2A and 2C antagonists
on DA transmission in this circuitry. These investigations
could provide additional insight into aspects such as
diminished ventral striatal and VMPFC activation seen
across studies involving disorders sharing impulsive and
compulsive features, such as pathological gambling and SAs
(Reuter et al, 2005; Potenza, 2007a).
Our earlier definition of compulsivity (a tendency to

perform repetitive acts in a habitual/stereotyped manner to
attempt to prevent adverse consequences) and the current
definition (the alleviation of an aversive contingency such
as withdrawal) are conceptually related. For example,
responding habitually to drug cues may be construed as a
mechanism to automatically anticipate a potentially aver-
sive withdrawal syndrome and avert it before it actually
happens. Data link these habitual learning mechanisms (or
compulsivity) to parts of the dorsal striatum (the caudate
for instance), as reviewed earlier. More recent evidence now
links the dorsal striatum (its posterior part) to aversive
motivational learning (Seymour et al, 2007). Hence, from a
neural perspective, evidence supports an overlap between
these two concepts of compulsivity.

IMPULSIVITY AND ‘BEHAVIORAL’ ADDICTIONS

Pathological gambling and SAs share many features. The
disorders frequently co-occur and show similarities with
respect to symptom profiles, gender differences, natural
histories, and familial propensities (Grant and Potenza,
2006). Pathological gambling and SA show high levels of
impulsivity on reward-discounting tasks, which correlate
with poor measures of functioning (Bechara, 2003) and
poor treatment outcome (Krishnan-Sarin et al, 2007) for
individuals with SAs and thus may have prognostic value
for pathological gambling and other ICDs. Neurocognitive
and fMRI data suggest pathological gambling and SAs share
similar mediating neurocircuitry, in which, as compared
with control subjects, relatively diminished activation of the
ventral striatum and VMPFC has been observed in reward
processing and other paradigms (Potenza et al, 2003a, b).
Abnormal fMRI activation of the ventral striatum during
reward processing has been identified in the families of
individuals with SA and may represent a candidate
functional endophenotype for addictive disorders, although
this hypothesis requires direct examination in unaffected
relatives of pathological gambling probands.
Over time, impulsive habitual responding in pathological

gambling and SA may shift toward a more compulsive
pattern of behavior, and it has been hypothesized that
progressive recruitment of neighboring parallel and in-
creasingly dorsal, cortico-striatal loops occurs in a spiraling
manner (Brewer and Potenza, 2008) reminiscent of
elaborately spiraling striato-nigrostriatal circuitry identified
in primate (Lynd-Balta and Haber, 1994) and rodent (Belin
et al, 2008) models of motivated behaviors mapping
transitional processes from ventral to dorsal striatum.
Prospective, longitudinal studies after these changes within
individuals over time will be informative and clinically
relevant. Promising research from treating individuals with
pathological gambling with opioid antagonists (Brewer et al,

2008) not only discriminate pathological gambling from
OCD, in which opioid antagonists such as naloxone have
been shown to make OCD worse (Insel and Pickar, 1983),
but also suggest a therapeutic function for opioid antago-
nists in other related ICDs (Grant et al, 2007).

NEW NEURAL TARGETS

To fully understand the neurobiology of impulsivity and
compulsivity and the potential for developing new treat-
ments, we may need to explore beyond the neural circuitries
discussed in this article to include other neural structures,
such as the insula. Data suggest that the insula is important
in coordinating ‘conscious’ urges. Lesions of the insula, for
instance after stroke, have been associated with rapid
smoking cessation (Naqvi et al, 2007). Exposure to cues in
the environment, or homeostatic states such as withdrawal,
stress, or anxiety, may evoke ‘interoceptive’ representations
in the insula that translate into consciously perceived
‘urges’. The insula is anatomically and functionally con-
nected to the aforementioned neural systems implicated in
impulsivity, compulsivity, and inhibitory control. Concei-
vably, the insula interacts with mechanisms of impulsivity
and compulsivity by relaying signals (from the environment
or the viscera) to 5-HT 2C vs 5-HT 2A receptors in the
prefrontal cortex. Thus, interoceptive signals mediated
through the insula may, on the one hand, sensitize the
neural circuits driving impulsivity or compulsivity. On the
other hand, insula activity may ‘hijack’ the inhibitory-
control mechanisms of the prefrontal cortex and sub-
vert attention, reasoning, planning, and decision-making
processes away from foreseeing the negative consequences
of a given action, and toward formulating plans to seek
and procure rewarding stimuli such as drugs (Naqvi et al,
2007).

CONCLUSION

Returning, then, to our motivating questions: (i) how much
do compulsivity and impulsivity contribute to these
disorders, (ii) to what extent do they depend on shared or
separate neural circuitry, (iii) what are the mediating
monoaminergic mechanisms, (iv) do impulsive or compul-
sive behavioral components have any prognostic value
related to treatment, and (v) is there a unifying-dimensional
model that fits the data? According to the available
evidence, impulsivity, and compulsivity, each seem to be
multidimensional and underpin at least some of the
impulsive and compulsive disorders, although the disorders
show overlapping, but also distinct profiles. Thus, over-
arching failures within cortico-striatal neurocircuitry reg-
ulating aspects of inhibitory control have been observed in
cognitive and imaging studies of all the disorders under
review, though for some disorders the data remains
tantalizingly incomplete. Trichotillomania may stand apart
as a disorder of motor-impulse control and dysfunction
within the RIF cortex and its cortico-subcortical connec-
tions, whereas pathological gambling has been associated
with impulsivity linked to poor decision making and
abnormal ventral cortico-striatal circuitry, particularly
involving the VMPFC and ventral striatum, that identifies
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it more closely with SAs. High levels of reward-related
impulsivity correlate with poor treatment outcome for SAs
and may have prognostic significance for pathological
gambling and other ICDs. Compulsive behaviors occurring
with autism are associated with similar abnormalities in
ventral reward circuitry. OCD, on the other hand, shows
motor impulsivity and compulsivity, presumably mediated
through disruption of OFC-caudate circuitry, as well as
VLPFC, RIF cortex, cingulate, and parietal connections. For
these disorders, inter-relating serotonin, DA, and noradre-
naline projections are likely to have important modulating
functions, as well as other systems as yet incompletely
characterized. Over time, impulsivity may evolve into
compulsivity and vice versa.
Thus, the picture seems far from a simple linear diathesis

with impulsivity and compulsivity occupying opposite
poles, and the ‘model’ probably involves a complicated
interaction of multiple, orthogonally related diatheses,
variably expressed across these circuits and disorders.
Impulsive and compulsive disorders are conspicuously
heterogeneous, sharing aspects of impulsivity and compul-
sivity, and become even more complex and thus more
difficult to disentangle over time. For example, for
impulsive and addictive disorders, tolerance to reward
may develop and the behaviors may persist as a method of
reducing discomfort (ie they become more compulsive). For
compulsive disorders, it is possible that the performance of
the repetitive behaviors themselves becomes reinforcing
over time, despite their adverse long-term consequences (ie
they become more impulsively driven). Mapping these
disorders using an agreed-on battery of candidate endo-
phenotypic markers may further clarify their relationship
with each other, and future collaborative research enter-
prises across centers with complementary expertise should
be encouraged. Novel approaches may be needed to
investigate adequately through ‘triangulating’ approaches
such as complex interactions. In this respect, techniques for
identifying brain functional systems in neuroimaging data,
such as the method of partial least squares (which also
allows exploration of multiple behavioral and imaging
variables), may have significant potential as procedures for
the future in this field. We may also make further progress
in dissecting the receptor mechanisms implicated in
controlling compulsive and impulsive behavior by use of
transgenic mouse preparations in the same tasks devised as
for rats (eg 5-CSRTT and reversal learning) and exploration
of the full range of 5-HT receptors using new pharmaco-
logical ligands.
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