
Citation: Lu, X.; Xue, A.; Lio, P.; Hui,

P. Intelligent Decision Making Based

on the Combination of Deep

Reinforcement Learning and an

Influence Map. Appl. Sci. 2022, 12,

11458. https://doi.org/10.3390/

app122211458

Academic Editor: Keun Ho Ryu

Received: 13 October 2022

Accepted: 5 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Intelligent Decision Making Based on the Combination of Deep
Reinforcement Learning and an Influence Map
Xiaofeng Lu 1,* , Ao Xue 1, Pietro Lio 2 and Pan Hui 3

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 Computer Laboratory, University of Cambridge, Cambridge CB2 1PZ, UK
3 Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China
* Correspondence: luxf@bupt.edu.cn

Abstract: Almost all recent deep reinforcement learning algorithms use four consecutive frames
as the state space to retain the dynamic information. If the training state data constitute an image,
the state space is used as the input of the neural network for training. As an AI-assisted decision-
making technology, a dynamic influence map can describe dynamic information. In this paper, we
propose the use of a frame image superimposed with an influence map as the state space to express
dynamic information. Herein, we optimize Ape-x as a distributed reinforcement learning algorithm.
Sparse reward is an issue that must be solved in refined intelligent decision making. The use of
an influence map is proposed to generate the intrinsic reward when there is no external reward.
The experiments conducted in this study prove that the combination of a dynamic influence map
and deep reinforcement learning is effective. Compared with the traditional method that uses four
consecutive frames to represent dynamic information, the score of the proposed method is increased
by 11–13%, the training speed is increased by 59%, the video memory consumption is reduced by
30%, and the memory consumption is reduced by 50%. The proposed method is compared with the
Ape-x algorithm without an influence map, DQN, N-Step DQN, QR-DQN, Dueling DQN, and C51.
The experimental results show that the final score of the proposed method is higher than that of the
compared baseline methods. In addition, the influence map is used to generate an intrinsic reward to
effectively resolve the sparse reward problem.

Keywords: reinforcement learning; deep reinforcement learning; influence map; sparse reward

1. Introduction

Reinforcement learning is a branch of machine learning, the purpose of which is to
study how the agent learns through trial and error. Reinforcement learning uses reward
or punishment mechanisms to make agents more inclined toward certain behaviors in the
future [1]. Compared with traditional machine learning algorithms, reinforcement learning
has no supervisors—only reward signals.

The human brain understands and recognizes things visually and builds and improves
its own cognitive system. When traditional reinforcement learning uses images as the
training state, reinforcement learning algorithms, such as Q-Learning, SARSA, etc., cannot
find the optimal function because they are limited by the considerable possibilities of the
state space. Convolutional neural networks (CNNs) have achieved considerable success
in the field of computer vision, so their combination with reinforcement learning has
been proposed. The first deep reinforcement learning algorithm, Deep Q-Network (DQN),
was proposed by DeepMind [2]. Since its combination with deep learning, reinforcement
learning has made considerable breakthroughs. Like humans, deep reinforcement learning
agents receive information from high-dimensional input, such as vision, to train their own
neural networks and obtain higher scores in each learning environment under the specific
reward function.

Appl. Sci. 2022, 12, 11458. https://doi.org/10.3390/app122211458 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211458
https://doi.org/10.3390/app122211458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1033-164X
https://doi.org/10.3390/app122211458
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211458?type=check_update&version=1

Appl. Sci. 2022, 12, 11458 2 of 20

Deep reinforcement learning is currently one of the most popular areas of artificial
intelligence (AI) and has achieved amazing results in many games. It does not require
additional information, such as data tags, and is worthy of further exploration for future
applications. If a neural network uses a single frame as the input, it is difficult for the
neural network to analyze the dynamic information of the image. In deep reinforcement
learning, neural networks usually use four consecutive frames as the input to learn the
dynamic information contained in the image. Such a design allows the CNN to learn
more information.

However, the four consecutive frames retain dynamic information at the cost of a
certain amount of redundancy. If this portion of the redundant information could be
reduced, the training speed and memory usage of the reinforcement learning agent could
be improved. An influence map is an AI decision-making tool that is regularly used in
games to describe the current state. In addition, the dynamic influence map can express
the motion information of the agent. If reinforcement learning could learn the dynamic
information from the influence map, it would be of great help to the learning process of
the agent.

The main research goal of this study Is to explore the combination of dynamic influence
maps and deep reinforcement learning. If a dynamic influence map can replace four
consecutive frames as the neural network input, then all deep reinforcement learning
algorithms in the same learning environment will be improved to a certain extent. In deep
reinforcement learning, there are many scenarios of sparse rewards, i.e., the agent can
only receive rewards after the conclusion of the game, such as in Go and chess. In this
situation, the agent does not receive any external reward most of the time, which may
result in the inability to optimize the policy. In this paper, we propose that in the task of
sparse rewards, an influence map can be used to optimize the agent policy and improve
the overall performance of deep reinforcement learning.

To verify the possibility of combining a dynamic influence map with reinforcement
learning, Ms. Pac-Man, a popular test environment in the field of AI [3–8], is used as the
learning and evaluation environment. In this kind of environment, the complete capabilities
of the dynamic influence map, which represents the dynamic information of the current
state of the game, can be displayed. It is these capabilities that facilitate its combination
with reinforcement learning.

The contributions of this article are as follows.
1. One frame of an original image superimposed on the influence map is used to

express dynamic information. Our method inputs less data into the neural network than
the method using of four consecutive frames in deep reinforcement learning. It achieves
better performance than the use of four consecutive frames in deep reinforcement learning.

2. In the sparse reward task, the use of an influence map is proposed to generate an
intrinsic reward when there is no external reward. Sparse reward is an issue that must be
solved in refined intelligent decision making.

3. The experiments conducted in this study prove that the combination of a dynamic
influence map and deep reinforcement learning is effective. The experimental results
show that the proposed method exhibits a greater improvement than traditional deep
reinforcement learning in terms of agent performance, training speed, and memory usage.
The influence map method proposed in this paper can be used in any algorithm. For some
training tasks, if the algorithm cannot be further improved, the influence map can be added
for training to improve the upper performance limit.

2. Related Work
2.1. Deep Reinforcement Learning

After the first deep reinforcement learning algorithm, Deep Q-Network, was intro-
duced [2], a large number of algorithms based on the Deep Q-Network were proposed.
Hasselt et al. [9] proposed Double Q-Learning, which improves the performance by reduc-
ing overestimating the deviation. Prioritized Experience Replay (PER) assigns a priority to

Appl. Sci. 2022, 12, 11458 3 of 20

each experience and uses importance sampling weights to correct the priority deviation [10].
Sutton [11] proposed a DQN algorithm, which uses multi-step time difference to reduce
the deviation of the value function estimation. Dueling DQN divides the structure of the
neural network into two routes [12] corresponding to the advantage value and the state
value. NoisyNet adds noise to the neural network parameters to the encourage exploration
behavior of agents [13]. Bellemare et al. [14] proposed the C51 algorithm, which treats the
expected return as a distribution rather than a value. The Rainbow algorithm combines the
improvements of the above DQN algorithm, achieving the best performance [15].

Among policy-based algorithms, the REINFORCE algorithm and the Vanilla Policy
Gradient algorithm were originally proposed by Williams [16] to optimize the policy by
optimizing the no-discount expected return function. A policy-based algorithm makes
unbiased predictions but encounters high variance and hard convergence problems. Konda
and Tsitsiklis [17] proposed the Actor-Critic based on the policy gradient algorithm, using
two models to evaluate the current state and action. To improve the Actor-Critic algorithm,
Asynchronous Advantage Actor-Critic (A3C) was proposed [18]. Compared to the DQN
algorithm, it supports parallel training, so the training speed is considerably improved. The
Trust Region Policy Optimization (TRPO) algorithm uses KL divergence to limit the range
of policy changes [19]. Wu et al. [20] proposed Actor-Critic using Kronecker-Factored Trust
Region (ACKTR), which reduces the calculation cost of KL divergence calculation and has
better sampling utilization. The Actor-Critic with Experience Replay (ACER) algorithm
is an improvement of the A3C algorithm [21]. It uses experience replay to make training
more stable and efficient. Schulman et al. [22] proposed the Proximal Policy Optimization
(PPO) algorithm, proposing the idea of clipping, using a similar idea to that of TRPO,
considerably reducing computational consumption.

The Deterministic Policy Gradient (DPG) proposed by Silver et al. [23] is another
type of policy-based algorithm, which replaces the stochastic policy with a deterministic
policy. The DDPG proposed by Lillicrap [24] is an improvement of DPG. By adding an
actor-critic structure to DPG, the performance was considerably improved. However, there
are problems of divergence and hyperparameter sensitivity. Fujimoto et al. [25] proposed
the Twin Delayed DDPG (TD3) algorithm to improves the DDPG algorithm. It reduces the
training variance by delaying policy update and adding noise to the target network, making
the DDPG algorithm more stable. The SAC algorithm combines the ideas of Q-Learning
and the DPG algorithm simultaneously [26], introducing the maximum entropy term, the
mathematical proof underlying which can ensure convergence to the optimal policy.

As a distributed algorithm, Horgan et al. [27] proposed the Ape-x algorithm, which
separates interaction from training and uses a large number of actors to collect data. It has
achieved state-of-the-art performance on many benchmarks. In addition, the Distributed
Distributional Deep Deterministic Policy Gradient (D4PG) distributed algorithm uses
DDPG as the basic algorithm and achieves satisfactory performance [28]. Similarly, the
Importance Weighted Actor-Learner Architecture (IMPALA) uses Actor-Critic as the basic
algorithm, with multiple learners to perform asynchronous gradient updates [29].

In the application of reinforcement learning, AlphaGo developed by DeepMind and
the successor, AlphaZero [30], defeated the top human players in Go. OpenAI Five devel-
oped by OpenAI [31] defeated the world champion in Dota2.

2.2. Using an Influence Map in Game Decision Making

An influence map is an AI decision-making that is usually used in games and is able
to describe the current game state. Nathan et al. [32] used an influence map AI in Pac-Man,
implementing a simple hill-climbing optimization method to find the hyperparameter
combination. Su-Hyung et al. [33] combined neural networks and an influence map to
evolve NPC behaviors in simulation games. Hogler [34] used an influence map to realize
the “Flocking” technique, which is the smooth movement of the team in real-time strategy
games. An influence map was combined with Monte Carlo Tree Search (MCTS) [35], using
MCTS to search for nearby paths and an influence map to find the global path. An influence

Appl. Sci. 2022, 12, 11458 4 of 20

map was combined with the A* algorithm to choose a safe path in a pathfinding game [36].
Athanasios et al. [37] used an influence map to simulate crowds in a game and generated
pedestrians with varying behaviors. Phillipa et al. [38] used an influence map to coevolve
the agents of both sides in real-time strategy games. Chris et al. [39] used genetic algorithms
combined with influence maps to evolve AI in games.

Johan et al. [40] designed an influence map AI for the ghost and the Pac-Man in Ms.
Pac-Man. They assigned different weights to the influence of pills, ghosts, and power pills.
The results showed that the controller based on the influence map performed well. Lu [41]
proposed a dynamic influence model that changes the spread of influence in different
directions by adjusting the distances. Kyungeun et al. [42] combined Q-Learning with
an influence map. Compared with using Q-Learning alone, the same learning result was
achieved using only 4.6% of the state space. Heckel et al. [43] proposed the use of a
navigation grid to represent an influence map, which was proven to reduce memory usage.

3. Dynamic Influence Map
3.1. Decision Making with an Influence Map

An influence map is a decision-making tool used in AI games. In the game, props such
as food, wealth, and tools have a positive impact on the current position, and the agent
tends to move to places with greater positive influence. Enemies and negative props have a
negative impact on the location, so the agent needs to avoid these locations. Various objects
in the game have varying influences on their surrounding positions, and the influence map
represents the calculation of the sum of the influence of each position on the map.

When an object spreads influence to the outside world, the numerical influence value in
each location on the map is affected by the spread and attenuation modes, so the calculated
influence map changes. For example, the Euclidean distance, Manhattan distance, etc., can
be used to measure the distance when the influence value spreads. An adjacent spread
mode, such as the flood-fill algorithm, can also be used for spreading. However, the spread
of the influence value is no longer measured by the distance. In addition, the influence
cannot spread infinitely, and the influence value gradually attenuates as spreading occurs.
When a threshold is reached, the influence value is set to 0. The attenuation process can be
calculated using linear or exponential attenuation.

A traditional influence map usually has the same influence attenuation speed in the
surroundings around the source, but this convention cannot reflect the mobility of the
moving game units. For some moving game objects, their influence values differ depending
on the direction. Specifically, moving units exert greater influence on other objects in the
direction of their movement, and locations in the opposite direction of their movement
have less influence. This is the core concept of dynamic influence maps.

3.2. Spread and Attenuation Modes
3.2.1. Spread Modes

When the starting point spreads influence to different locations on the map, the spread
mode refers to the method used to measure the distance from the starting point to the
destination point. The most commonly used methods include the Euclidean distance,
Manhattan distance, path length between two points, and adjacent spread. Among these
methods, the use of the two-point path length as the spread mode requires all paths to be
calculated in advance because the real-time path finding affects the spread efficiency.

The coordinate system is established with the upper-left corner of the game scene as
the coordinate origin.

(1) Euclidean Distance

When the Euclidean distance is used as the spread mode, the distance between the
spread source and each point in the map is expressed as follows:

da,b = deuclidean(a,b) =

√
(x1 − x2)

2 + (y1 − y2)
2, (1)

Appl. Sci. 2022, 12, 11458 5 of 20

where deuclidean(a,b) represents the Euclidean distance between point a and point b. The
coordinates of point a are (x1, y1), and the coordinates of point b are (x2, y2).

This spread mode calculates the distance quickly because it only needs two coordinates
to obtain a relatively acceptable result. However, if there are obstacles and other information
in the path, this spread mode cannot perceive the distance.

(2) Manhattan distance

When the Manhattan distance is used as the spread mode, the distance between the
spread source and the target point is measured as follows:

d(a,b) = dManhattan(a,b) = |x1 − x2|+ |y1 − y2|, (2)

where dManhattan(a,b) represents the Manhattan distance between point a and point b. The
coordinates of point a are (x1, y1), and the coordinates of point b are (x2, y2).

(3) Path distance

In addition, the path between two points can be used to represent the distance between
these points. The measurement method is as follows:

d(a,b) = dpath(a,b), (3)

where dpath(a,b) represents the path length obtained using the pathfinding algorithm. Com-
pared with the Euclidean and Manhattan distance spread modes, this method can take
into account the existence of obstacles. Because the pathfinding algorithm usually finds
the shortest path, the measurement of distance is often quite accurate. However, in an
actual game, especially real-time strategy games such as war games, the response time
is an extremely important factor, and the calculation speed of the pathfinding algorithm
seriously affects the real-time response ability.

(4) Adjacent spread

The adjacent spread method only needs to be executed once to spread the initial
influence from the starting point to all points on the map. Using this method, a consid-
erable amount of time can be saved as compared to the use of the pathfinding algorithm.
Compared with the use of the Euclidean or Manhattan distance as the spread mode, the
adjacent spread mode considers obstacles and other factors. Moreover, when a game unit
moves, the influence map can be dynamically calculated and changed accordingly, which
is more adaptable to dynamic games.

Adjacent propagation does not calculate the path length between any two points
directly. Instead, it propagates the influence of the adjacent grids of the game object. If the
influence values of some of the adjacent grids are changed, then an AI agent propagates the
new influence values from these grids with the same method. The influence value can be
propagated to four or eight directions in square grids (as shown in Figure 1a,b, respectively)
or to six directions in hexagonal grids (as shown in Figure 1c). This process is similar to the
flood-fill algorithm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 21

Figure 1. Propagation directions. (a) Four directions (b) Eight directions (c) Six directions

3.2.2. Attenuation Modes
Attenuation modes are generally divided into exponential and linear attenuation

modes. As the distance between the starting point and the target point increases, the in-
fluence gradually decreases. In addition, when the influence is attenuated to a certain de-
gree, it is usually set to 0 to reduce the amount of calculation.

Consider point a as the starting point of spreading and point b as a target point on
the map. ܫ represents the initial influence of point a, and ܫ, represents the exerted in-
fluence from point a to point b.

Exponential attenuation: The relationship between the influence and distance is
given by Equation (4).

,ܫ = ቊ
ܫ ⋅ ್,ௗೌߛ , ݀, < ௫ܦ

0, ݀, ≥ ௫ܦ
, (4)

where γ is the exponential attenuation parameter, ݀, represents the distance from point
a to point b, and ܦ௫ represents the maximum spread distance. After exceeding this dis-
tance, the influence value drops to 0. The value of the exponential attenuation parameter
(γ) is usually between 0 and 1. The lower the value, the faster the attenuation speed of the
starting influence.

Linear attenuation: The relationship between influence and distance is given by
Equation (5).

,ܫ = ൜
ܫ − ߚ ⋅ ݀, , ݀, < ௫ܦ

0, ݀, ≥ ௫ܦ
, (5)

where β is the linear attenuation parameter.
When these two attenuation modes use adjacent spread, the adjacent spread no

longer spreads after the influence value of a certain point is less than a preset value instead
of stopping spreading after reaching the maximum spread distance.

3.3. Dynamic Influence Map
In this study, the adjacent spread mode and linear attenuation are used to calculate

the spread of influence. Compared with Manhattan distance and Euclid distance, adjacent
spread can take into account the factors of obstacles, making the distance measurement
more accurate. Compared with the distance obtained by the pathfinding algorithm, the
calculation speed of adjacent spread is faster. Both exponential attenuation and linear at-
tenuation can be used. Considering the computational complexity, the exponential oper-
ation consumes more time, so linear attenuation is selected.

3.3.1. Dynamic Influence Map Calculation
Because the object is in motion, its influence decays at different rates in different di-

rections. When the target point is in front of the moving direction of the object, the influ-
ence of the object decays slowly. When the target point is behind the moving direction of
the object, the influence of the object declines faster. One way to adjust the rate at which

Figure 1. Propagation directions. (a) Four directions (b) Eight directions (c) Six directions.

Appl. Sci. 2022, 12, 11458 6 of 20

3.2.2. Attenuation Modes

Attenuation modes are generally divided into exponential and linear attenuation
modes. As the distance between the starting point and the target point increases, the
influence gradually decreases. In addition, when the influence is attenuated to a certain
degree, it is usually set to 0 to reduce the amount of calculation.

Consider point a as the starting point of spreading and point b as a target point on the
map. Ia represents the initial influence of point a, and Ia,b represents the exerted influence
from point a to point b.

Exponential attenuation: The relationship between the influence and distance is given
by Equation (4).

Ia,b =

{
Ia · γda,b , da,b < Dmax

0, da,b ≥ Dmax
, (4)

where γ is the exponential attenuation parameter, da,b represents the distance from point
a to point b, and Dmax represents the maximum spread distance. After exceeding this
distance, the influence value drops to 0. The value of the exponential attenuation parameter
(γ) is usually between 0 and 1. The lower the value, the faster the attenuation speed of the
starting influence.

Linear attenuation: The relationship between influence and distance is given by
Equation (5).

Ia,b =

{
Ia − β · da,b, da,b < Dmax

0, da,b ≥ Dmax
, (5)

where β is the linear attenuation parameter.
When these two attenuation modes use adjacent spread, the adjacent spread no longer

spreads after the influence value of a certain point is less than a preset value instead of
stopping spreading after reaching the maximum spread distance.

3.3. Dynamic Influence Map

In this study, the adjacent spread mode and linear attenuation are used to calculate
the spread of influence. Compared with Manhattan distance and Euclid distance, adjacent
spread can take into account the factors of obstacles, making the distance measurement
more accurate. Compared with the distance obtained by the pathfinding algorithm, the
calculation speed of adjacent spread is faster. Both exponential attenuation and linear
attenuation can be used. Considering the computational complexity, the exponential
operation consumes more time, so linear attenuation is selected.

3.3.1. Dynamic Influence Map Calculation

Because the object is in motion, its influence decays at different rates in different
directions. When the target point is in front of the moving direction of the object, the
influence of the object decays slowly. When the target point is behind the moving direction
of the object, the influence of the object declines faster. One way to adjust the rate at which
an object’s influence decays is to change the distance in the formula between the object and
the target point.

As shown in Figure 2, the spread source point is a, and the target point is b.
→
v is the

motion direction of node a, and
→
Ia,b is the direction from a to b. The specific method for

adjusting the distance is given by Equation (6) [41].

d′a,b =
da,b

1 + cos
(→

Ia,b,
→
v
)
·α

, (6)

where da,b indicates the actual distance from point a to point b, d′a,b represents the adjusted

distance,
→
Ia,b represents the direction vector from point a to point b, and

→
v represents the

current movement direction of spread source point a. Moreover, α represents the parameter

Appl. Sci. 2022, 12, 11458 7 of 20

of distance adjustment, which is between 0 and 1. The larger the value of α, the greater the
value of the spreading influence of source point a in the direction of its movement. In this
study, d′a,b is used to calculate the influence of b according to Equation (5).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 21

an object’s influence decays is to change the distance in the formula between the object

and the target point.

As shown in Figure 2, the spread source point is a, and the target point is b. �⃗� is the

motion direction of node a, and 𝐼𝑎,𝑏
⃗⃗⃗⃗⃗⃗⃗ is the direction from a to b. The specific method for

adjusting the distance is given by Equation (6) [41].

Motion directiona

b
da,b

Figure 2. The distance scaling of a dynamic influence map.

𝑑′𝑎,𝑏 =
𝑑𝑎,𝑏

1+cos(𝐼𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ,�⃗⃗�)∙α
, (6)

where 𝑑𝑎,𝑏 indicates the actual distance from point a to point b, 𝑑′𝑎,𝑏 represents the ad-

justed distance, 𝐼𝑎,𝑏
⃗⃗⃗⃗⃗⃗⃗ represents the direction vector from point a to point b, and �⃗� repre-

sents the current movement direction of spread source point a. Moreover, α represents the

parameter of distance adjustment, which is between 0 and 1. The larger the value of α, the

greater the value of the spreading influence of source point a in the direction of its move-

ment. In this study, 𝑑′𝑎,𝑏 is used to calculate the influence of b according to Equation (5).

Let 𝐼𝑀(𝑥) indicate the influence value at point x in the influence map. The calcula-

tion formula of the influence map can then be expressed as Equation (7).

 𝐼𝑀(𝑥) = ∑ 𝐼𝑖,𝑥𝑖∈𝑈 , (7)

where 𝐼𝑖,𝑥 represents the magnitude of influence exerted by game unit i on point x.

3.3.2. Dynamic Influence Map in Ms. Pac-Man

By setting the influence values of different units and using different modes for

spreading and attenuation, the influence map can express the current state information,

trend, and direction of movement using numerical values. In this study, Ms. Pac-Man is

used as the learning environment, and an initial influence value is set for each game unit,

such as ghosts, pellets, and Ms. Pac-Man. At each moment, the locations of these units are

taken as the starting points, the directions of movements are considered, the influence

values are spread to the whole map, and these influence values are added to form the

global dynamic influence map. Such a dynamic influence graph contains motion infor-

mation and can be used to replace the four consecutive frames as the state space in rein-

forcement learning.

4. Using the Influence Map as the State Space in Reinforcement Learning

4.1. Deep Reinforcement Learning Algorithm Ape-x

Ape-x is a distributed deep reinforcement learning algorithm that achieves state-of-

the-art performance in many reinforcement learning tasks. Ape-x is characterized by a

distributed architecture for large-scale deep reinforcement learning, which separates data

collection from training. Using their local neural networks, multiple actors interact with

multiple copies of environments simultaneously. The network selects actions, collects in-

teractive data, and stores them in the global experience replay. The learner is responsible

for sampling data from the global experience replay and training the core neural network.

Figure 2. The distance scaling of a dynamic influence map.

Let IM(x) indicate the influence value at point x in the influence map. The calculation
formula of the influence map can then be expressed as Equation (7).

IM(x) = ∑i∈U Ii,x, (7)

where Ii,x represents the magnitude of influence exerted by game unit i on point x.

3.3.2. Dynamic Influence Map in Ms. Pac-Man

By setting the influence values of different units and using different modes for spread-
ing and attenuation, the influence map can express the current state information, trend,
and direction of movement using numerical values. In this study, Ms. Pac-Man is used as
the learning environment, and an initial influence value is set for each game unit, such as
ghosts, pellets, and Ms. Pac-Man. At each moment, the locations of these units are taken as
the starting points, the directions of movements are considered, the influence values are
spread to the whole map, and these influence values are added to form the global dynamic
influence map. Such a dynamic influence graph contains motion information and can be
used to replace the four consecutive frames as the state space in reinforcement learning.

4. Using the Influence Map as the State Space in Reinforcement Learning
4.1. Deep Reinforcement Learning Algorithm Ape-x

Ape-x is a distributed deep reinforcement learning algorithm that achieves state-of-
the-art performance in many reinforcement learning tasks. Ape-x is characterized by a
distributed architecture for large-scale deep reinforcement learning, which separates data
collection from training. Using their local neural networks, multiple actors interact with
multiple copies of environments simultaneously. The network selects actions, collects
interactive data, and stores them in the global experience replay. The learner is responsible
for sampling data from the global experience replay and training the core neural network.
The neural networks between actors share the same parameters, and the learner sends the
neural network parameters to the actors at intervals. Different actors have different epsilons
(an epsilon-greedy algorithm) and remain unchanged during the whole interaction. This
design allows the actors to generate sufficiently varies learning data when interacting with
the environment.

In this study, DQN is used as the basic algorithm to train the Ape-x distributed algo-
rithm. DQN uses a neural network to fit the state-action value function of Q-Learning. The
DQN neural network takes consecutive frames as input and outputs the Q-value for each
possible action to evaluate the quality of the actions. Because the action space is discrete,
it is difficult to use the objective function to directly optimize the policy. Moreover, DQN
estimates the state-action value function of each action and then selects the appropriate

Appl. Sci. 2022, 12, 11458 8 of 20

action, so it is suitable for use in the discrete action space in the Atari environment. The
architecture of the Ape-x algorithm is presented in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21

The neural networks between actors share the same parameters, and the learner sends the
neural network parameters to the actors at intervals. Different actors have different epsi-
lons (an epsilon-greedy algorithm) and remain unchanged during the whole interaction.
This design allows the actors to generate sufficiently varies learning data when interacting
with the environment.

In this study, DQN is used as the basic algorithm to train the Ape-x distributed algo-
rithm. DQN uses a neural network to fit the state-action value function of Q-Learning.
The DQN neural network takes consecutive frames as input and outputs the Q-value for
each possible action to evaluate the quality of the actions. Because the action space is dis-
crete, it is difficult to use the objective function to directly optimize the policy. Moreover,
DQN estimates the state-action value function of each action and then selects the appro-
priate action, so it is suitable for use in the discrete action space in the Atari environment.
The architecture of the Ape-x algorithm is presented in Figure 3.

Figure 3. Architecture of the Ape-x algorithm.

As shown in Figure 3, the Ape-x architecture has multiple actors, each of which in-
teracts in its independent environment instance. First, the initial priorities in the local ex-
perience replay pool are calculated, and local experience is then sent to the global experi-
ence replay pool. There is only one learner, the training data of which are sampled from
the global experience replay pool; the core neural network is trained, and the data priori-
ties are updated.

The Ape-x algorithm can support many actors to collect data simultaneously, and the
learner is only used to train the core neural network. In this way, the training speed and
data collection speed can be considerably improved.

4.2. Using an Image as State Space
The reinforcement learning toolkit Gym contains many reinforcement learning tasks.

Among them, the Atari 2600 game simulator is often used to compare the performance of
various algorithms. All these tasks use images as the state space, so neural networks are
also built based on images in a large number of reinforcement learning algorithms. An
image can represent very large states as a high-dimensional input, so traditional reinforce-
ment learning algorithms, such as Q-Learning, usually cannot be used for training. At this
time, a neural network must be added to understand the image state space and fit the
state-action value function.

When using images as the state space, the environment returns an RGB image at
every moment of interaction. To save storage space and speed up training, images are
usually cropped and downsampled to low-resolution images, then converted to grayscale
images. The grayscale conversion can be calculated by Equation (8).

ݕܽݎܩ = 0.2989 × ܴ + 0.5870 × ܩ + 0.1140 × (8) ,ܤ

The convention of deep reinforcement learning algorithms is to return one image
every four frames to speed up the interaction. After four images are accumulated, they

Actor

Learner

Network

Replay

Experiences

Actor
Actor

Network

Environment

Updated priorities

Sampled experience

Network parameters

Initial priorities

Generated experience

Figure 3. Architecture of the Ape-x algorithm.

As shown in Figure 3, the Ape-x architecture has multiple actors, each of which
interacts in its independent environment instance. First, the initial priorities in the local
experience replay pool are calculated, and local experience is then sent to the global
experience replay pool. There is only one learner, the training data of which are sampled
from the global experience replay pool; the core neural network is trained, and the data
priorities are updated.

The Ape-x algorithm can support many actors to collect data simultaneously, and the
learner is only used to train the core neural network. In this way, the training speed and
data collection speed can be considerably improved.

4.2. Using an Image as State Space

The reinforcement learning toolkit Gym contains many reinforcement learning tasks.
Among them, the Atari 2600 game simulator is often used to compare the performance of
various algorithms. All these tasks use images as the state space, so neural networks are also
built based on images in a large number of reinforcement learning algorithms. An image
can represent very large states as a high-dimensional input, so traditional reinforcement
learning algorithms, such as Q-Learning, usually cannot be used for training. At this time, a
neural network must be added to understand the image state space and fit the state-action
value function.

When using images as the state space, the environment returns an RGB image at every
moment of interaction. To save storage space and speed up training, images are usually
cropped and downsampled to low-resolution images, then converted to grayscale images.
The grayscale conversion can be calculated by Equation (8).

Gray = 0.2989× R + 0.5870× G + 0.1140× B, (8)

The convention of deep reinforcement learning algorithms is to return one image
every four frames to speed up the interaction. After four images are accumulated, they are
combined into one four-channel image in which each channel is the raw image. The third
and fourth frames are maximized to prevent image flicker. In addition, at the beginning
of each episode, the agent usually chooses to act randomly or to stand by for as many as
30 frames to increase the randomness of the interaction.

4.3. Combining the Original Image and Influence Map as the State Space

Influence maps allow Pac-Man to sense danger and make smarter decisions. In
Figure 4, Pac-Man moves from point A to point B. Although there are pellets ahead of his
movement direction, the dangerous influence of the ghost also spreads to Pac-Man’s point
B, so he chooses to change direction. Moreover, the absorbing influence of the pellets below
him also spreads to point B, so Pac-Man chooses to move downward.

Appl. Sci. 2022, 12, 11458 9 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 21

are combined into one four-channel image in which each channel is the raw image. The

third and fourth frames are maximized to prevent image flicker. In addition, at the begin-

ning of each episode, the agent usually chooses to act randomly or to stand by for as many

as 30 frames to increase the randomness of the interaction.

4.3. Combining the Original Image and Influence Map as the State Space

Influence maps allow Pac-Man to sense danger and make smarter decisions. In Fig-

ure 4, Pac-Man moves from point A to point B. Although there are pellets ahead of his

movement direction, the dangerous influence of the ghost also spreads to Pac-Man’s point

B, so he chooses to change direction. Moreover, the absorbing influence of the pellets be-

low him also spreads to point B, so Pac-Man chooses to move downward.

absorb

absorb dangermove

A B

Figure 4. The role of influence maps in decision making.

When the reinforcement learning agent is trained, the agent receives the state re-

turned by the environment and continuously learns from the interaction by understand-

ing the information contained in the state. Therefore, the state returned by the environ-

ment directly determines the knowledge learned by the agent. Different state spaces cause

the agent to prefer different policies, thereby affecting the degree of intelligence and the

decision-making ability. As a high-dimensional expression, an image has considerably

vast state possibilities. For example, a grayscale image with a resolution of 100 × 100 has

10,000256 different states, which contain large amounts of information. The more an

agent can learn from such a state space, the stronger its decision-making ability.

To learn as much knowledge as possible, the original image was used as the state

space in most previous research. However, an influence map is not actually an image but

a matrix. The values in the matrix represent the influence value of a certain location, not

the pixel value. If the values in the matrix are scaled to the range of RGB pixel values, such

as 0–255, according to certain rules, or if RGB pixel values are represented by floating-

point numbers, such as 0–1, the influence map can also be regarded as an image.

Now, the influence map can be superimposed on the original image. However, the

number of pixels differs between the original image and the influence map. For the two

images to be superimposed, the resolution must be the same. The original image can be

changed to a tensor with a shape of (84, 84) by cropping, downsampling, grayscale, etc.

The influence map can be upsampled by bilinear interpolation to (84, 84). In this way, two

images with the same resolution can be superimposed on the z-axis to form a dual-channel

image with a shape of (84, 84, 2). The two channels generated in this way are shown in

Figure 5.

Figure 4. The role of influence maps in decision making.

When the reinforcement learning agent is trained, the agent receives the state returned
by the environment and continuously learns from the interaction by understanding the
information contained in the state. Therefore, the state returned by the environment directly
determines the knowledge learned by the agent. Different state spaces cause the agent to
prefer different policies, thereby affecting the degree of intelligence and the decision-making
ability. As a high-dimensional expression, an image has considerably vast state possibilities.
For example, a grayscale image with a resolution of 100 × 100 has 10, 000256 different states,
which contain large amounts of information. The more an agent can learn from such a state
space, the stronger its decision-making ability.

To learn as much knowledge as possible, the original image was used as the state
space in most previous research. However, an influence map is not actually an image but a
matrix. The values in the matrix represent the influence value of a certain location, not the
pixel value. If the values in the matrix are scaled to the range of RGB pixel values, such as
0–255, according to certain rules, or if RGB pixel values are represented by floating-point
numbers, such as 0–1, the influence map can also be regarded as an image.

Now, the influence map can be superimposed on the original image. However, the
number of pixels differs between the original image and the influence map. For the two
images to be superimposed, the resolution must be the same. The original image can be
changed to a tensor with a shape of (84, 84) by cropping, downsampling, grayscale, etc.
The influence map can be upsampled by bilinear interpolation to (84, 84). In this way, two
images with the same resolution can be superimposed on the z-axis to form a dual-channel
image with a shape of (84, 84, 2). The two channels generated in this way are shown
in Figure 5.

Because the dynamic influence map has different attenuation rates in each surrounding
direction, the influence can express certain motion information in an image. Compared
with the traditional four consecutive frames, the influence map can also represent motion
information while reducing memory usage.

4.4. Hyperparameter Selection for the Influence Map

To obtain the influence map, if the influence of all pixels is calculated, the amount of
calculation is inevitably increased, causing the interaction between the reinforcement learn-
ing agent and the environment to be much slower. Therefore, in addition to removing some
text from the image, an 8 × 8 pixel is used as a single grid to calculate the influence map.

All the objects in the game must be considered when calculating the influence map,
and each object must be allowed to spread its influence in the whole maze. The setting
of the initial influence of the object directly affects the influence map generated by it,
and the global influence map is affected when all influence maps are added up. Several
hyperparameter search algorithms, including grid search [44], random search [45], and
genetic algorithms [46], are used to find the most suitable hyperparameters the influence
map for Ms. Pac-Man.

Appl. Sci. 2022, 12, 11458 10 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21

x

y

z

(a)

(b)

Figure 5. Dual-channel image after superimposition. (a) The original image. (b) The influence
map.

Because the dynamic influence map has different attenuation rates in each surround-
ing direction, the influence can express certain motion information in an image. Com-
pared with the traditional four consecutive frames, the influence map can also represent
motion information while reducing memory usage.

4.4. Hyperparameter Selection for the Influence Map
To obtain the influence map, if the influence of all pixels is calculated, the amount of

calculation is inevitably increased, causing the interaction between the reinforcement
learning agent and the environment to be much slower. Therefore, in addition to remov-
ing some text from the image, an 8 × 8 pixel is used as a single grid to calculate the influ-
ence map.

All the objects in the game must be considered when calculating the influence map,
and each object must be allowed to spread its influence in the whole maze. The setting of
the initial influence of the object directly affects the influence map generated by it, and the
global influence map is affected when all influence maps are added up. Several hyperpa-
rameter search algorithms, including grid search [44], random search [45], and genetic
algorithms [46], are used to find the most suitable hyperparameters the influence map for
Ms. Pac-Man.

To obtain the optimal hyperparameters, a game AI based on the influence map is
implemented, and the actions performed at each time step are selected according to the
influence values in the four surrounding directions. Adjacent spread and exponential at-
tenuation are used when influence is spreading.

The genetic algorithm is a global search algorithm that imitates the biological evolu-
tion mechanism. It selects a relatively suitable hyperparameter combination via evolution,
mutation, and survival of the fittest. In the genetic algorithm used in this study, each hy-
perparameter is represented by 4 bits, i.e., the range of all the hyperparameters of the in-
fluence map is divided into 16 (2ସ) parts. The gene of each individual is a bit array com-
posed of 7 hyperparameters, with a total of 28 bits. The genetic algorithm is implemented
for 50 generations of evolution, and there are 100 individuals in each generation.

Figure 5. Dual-channel image after superimposition. (a) The original image. (b) The influence map.

To obtain the optimal hyperparameters, a game AI based on the influence map is
implemented, and the actions performed at each time step are selected according to the
influence values in the four surrounding directions. Adjacent spread and exponential
attenuation are used when influence is spreading.

The genetic algorithm is a global search algorithm that imitates the biological evolu-
tion mechanism. It selects a relatively suitable hyperparameter combination via evolution,
mutation, and survival of the fittest. In the genetic algorithm used in this study, each hyper-
parameter is represented by 4 bits, i.e., the range of all the hyperparameters of the influence
map is divided into 16 (24) parts. The gene of each individual is a bit array composed
of 7 hyperparameters, with a total of 28 bits. The genetic algorithm is implemented for
50 generations of evolution, and there are 100 individuals in each generation.

4.5. Using the Influence Map to Solve the Sparse Reward Problem
4.5.1. Sparse Reward

In deep reinforcement learning tasks, many environments have sparse rewards prob-
lems. For example, in tasks such as those in Go and chess, the agent can only receive
rewards after the entire game is over, causing the agent to receive no reward most of the
time and possibly resulting in the inability to optimize the policy.

There exists a handling technique called curiosity-driven learning [47], the idea of
which is that in addition to the external reward provided by the environment, the agent
provides an intrinsic reward for itself. The intrinsic reward is generated through an
intrinsic curiosity module (ICM). The module predicts what will happen in the next state
and compares it with the actual next state. If the predicted result differs from the actual
result too much, it means that the next state is encountered less frequently, and a larger
intrinsic reward is then be generated to encourage exploration of the uncertainty. Through
this intrinsic reward, the agent tends to explore more diverse states, which can increase the
diversity of collected data to a certain extent.

Curiosity-driven learning fails in some situations, which is called the noisy TV problem.
In these situations, the state always gives the agent a higher intrinsic reward when the next
state is randomly generated. The generated reward causes the agent to tend to stay in the
current state, even if this state is actually worthless.

Appl. Sci. 2022, 12, 11458 11 of 20

To solve the noisy TV problem, OpenAI proposed random network distillation
(RND) [48]. The idea behind this technique is similar to curiosity-driven learning, but
two neural networks are used to evaluate the current state. The parameters of one neural
network are fixed after random initialization and remain frozen, whereas the other neural
network continues learning and training. When the two neural networks have a large
difference in evaluating the same state, the current state must be explored, and the agent
is given a larger intrinsic reward. If a certain state is experienced many times, another
neural network gradually reduces the evaluation error during the training, and the intrinsic
reward obtained becomes increasingly smaller. This algorithm is based on a simple idea,
but the effect of solving the noisy TV problem is desirable. For some reinforcement learning
algorithms that already have two neural networks, it is very time-consuming to maintain
the inference and training of the four neural networks simultaneously; thus, the training
speed of RND is considerably reduced.

4.5.2. Using the Influence Map to Generate an Intrinsic Reward

When Ms. Pac-man eats a large number of pellets in the maze, she does not try to
explore the pellets in the corners of the maze. This is a problem similar to the sparse reward
problem, i.e., the agent always obtains a reward of zero in continuous exploration, which
makes it more difficult to optimize the policy of the agent at this time.

We propose the use of influence maps to solve the sparse reward problem. If the
external reward obtained is 0, the value in the influence map is used to generate an intrinsic
reward for the agent. This can solve the sparse reward problem to a certain extent. Suppose
the agent performs action an in the process of exploring the environment, and the external
reward obtained is 0; the intrinsic reward is then calculated by Equation (9).

rintrinsic = clip(in f luencenext/50,−1, 1)× 10 (9)

where “clip” is a function that limits the upper and lower bounds of an array, and
in f luencenext indicates the influence value of the location reached after performing action a.

5. Experimental Results
5.1. Hyperparameters of the Influence Map

When calculating the influence map, all objects in the map need to be considered, and
each object must be allowed to spread influence in the whole map. The initial influence of
an object directly affects the influence map generated by a single object. Then, when all
influence maps are superimposed, the final influence map is affected. Explanations of the
hyperparameters are reported in Table 1.

Table 1. Explanation of the hyperparameters in the influence map.

Hyperparameter Explanation

Iop (influence of pill) The initial influence of pills in the map
Iopp (influence of power pill) The initial influence of power pills in the map
Ioeg (influence of edible ghost) The initial influence of edible ghost in the map
Iog (influence of ghost) The initial influence of ghost in the map (negative)

attenuation Attenuation parameter: the degree of attenuation of
influence spreading

spreadDistance Maximum spread distance: stop spreading after reaching it

directionParam Distance adjustment parameter α: the increasing degree of
influence in the moving direction

To find the most appropriate influence map hyperparameters, in this experiment, we
used several hyperparameter search algorithms, including grid search, random search, and
genetic algorithm, to find the best combination of super parameters for Miss Pac-Man. For
each hyperparameter search algorithm, 100 episodes were played, and the average score
was taken to evaluate the performance of this group of hyperparameters. Table 2 shows the

Appl. Sci. 2022, 12, 11458 12 of 20

results. The best score of the grid search was 15,378 points, the best score of the random
search was 14,842 points, and the best score of the genetic algorithm was 15,828 points.
The hyperparameters used to calculate the influence graph with the genetic algorithm are
reported in Table 3.

Table 2. Results of the hyperparameter search algorithms.

Hyperparameter Search Algorithm Score

Grid search 15,378
Random search 14,842
Genetic algorithm 15,828

Table 3. Hyperparameters in the influence map.

Hyperparameter Value

Iop (influence of pill) 14
Iopp (influence of power pill) 30
Ioeg (influence of edible ghost) 60
Iog (influence of ghost) −80
attenuation 0.27
spreadDistance 5
directionParam 0.53

5.2. Comparison of Motion Information Representation in the State Space
5.2.1. Hyperparameters and Comparative Experiments

A comparative experiment was conducted in which four state spaces were included,
namely a single-frame image, two consecutive frames, four consecutive frames, and an
influence map superimposed image. The deep reinforcement learning algorithm used in
the comparative experiments was the Ape-x distributed algorithm.

The specific hyperparameter settings are reported in Table 4.

Table 4. Hyperparameters in deep reinforcement learning Ape-x algorithm.

Hyperparameter Value

Frame skip 4
No-op start Maximum value is 30
State shape (84, 84)
Frame stack 4
Action size 4
Batch size 64
Gamma 0.99
N step 5
Replay buffer size 200,000
Episode limit 50,000
Local replay buffer size 200
Number of actors 11
Epsilons of actors εi = 0.41+ i

number o f actors−1 ∗7, i ∈ actors
Actor parameter update frequency 200
Learning rate 0.00025/4
Target network update frequency 2500

Finally, the “frame stack” items were set to differ, and the other hyperparameters were
set to be the same to ensure the control variables. The settings of the “frame stack” are
presented in Table 5.

Appl. Sci. 2022, 12, 11458 13 of 20

Table 5. “Frame stack” in four-group comparison experiments.

State Space Frame Stack

Influence map superimposed image 2 (influence map + original image)
Four consecutive frames 4 (four consecutive original images)
Two consecutive frames 2 (original image 1 + original image 2)
Single-frame image 1 (original image 1)

5.2.2. Results

All experiments were carried out on a server with a 1080 Ti graphics card, 48 GB mem-
ory, and an Intel i7-8700k CPU. Tensorflow was used to build the models, and Tensorboard,
a visualization tool that comes with Tensorflow, was used to export the charts. Generally,
rewards are used as the judgment index of the model performance of reinforcement learn-
ing. In this paper, game score was used as the index to compare the proposed model with
other existing models.

Figure 6 presents the training scores of the four image state spaces. These four curves
show that the more images that were superimposed, the higher the game score. With one
exception, the calculation of the influence map includes the object motion, and the score
was therefore similar to that of the four-frame image overlay method. After training a
certain number of times, the influence map scored even higher. As shown in Figure 6, at
the abscissa of 1.2 M, the four curves from top to bottom are those of the influence map
superimposed image, four consecutive frames, two consecutive frames, and single-frame
image. The corresponding ordinates of the four curves are presented in Table 6.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 21

superimposed image, four consecutive frames, two consecutive frames, and single-frame

image. The corresponding ordinates of the four curves are presented in Table 6.

0

1000

2000

3000

4000

5000

6000

7000

0 200k 400k 600k 800k 1M 1.2M 1.4M 1.6M

—— 4 frame
—— 1 frame + 1 IM
—— 2 frame
—— 1 frame

Figure 6. Training scores of four different image state spaces.

Table 6. Ordinate comparison of four training scores at 1.2 M gradient descent.

State Space Smooth Value Actual Value Training Time

Single-frame image 3079 3443 4 h 35 m 1 s

Two consecutive frames 4119 4343 5 h 20 m 56 s

Four consecutive frames 5509 6103 8 h 17 m 20 s

Influence map superimposed im-

age
6201 6840 5 h 10 m 33 s

The four curves shown in Figure 6 all exhibit upward trends; the more frames super-

imposed, the faster the upward speed. However, when one, two, and four frames are su-

perimposed reach a certain score, the curve almost stops increasing and tends to be flat.

The score of the influence map superimposed image continues to increase, showing that

the dynamic information carried by the influence map enables agents to learn more envi-

ronmental knowledge.

Table 7 reports the corresponding ordinates of the four curves at the abscissa of 1.4

M. The comparative experimental results presented in Figure 5 show that the state space

of the influence map superimposed image achieved better performance; the performance

was 11.8–12.6% higher than that of the four consecutive frames method. In addition, as

shown by the comparison of the use of the two consecutive frames and the influence map

superimposed image, the reason for the better performance is not the overlay of consecu-

tive images but the role played by the influence map. The influence map can indicate the

trend and focus of the current map. In addition to expressing certain motion information,

it also plays a role similar to that of an attention mechanism. The brightness contrast of

the influence map may cause the convolution kernel of the CNN to pay more attention to

brighter localities, which allows the neural network to take into account the information

provided by the influence map when selecting actions.

Table 7. Ordinate comparison of four training scores at 1.4 M gradient descent.

State Space Smooth Value Actual Value Training Time

Single-frame image 3786 4153 5 h 23 m 26 s

Two consecutive frames 4258 3733 6 h 17 m 25 s

Four consecutive frames 5836 4860 9 h 42 m 56 s

Influence map superimposed image 6529 7593 6 h 4 m 52 s

Figure 6. Training scores of four different image state spaces.

Table 6. Ordinate comparison of four training scores at 1.2 M gradient descent.

State Space Smooth Value Actual Value Training Time

Single-frame image 3079 3443 4 h 35 m 1 s
Two consecutive frames 4119 4343 5 h 20 m 56 s
Four consecutive frames 5509 6103 8 h 17 m 20 s
Influence map superimposed image 6201 6840 5 h 10 m 33 s

The four curves shown in Figure 6 all exhibit upward trends; the more frames su-
perimposed, the faster the upward speed. However, when one, two, and four frames are
superimposed reach a certain score, the curve almost stops increasing and tends to be
flat. The score of the influence map superimposed image continues to increase, showing
that the dynamic information carried by the influence map enables agents to learn more
environmental knowledge.

Table 7 reports the corresponding ordinates of the four curves at the abscissa of 1.4 M.
The comparative experimental results presented in Figure 5 show that the state space of

Appl. Sci. 2022, 12, 11458 14 of 20

the influence map superimposed image achieved better performance; the performance
was 11.8–12.6% higher than that of the four consecutive frames method. In addition, as
shown by the comparison of the use of the two consecutive frames and the influence map
superimposed image, the reason for the better performance is not the overlay of consecutive
images but the role played by the influence map. The influence map can indicate the trend
and focus of the current map. In addition to expressing certain motion information, it
also plays a role similar to that of an attention mechanism. The brightness contrast of the
influence map may cause the convolution kernel of the CNN to pay more attention to
brighter localities, which allows the neural network to take into account the information
provided by the influence map when selecting actions.

Table 7. Ordinate comparison of four training scores at 1.4 M gradient descent.

State Space Smooth Value Actual Value Training Time

Single-frame image 3786 4153 5 h 23 m 26 s
Two consecutive frames 4258 3733 6 h 17 m 25 s
Four consecutive frames 5836 4860 9 h 42 m 56 s
Influence map superimposed image 6529 7593 6 h 4 m 52 s

5.2.3. Training Speed

In addition to a certain improvement in performance, Tables 6 and 7 show that the
training time of the four consecutive frames was the longest, whereas that of the single-
frame image was the shortest.

Figure 7 shows the training speed, revealing that the greater the number of stacked
images, the more time the neural network requires for backpropagation, which increases
the training time. Using the single frame image, gradient descent could be performed
for 71 batches with an average batch size of 64 per second. Using the four consecutive
frames, an average of only 40 batches were dealt with per second. The training speed of
the other two methods was around 60 batches per second. The reason for the difference is
that the input image depth of the neural network is reduced, which reduces the depth of
the convolution kernel of the CNN, and merely convolution operations must be performed.
When using the influence map superimposed image as the state space, the training speed
was nearly 59% faster than that achieved using four consecutive frames, which means
that the training time could be reduced by 38%. This is a considerable improvement for
practical application. The training speeds of the four methods presented in Figure 7 are
basically unchanged throughout the whole process, with a slight decline compared with the
beginning because when the experience replay is full, some existing data are overwritten
when new data are added. This operation takes slightly longer direct addition.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21

5.2.3. Training Speed

In addition to a certain improvement in performance, Tables 6 and 7 show that the

training time of the four consecutive frames was the longest, whereas that of the single-

frame image was the shortest.

Figure 7 shows the training speed, revealing that the greater the number of stacked

images, the more time the neural network requires for backpropagation, which increases

the training time. Using the single frame image, gradient descent could be performed for

71 batches with an average batch size of 64 per second. Using the four consecutive frames,

an average of only 40 batches were dealt with per second. The training speed of the other

two methods was around 60 batches per second. The reason for the difference is that the

input image depth of the neural network is reduced, which reduces the depth of the con-

volution kernel of the CNN, and merely convolution operations must be performed.

When using the influence map superimposed image as the state space, the training speed

was nearly 59% faster than that achieved using four consecutive frames, which means that

the training time could be reduced by 38%. This is a considerable improvement for prac-

tical application. The training speeds of the four methods presented in Figure 7 are basi-

cally unchanged throughout the whole process, with a slight decline compared with the

beginning because when the experience replay is full, some existing data are overwritten

when new data are added. This operation takes slightly longer direct addition.

Figure 7. Training speed of four different image state spaces.

5.2.4. Memory and Video Memory Usage

In addition to the improvement mentioned previously, the state space of the influ-

ence map superimposed image was found to have two more obvious advantages.

First, compared to the use of four consecutive frames, the memory usage of the influ-

ence map superimposed image was directly reduced by half because the depth of the im-

age state was reduced by half. The experience replay pool can store twice as much data as

before, and, generally, an increase in the number of experience replays improves the per-

formance of the algorithm [27]. In the comparative experiment, to ensure the control var-

iables, the same experience replay pool was used for all four groups.

Furthermore, because the input shape of the neural network was changed from (84,

84, 4) to (84, 84, 2), the size of the video memory occupied by the influence map superim-

posed image was also considerably reduced. In other words, for distributed reinforcement

learning algorithms, such as Ape-x, more actors can be used to explore the environment

and further increase the distribution diversity of the collected data. In this four-group

comparative experiment, to ensure the control variables, the same number of actors was

used to interact with the environment and collect data for all four groups.

—— 4 frame
—— 1 frame + 1 IM
—— 2 frame
—— 1 frame

35

40

45

50

55

60

65

70

75

80

85

90

0 200k 400k 600k 800k 1M 1.2M 1.4M 1.6M

Figure 7. Training speed of four different image state spaces.

Appl. Sci. 2022, 12, 11458 15 of 20

5.2.4. Memory and Video Memory Usage

In addition to the improvement mentioned previously, the state space of the influence
map superimposed image was found to have two more obvious advantages.

First, compared to the use of four consecutive frames, the memory usage of the
influence map superimposed image was directly reduced by half because the depth of the
image state was reduced by half. The experience replay pool can store twice as much data
as before, and, generally, an increase in the number of experience replays improves the
performance of the algorithm [27]. In the comparative experiment, to ensure the control
variables, the same experience replay pool was used for all four groups.

Furthermore, because the input shape of the neural network was changed from
(84, 84, 4) to (84, 84, 2), the size of the video memory occupied by the influence map
superimposed image was also considerably reduced. In other words, for distributed re-
inforcement learning algorithms, such as Ape-x, more actors can be used to explore the
environment and further increase the distribution diversity of the collected data. In this
four-group comparative experiment, to ensure the control variables, the same number of
actors was used to interact with the environment and collect data for all four groups.

5.3. Comparison with Other Reinforcement Learning Algorithms

Comparative experiments were also conducted with other deep reinforcement learning
algorithms, namely DQN [49], Dueling DQN [12], Double DQN [9], N-Step DQN [11],
Prioritized Experience Replay [10], C51 [14], QR-DQN [50], IQN [51], and Rainbow [15].
These comparison reinforcement learning algorithms all use four image frames to represent
dynamic information. All the algorithms were trained for 1.6 million steps, and the
corresponding scores are presented in Figure 8.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 21

5.3. Comparison with Other Reinforcement Learning Algorithms

Comparative experiments were also conducted with other deep reinforcement learn-

ing algorithms, namely DQN [49], Dueling DQN [12], Double DQN [9], N-Step DQN [11],

Prioritized Experience Replay [10], C51 [14], QR-DQN [50], IQN [51], and Rainbow [15].

These comparison reinforcement learning algorithms all use four image frames to repre-

sent dynamic information. All the algorithms were trained for 1.6 million steps, and the

corresponding scores are presented in Figure 8.

—— Apex with IM
—— Apex without IM
—— DQN
—— N-Step DQN
—— QR-DQN
—— Dueling DQN
—— C51
—— Double DQN
—— Rainbow
—— IQN
—— PER DQN

0

1000

2000

3000

4000

5000

6000

7000

0 200k 400k 600k 800k 1M 1.2M 1.4M 1.6M

Figure 8. The experimental results achieved in this study compared with those obtained by other

reinforcement learning algorithms.

Table 8 reports the ordinates of each algorithm from high to low at the abscissa of 1.6

M. The experimental results show that the Ape-x algorithm, which uses an influence map

as the state space, performed the best. Figure 8 shows that the training scores of the Ape-

x algorithms with and without an influence map increased rapidly at the beginning, then

increased slowly. The curve began to rise sharply because the Ape-x algorithm is a dis-

tributed reinforcement learning algorithm; there were multiple agents interacting and col-

lecting data in different environments simultaneously, and the data sampled during train-

ing also had a satisfactory distribution. In other words, the Ape-x algorithm is character-

ized by a high sampling efficiency. Another reason is that the Ape-x algorithm separates

training and interaction and uses an agent to train the policy alone. The agent can train

the collected data in time and reduce the waste of interactive data. Therefore, the final

score of the Ape-x algorithm was far superior to that of the other algorithms. In other

words, the agent exhibited a better training effect in each step.

Table 8. Ordinate comparison of the algorithms at 1.6 M gradient descent.

Algorithm Smooth Value Actual Value

Ape-x with IM 6645 7947

Vanilla Ape-x 6132 6827

DQN 3661 3490

N-Step DQN 3486 3669

QR-DQN 3369 3446

Dueling DQN 3286 3305

C51 2545 2561

Double DQN 2299 2241

Rainbow 2003 2015

IQN 1470 1519

Prioritized Experience Replay DQN 1363 1445

Figure 8. The experimental results achieved in this study compared with those obtained by other
reinforcement learning algorithms.

Table 8 reports the ordinates of each algorithm from high to low at the abscissa of
1.6 M. The experimental results show that the Ape-x algorithm, which uses an influence
map as the state space, performed the best. Figure 8 shows that the training scores of the
Ape-x algorithms with and without an influence map increased rapidly at the beginning,
then increased slowly. The curve began to rise sharply because the Ape-x algorithm is a
distributed reinforcement learning algorithm; there were multiple agents interacting and
collecting data in different environments simultaneously, and the data sampled during
training also had a satisfactory distribution. In other words, the Ape-x algorithm is charac-
terized by a high sampling efficiency. Another reason is that the Ape-x algorithm separates
training and interaction and uses an agent to train the policy alone. The agent can train the
collected data in time and reduce the waste of interactive data. Therefore, the final score of
the Ape-x algorithm was far superior to that of the other algorithms. In other words, the
agent exhibited a better training effect in each step.

Appl. Sci. 2022, 12, 11458 16 of 20

Table 8. Ordinate comparison of the algorithms at 1.6 M gradient descent.

Algorithm Smooth Value Actual Value

Ape-x with IM 6645 7947
Vanilla Ape-x 6132 6827

DQN 3661 3490
N-Step DQN 3486 3669

QR-DQN 3369 3446
Dueling DQN 3286 3305

C51 2545 2561
Double DQN 2299 2241

Rainbow 2003 2015
IQN 1470 1519

Prioritized Experience Replay DQN 1363 1445

The top two curves in Figure 8 correspond to the Ape-x algorithms with and without
an influence map, respectively, demonstrating that the influence map enabled the Ape-x
algorithm to learn more about the environment. At the beginning of training, the state of
the influence map returned by the environment could not be effectively understood by the
agent. In the image, the score of the Ape-x algorithm without the influence map was slightly
higher at first. However, with the continuation of the neural network training process,
the agent using the influence map grasped the hidden information of the environment
represented by the influence map. Its score exceeded that of the Ape-x algorithm without
the influence map, corresponding to the second half of the top two curves in the figure.

Because the influence map contains the current trend, focus, and movement informa-
tion of the image, the agent using the influence map can obtain additional information.
Therefore, the performance of the Ape-x algorithm with the influence map was better
than that of the Ape-x algorithm without the influence map. Table 8 indicates that the
final score of the Ape-x algorithm with the influence map was far higher than that of the
other algorithms.

5.4. Sparse Reward Experiment

According to this intrinsic reward formula, a comparative experiment was imple-
mented using four consecutive frames as the state space. The results are shown in Figure 9.
Influence, as an intrinsic motivator, did not lead to a significant difference in the game
scores at the beginning of training. However, later in the game, the increased intrinsic
incentives caused the decision-making agent to tend to choose actions that had not been
chosen before, thereby increasing the randomness of the strategy and the variety of the
collected data. This resulted in some gaps between the scores of the two methods late in
the game.

As shown in Figure 9, at the abscissa of 1.2 M, the curves from top to bottom are
training curves with and without the addition of an intrinsic influence reward. Table 9
presents the ordinates of the two training curves at the 1.2 M abscissa. The use of an
intrinsic influence reward slightly reduces the training speed, owing to the calculation of
the influence map. Moreover, compared to the situation with no intrinsic reward, the score
was found to be increased by about 10%. Figure 9 and Table 9 show that when there was no
sparse reward at the beginning, the scores of the two curves were almost the same. After
reaching 5000 points, after a large number of pellets had been eaten, the methods were
trapped by the sparse reward problem. It is obvious that the performance curve was further
improved when using the influence map as an intrinsic reward. Because Ms. Pac-Man
is not a purely sparse reward task, if some extremely sparse learning environments are
used, such as Go, Wargaming, etc., a greater improvement may be obtained after using the
influence map value as an intrinsic reward.

Appl. Sci. 2022, 12, 11458 17 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 21

The top two curves in Figure 8 correspond to the Ape-x algorithms with and without

an influence map, respectively, demonstrating that the influence map enabled the Ape-x

algorithm to learn more about the environment. At the beginning of training, the state of

the influence map returned by the environment could not be effectively understood by

the agent. In the image, the score of the Ape-x algorithm without the influence map was

slightly higher at first. However, with the continuation of the neural network training

process, the agent using the influence map grasped the hidden information of the envi-

ronment represented by the influence map. Its score exceeded that of the Ape-x algorithm

without the influence map, corresponding to the second half of the top two curves in the

figure.

Because the influence map contains the current trend, focus, and movement infor-

mation of the image, the agent using the influence map can obtain additional information.

Therefore, the performance of the Ape-x algorithm with the influence map was better than

that of the Ape-x algorithm without the influence map. Table 8 indicates that the final

score of the Ape-x algorithm with the influence map was far higher than that of the other

algorithms.

5.4. Sparse Reward Experiment

According to this intrinsic reward formula, a comparative experiment was imple-

mented using four consecutive frames as the state space. The results are shown in Figure

9. Influence, as an intrinsic motivator, did not lead to a significant difference in the game

scores at the beginning of training. However, later in the game, the increased intrinsic

incentives caused the decision-making agent to tend to choose actions that had not been

chosen before, thereby increasing the randomness of the strategy and the variety of the

collected data. This resulted in some gaps between the scores of the two methods late in

the game.

0

1000

2000

3000

4000

5000

6000

7000

0 200k 400k 600k 800k 1M 1.2M 1.4M 1.6M

—— Add IM reward
—— Normal

Figure 9. Comparison of the training scores before and after the use of the influence value as an

intrinsic reward.

As shown in Figure 9, at the abscissa of 1.2 M, the curves from top to bottom are

training curves with and without the addition of an intrinsic influence reward. Table 9

presents the ordinates of the two training curves at the 1.2 M abscissa. The use of an in-

trinsic influence reward slightly reduces the training speed, owing to the calculation of

the influence map. Moreover, compared to the situation with no intrinsic reward, the score

was found to be increased by about 10%. Figure 9 and Table 9 show that when there was

no sparse reward at the beginning, the scores of the two curves were almost the same.

After reaching 5000 points, after a large number of pellets had been eaten, the methods

were trapped by the sparse reward problem. It is obvious that the performance curve was

further improved when using the influence map as an intrinsic reward. Because Ms. Pac-

Man is not a purely sparse reward task, if some extremely sparse learning environments

Figure 9. Comparison of the training scores before and after the use of the influence value as an
intrinsic reward.

Table 9. Ordinate comparison of two training scores at 1.2 M gradient descent.

Reward Function Smooth Value Actual Value Training Time

Without intrinsic reward 5441 5567 8 h 18 m 59 s

Using influence map value as an
intrinsic reward 6339 6450 8 h 45 m 20 s

6. Discussion

Compared with the direct use of four consecutive frames, the influence map cannot
be obtained directly from the game environment but must be calculated from the learning
environment. The calculation of the influence map requires the consideration of the initial
influence value, the spreading mode, the attenuation mode, and the hyperparameters.
These calculations add complexity to the learning process. However, if these influence-
related attributes can be obtained from the environment, the use of a dynamic influence
map in reinforcement learning can improve the performance of almost all reinforcement
learning algorithms, reduce the occupancy rate of hardware resources, and increase the
training speed.

In recent years, computing technology, especially machine learning, has been used
for many applications in engineering [52–54]. An influence map provides additional
preconditions for decision making, which can make machine-learning-based decision-
making processes more scientific. Therefore, an image-based machine learning model with
an influence map can achieve improved engineering performance.

7. Conclusions

In this study, Ms. Pac-Man was used as the learning environment to explore the
method of combining an influence map with reinforcement learning. Almost all other deep
reinforcement learning algorithms use four consecutive frames of images as the input of
the neural network. In this study, a raw frame of an image and the influence map were
used for superimposition. The performance achieved using a influence map superimposed
image was about 11.8–12.6% higher than that achieved using four consecutive frames.
Compared with the use of four consecutive frames as the state space, the training speed of
the proposed method was increased by 59%, the video memory usage was reduced by 30%,
and the memory used by the experience replay was reduced by 50%. The results prove the
feasibility of the use of a dynamic influence map in deep reinforcement learning algorithms.
With respect to the sparse reward tasks in deep reinforcement learning, the influence map
value was used to generate an intrinsic reward when there was no external reward. Even
in the case of Ms. Pac-Man, which is not a completely sparse reward task, the influence
map improved the score by about 10%.

Appl. Sci. 2022, 12, 11458 18 of 20

At present, the strategy learned by the algorithm does not contain enough long-term
goals. To allow the agent to have long-term memory, a recurrent neural network, such as
long short-term memory (LSTM), can be added to the Ape-x deep reinforcement learning
algorithm to further improve the decision-making intelligence of the agent. In the future,
influence maps will be combined with other reinforcement learning algorithms to study
the universality of influence maps.

Author Contributions: Conceptualization, X.L. and A.X.; methodology, X.L. and A.X.; software, A.X.;
validation, X.L. and A.X.; formal analysis, X.L. and A.X.; investigation, X.L. and A.X.; resources, A.X.;
data curation, A.X.; writing—original draft preparation, X.L. and A.X.; writing—review and editing,
X.L., P.L. and P.H.; visualization, A.X.; supervision, X.L., P.L. and P.H.; project administration, X.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (Grant No.
2020YFB2104700), and the National Natural Science Foundation of China (grant No. 62136006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.
3. Rohlfshagen, P.; Liu, J.; Perez-Liebana, D.; Lucas, S.M. Pac-man conquers academia: Two decades of research using a classic

arcade game. IEEE Trans. Games 2017, 10, 233–256. [CrossRef]
4. Fitzgerald, A.; Congdon, C.B. RAMP: A Rule-Based Agent for Ms. Pac-Man. In Proceedings of the 2009 IEEE Congress on

Evolutionary Computation (CEC 2009), Trondheim, Norway, 18–21 May 2009; pp. 2646–2653.
5. Samothrakis, S.; Robles, D.; Lucas, S. Fast approximate max-n monte carlo tree search for ms pac-man. IEEE Trans. Comput. Intell.

AI Games 2011, 3, 142–154. [CrossRef]
6. Alhejali, A.M.; Lucas, S.M. Evolving Diverse Ms. Pac-Man Playing Agents Using Genetic Programming. In Proceedings of the

2010 UK Workshop on Computational Intelligence (UKCI 2010), Colchester, UK, 8–10 September 2010.
7. Yuan, B.; Li, C.; Chen, W. Training a Pac-Man Player with Minimum Domain Knowledge and Basic Rationality. In Proceedings of

the 6th International Conference on Intelligent Computing (ICIC 2010), Changsha, China, 18–21 August 2010; Volume 93 CCIS,
pp. 169–177.

8. Van Seijen, H.; Fatemi, M.; Romoff, J.; Laroche, R.; Barnes, T.; Tsang, J. Hybrid reward architecture for reinforcement learning.
arXiv 2017, arXiv:1706.04208.

9. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI 2016), Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100.

10. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
11. Hernandez-Garcia, J.F.; Sutton, R.S. Understanding multi-step deep reinforcement learning: A systematic study of the DQN

target. arXiv 2019, arXiv:1901.07510.
12. Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanctot, M.; De Frcitas, N. Dueling Network Architectures for Deep Reinforce-

ment Learning. In Proceedings of the 33rd International Conference on Machine Learning (ICML 2016), New York, NY, USA,
19–24 June 2016; Volume 4, pp. 2939–2947.

13. Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O. Noisy
networks for exploration. arXiv 2017, arXiv:1706.10295.

14. Bellemare, M.G.; Dabney, W.; Munos, R. A Distributional Perspective on Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning (ICML 2017), Sydney, NSW, Australia, 6–11 August 2017; Volume 1, pp. 693–711.

15. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI 2018), New Orleans, LA, USA, 2–7 February 2018; pp. 3215–3222.

16. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8,
229–256. [CrossRef]

17. Konda, V.R.; Tsitsiklis, J.N. Actor-critic algorithms. In Proceedings of the 13th Annual Neural Information Processing Systems
Conference (NIPS 1999), Denver, CO, USA, 29 November–4 December 1999; pp. 1008–1014.

http://doi.org/10.1109/TG.2017.2737145
http://doi.org/10.1109/TCIAIG.2011.2144597
http://doi.org/10.1007/BF00992696

Appl. Sci. 2022, 12, 11458 19 of 20

18. Mnih, V.; Badia, A.P.; Mirza, L.; Graves, A.; Harley, T.; Lillicrap, T.P.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep
Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning (ICML 2016), New York, NY,
USA, 19–24 June 2016; Volume 4, pp. 2850–2869.

19. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the 32nd International
Conference on Machine Learning (ICML 2015), Lile, France, 6–11 July 2015; Volume 3, pp. 1889–1897.

20. Wu, Y.; Mansimov, E.; Liao, S.; Grosse, R.; Ba, J. Scalable trust-region method for deep reinforcement learning using kronecker-
factored approximation. arXiv 2017, arXiv:1708.05144.

21. Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.; Kavukcuoglu, K.; de Freitas, N. Sample efficient actor-critic with experience
replay. arXiv 2016, arXiv:1611.01224.

22. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

23. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on Machine Learning (ICML 2014), Beijing, China, 21–26 June 2014; Volume 1, pp. 605–619.

24. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

25. Fujimoto, S.; Van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the
35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018; Volume 4, pp. 2587–2601.

26. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden,
10–15 July 2018; Volume 5, pp. 2976–2989.

27. Horgan, D.; Quan, J.; Budden, D.; Barth-Maron, G.; Hessel, M.; Van Hasselt, H.; Silver, D. Distributed prioritized experience
replay. arXiv 2018, arXiv:1803.00933.

28. Barth-Maron, G.; Hoffman, M.W.; Budden, D.; Dabney, W.; Horgan, D.; Tb, D.; Muldal, A.; Heess, N.; Lillicrap, T. Distributed
distributional deterministic policy gradients. arXiv 2018, arXiv:1804.08617.

29. Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al. IMPALA:
Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures. In Proceedings of the 35th International
Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018; pp. 1407–1416.

30. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv 2017, arXiv:1712.01815.

31. Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C. Dota 2 with
large scale deep reinforcement learning. arXiv 2019, arXiv:1912.06680.

32. Wirth, N.; Gallagher, M. An influence map model for playing Ms. Pac-Man. In Proceedings of the 2008 IEEE Symposium on
Computational Intelligence and Games (CIG 2008), Perth, WA, Australia, 15–18 December 2008; pp. 228–233.

33. Jang, S.-H.; Cho, S.-B. Evolving neural NPCs with layered influence map in the real-time simulation game ‘Conqueror’. In
Proceedings of the 2008 IEEE Symposium on Computational Intelligence and Games, Perth, WA, Australia, 15–18 December 2008;
pp. 385–388.

34. Danielsiek, H.; Stuer, R.; Thom, A.; Beume, N.; Naujoks, B.; Preuss, M. Intelligent moving of groups in real-time strategy games.
In Proceedings of the 2008 IEEE Symposium on Computational Intelligence and Games, Perth, WA, Australia, 15–18 December
2008; pp. 71–78.

35. Park, H.; Kim, K.-J. Mcts with influence map for general video game playing. In Proceedings of the 2015 IEEE Conference on
Computational Intelligence and Games (CIG), Tainan, Taiwan, 31 August–2 September 2015; pp. 534–535.

36. Jong, D.; Kwon, I.; Goo, D.; Lee, D. Safe Pathfinding Using Abstract Hierarchical Graph and Influence Map. In Proceedings of the
2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, Italy, 9–11 November 2015;
pp. 860–865.

37. Krontiris, A.; Bekris, K.E.; Kapadia, M. Acumen: Activity-centric crowd authoring using influence maps. In Proceedings of the
29th International Conference on Computer Animation and Social Agents, Geneva, Switzerland, 23–25 May 2016; pp. 61–69.

38. Avery, P.; Louis, S. Coevolving influence maps for spatial team tactics in a RTS game. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, Portland, OR, USA, 7–11 July 2010; pp. 783–790.

39. Miles, C.; Quiroz, J.; Leigh, R.; Louis, S.J. Co-evolving influence map tree based strategy game players. In Proceedings of the 2007
IEEE Symposium on Computational Intelligence and Games, Honolulu, HI, USA, 1–5 April 2007; pp. 88–95.

40. Svensson, J.; Johansson, S.J. Influence Map-based controllers for Ms. PacMan and the ghosts. In Proceedings of the 2012 IEEE
Conference on Computational Intelligence and Games (CIG), Granada, Spain, 11–14 September 2012; pp. 257–264.

41. Lu, X.; Wang, X. A Dynamic Influence Map Model Based on Distance Adjustment. In Proceedings of the 2018 IEEE 3rd
International Conference on Communication and Information Systems (ICCIS), Singapore, Singapore, 28–30 December 2018;
pp. 183–187.

42. Cho, K.; Sung, Y.; Um, K. A Production Technique for a Q-table with an Influence Map for Speeding up Q-learning. In Proceedings
of the 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), Jeju Island, Korea, 11–13 October 2007;
pp. 72–75.

Appl. Sci. 2022, 12, 11458 20 of 20

43. Heckel, F.W.; Youngblood, G.M.; Hale, D.H. Influence points for tactical information in navigation meshes. In Proceedings of the
4th International Conference on Foundations of Digital Games, Orlando, FL, USA, 26–30 April 2009; pp. 79–85.

44. Siji George, C.G.; Sumathi, B. Grid Search Tuning of Hyperparameters in Random Forest Classifier for Customer Feedback
Sentiment Prediction. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 173–178. [CrossRef]

45. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
46. Langazane, S.N.; Saha, A.K. Effects of Particle Swarm Optimization and Genetic Algorithm Control Parameters on Overcurrent

Relay Selectivity and Speed. IEEE Access 2022, 10, 4550–4567. [CrossRef]
47. Pathak, D.; Agrawal, P.; Efros, A.A.; Darrell, T. Curiosity-driven exploration by self-supervised prediction. In Proceedings of the

30th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2017), Honolulu, HI, USA, 21–26 July
2017; Volume 2017, pp. 488–489.

48. Burda, Y.; Edwards, H.; Storkey, A.; Klimov, O. Exploration by random network distillation. arXiv 2018, arXiv:1810.12894.
49. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
50. Dabney, W.; Rowland, M.; Bellemare, M.G.; Munos, R. Distributional reinforcement learning with quantile regression. In

Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, LA, USA, 2–7 February 2018;
pp. 2892–2901.

51. Dabney, W.; Ostrovski, G.; Silver, D.; Munos, R. Implicit quantile networks for distributional reinforcement learning. In
Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018; Volume
3, pp. 1774–1787.

52. Mousavi, N.S.; Vaferi, B.; Romero-Martinez, A. Prediction of surface tension of various aqueous amine solutions using the
UNIFAC model and artificial neural networks. Ind. Eng. Chem. Res. 2021, 60, 10354–10364. [CrossRef]

53. Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Grimaldo Guerrero, J.W.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi,
E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric
Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness. Appl. Sci. 2022, 12, 1336. [CrossRef]

54. Zhou, Z.; Davoudi, E.; Vaferi, B. Monitoring the effect of surface functionalization on the CO2 capture by graphene oxide/methyl
diethanolamine nanofluids. J. Environ. Chem. Eng. 2021, 9, 106202. [CrossRef]

http://doi.org/10.14569/IJACSA.2020.0110920
http://doi.org/10.1109/ACCESS.2022.3140679
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1021/acs.iecr.1c01048
http://doi.org/10.3390/app12031336
http://doi.org/10.1016/j.jece.2021.106202

	Introduction
	Related Work
	Deep Reinforcement Learning
	Using an Influence Map in Game Decision Making

	Dynamic Influence Map
	Decision Making with an Influence Map
	Spread and Attenuation Modes
	Spread Modes
	Attenuation Modes

	Dynamic Influence Map
	Dynamic Influence Map Calculation
	Dynamic Influence Map in Ms. Pac-Man

	Using the Influence Map as the State Space in Reinforcement Learning
	Deep Reinforcement Learning Algorithm Ape-x
	Using an Image as State Space
	Combining the Original Image and Influence Map as the State Space
	Hyperparameter Selection for the Influence Map
	Using the Influence Map to Solve the Sparse Reward Problem
	Sparse Reward
	Using the Influence Map to Generate an Intrinsic Reward

	Experimental Results
	Hyperparameters of the Influence Map
	Comparison of Motion Information Representation in the State Space
	Hyperparameters and Comparative Experiments
	Results
	Training Speed
	Memory and Video Memory Usage

	Comparison with Other Reinforcement Learning Algorithms
	Sparse Reward Experiment

	Discussion
	Conclusions
	References

