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Microbial cellulases find applications in various industries and constitute a major group of the industrial enzymes. 

Recently, there is resurgence in utilization of biomass for fuel production employing cellulases and hence forth in obtaining 

better yields and novel activities. Improving the economics of such processes will involve cost reduction in cellulase 

production which may be achieved by better bioprocesses and genetic improvement of cellulase producers to yield more of 

the enzyme. The review discusses the current knowledge on cellulase production by microorganisms and the genetic 

controls exercised on it. It discusses the industrial applications of cellulases and the challenges in cellulase research 

especially in the direction of improving the process economics of enzyme production. 
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Introduction 
 Cellulose is the most common organic polymer, 

representing about 1.5 × 10
12

 tons of the total annual 

biomass production through photosynthesis especially 

in the tropics, and is considered to be an almost 

inexhaustible source of raw material for different 

products
1
. It is the most abundant and renewable 

biopolymer on earth and the dominating waste 

material from agriculture
2
. A promising strategy for 

efficient utilization of this renewable resource is the 

microbial hydrolysis of lignocellulosic waste and 

fermentation of the resultant reducing sugars for 

production of desired metabolites or biofuel.  

 Cellulose is a crystalline polymer, an unusual 

feature among biopolymers. Cellulose chains in the 

crystals are stiffened by inter and intra chain 

hydrogen bonds and the adjacent sheets which overlie 

one another are held together by weak Van-der Waals 

forces. In nature, cellulose is present in a nearly pure 

state in a few instances whereas in most cases, the 

cellulose fibers are embedded in a matrix of other 

structural biopolymers, primarily hemicelluloses and 

lignin
3-4

. An important feature of this crystalline array 

is the relative impermeability of not only large 

molecules like enzymes but in some cases even small 

molecules like water. There are crystalline and 

amorphous regions, in the polymeric structure and in 

addition there exists several types of surface 

irregularities
5,6

. This heterogeneity makes the fibers 

capable of swelling when partially hydrated, with the 

result that the micro-pores and cavities become 

sufficiently large enough to allow penetration of 

larger molecules including enzymes. At the molecular 

level, cellulose is a linear polymer of glucose 

composed of anhydoglucose units coupled to each 

other by β-1-4 glycosidic bonds. The number of 

glucose units in the cellulose molecules varies and 

degree of polymerization ranges from 250 to well 

over 10,000 depending on the source and treatment 

method
7
. The nature of cellulosic substrate and its 

physical state are important factors in its enzymatic 

hydrolysis. Though lignocellulosic biomass is 

generally recalcitrant to microbial action, suitable 

pretreatments resulting in the disruption of lignin 

structure and increase accessibility of enzymes have 

been shown to increase the rate of its biodegradation
8
.  

 Microbial degradation of lignocellulosic waste and 

the downstream products resulting from it is 

accomplished by a concerted action of several 

enzymes, the most prominent of which are the 

cellulases, which are produced by a number of 

microorganisms and comprise several different 

enzyme classifications. Cellulases hydrolyze cellulose 

(β-1,4-D-glucan linkages) and produce as primary 

products glucose, cellobiose and cello-

oligosaccharides. There are three major types of 

cellulase enzymes [Cellobiohydrolase (CBH or 1,4- 

β-D-glucan cellobiohydrolase, EC 3.2.1.91), Endo-β-

1,4-glucanase (EG or endo-1,4-β-D-glucan 4-
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glucanohydrolase, EC 3.2.14) and β-glucosidase (BG-

EC 3.2.1.21)]
9
. Enzymes within these classifications 

can be separated into individual components, such as 

microbial cellulase compositions may consist of one 

or more CBH components, one or more EG 

components and possibly β-glucosidases. The 

complete cellulase system comprising CBH, EG and 

BG components synergistically act to convert 

crystalline cellulose to glucose. The exo-

cellobiohydrolases and the endoglucanases act 

togetherto hydrolyze cellulose to small cello-

oligosaccharides. The oligosaccharides (mainly 

cellobiose) are subsequently hydrolyzed to glucose by 

a major β-glucosidase
10-11

. 

 Cellulases are used in the textile industry
12-13

, in 

detergents
14-15

, pulp and paper industry
16

, improving 

digestibility of animal feeds
17

, in food industry
18

, and 

the enzymes account for a significant share of the 

world enzyme market. The growing concerns about 

shortage of fossil fuels, the emission of green house 

gases and air pollution by incomplete combustion of 

fossil fuel has also resulted in an increased focus on 

production of bioethanol from lignocellulosics and 

especially the possibility to use cellulases and 

hemicellulases to perform enzymatic hydrolysis of the 

lignocellulosic material
19-20

. However, in production 

of bioethanol, the costs of the enzymes to be used for 

hydrolysis of the raw material need to be reduced and 

their efficiency increased in order to make the process 

economically feasible
21

.  

 Commercial production of cellulases has been tried 

by either solid or submerged culture including batch, 

fed batch, and continuous flow processes. Media used 

in cellulase fermentations contain cellulose in 

different degrees of purity
22-23

, or as raw 

lignocellulosic substrates
24-26

, which is especially true 

in the case of solid-state fermentation. Cellulases are 

inducible enzymes and the most problematic and 

expensive aspect of industrial cellulase production is 

providing the appropriate inducer for cellulases. 

Cellulase production on a commercial scale is induced 

by growing the fungus on solid cellulose or by 

culturing the organism in the presence of a 

disaccharide inducer such as lactose. However, on an 

industrial scale, both methods of induction result in 

high costs. Since the enzymes are inducible by 

cellulose, it is possible to use cellulose containing 

media for production but here again the process is 

controlled by the dynamics of induction and 

repression. At low concentrations of cellulose, 

glucose production may be too slow to meet the 

metabolic needs of active cell growth and function. 

On the other hand, cellulase synthesis can be halted 

by glucose repression when glucose generation is 

faster than consumption. Thus, expensive process 

control schemes are required to provide slow substrate 

addition and monitoring of glucose concentration
27

. 

Moreover, the slow continuous delivery of substrate 

can be difficult to achieve as a result of the solid 

nature of the cellulosic materials. The challenges in 

cellulase production involve developing suitable 

bioprocesses and media for cellulase fermentation, 

besides identification of cheaper substrates and 

inducers. Genetic modification of the cellulase 

producers to improve cellulase activity has gone a 

long way to give better producers with high enzyme 

titers
28-30

, but still cellulase production economics 

needs further improvement for commercial production 

of ethanol from biomass.  

 
Microorganisms producing Cellulases  

 Cellulolytic microbes are primarily carbohydrate 

degraders and are generally unable to use proteins or 

lipids as energy sources for growth
8
. Cellulolytic 

microbes notably the bacteria Cellulomonas and 

Cytophaga and most fungi can utilize a variety of 

other carbohydrates in addition to cellulose
31-32

, while 

the anaerobic celluloytic species have a restricted 

carbohydrate range, limited to cellulose and or its 

hydrolytic products
33-34

. The ability to secrete large 

amounts of extracellular protein is characteristic of 

certain fungi and such strains are most suited for 

production of higher levels of extracellular cellulases. 

One of the most extensively studied fungi is 

Trichoderma reesei, which converts native as well as 

derived cellulose to glucose. Most commonly studied 

cellulolytic organisms include: Fungal species- 

Trichoderma, Humicola, Penicillium, Aspergillus; 

Bacteria-Bacilli, Pseudomonads, Cellulomonas; and 

Actinomycetes-Streptomyces, Actinomucor, and 

Streptomyces. 

 While several fungi can metabolize cellulose as an 

energy source, only few strains are capable of 

secreting a complex of cellulase enzymes, which 

could have practical application in the enzymatic 

hydrolysis of cellulose. Besides T. reesei, other fungi 

like Humicola, Penicillium and Aspergillus have 

the ability to yield high levels of extracellular 

cellulases
35-40

. Aerobic bacteria such as Cellulomonas, 

Cellovibrio and Cytophaga are capable of cellulose 
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degradation in pure cultures
8
. However, the microbes 

commercially exploited for cellulase preparations are 

mostly limited to T. reesei, H. insolens, A. niger, 

Thermomonospora fusca, Bacillus sp, and a few other 

organisms (Table 1). 
 

Cellulase Systems and the Control of Cellulase 

Gene Expression 
 Cellulase systems of microbes can be generally 

regarded as complexed
63-64

 or non-complexed
65-67

. 

Utilization of insoluble cellulose requires the 

production of extracellular cellulases by the organism. 

The cellulase systems consist of either secreted or cell 

associated enzymes belonging to different classes 

categorized based on their mode of action and 

structural properties
68-69

. The three major type of 

cellulase activities recognized are: i) 

Endoglucanases/1-4-β-D-glucanohydrolases/EG-(EC 

3.2.14); ii) Exoglucanases/1-4-β-D-glucan 

glucanohydrolases/ Cellobiohydrolase/ CBH-(EC 

3.2.1.74); and iii) β-Glucosidases/BG/BGL/β-

glucoside glucohydrolases-(EC 3.2.1.21). Endoglu-

canases cut at random at internal amorphous sites in 

the cellulose polysaccharide chain generating 

oligosaccarides and new chain ends. Exogulcanases 

act on the reducing and non reducing ends of the 

cellulose chains liberating glucose, cellobiose or 

cellooligosaccharides as major products. β-

Glucosidases hydrolyze soluble cellodextrins and 

cellobiose to glucose.  

 Non-complexed cellulase systems from aerobic 

fungi and bacteria have components of cellulase 

system free and mostly secreted. Typical examples 

include cellulase system from T. reesi
70-71

. Fungus 

produces two exoglucanases-CBHI &CBHII, about 

eight endoglucanases-EGI-EGVIII, and seven β-

glucosidases-BGI-BGVII
72

. Cellulase system of H. 

insolens is homologus to T. reesei and contains at 

least seven cellulases
36

. Aerobic bacteria like 

Thermobifida also produce all components of 

cellulolytic system including exo and endo glucanases
 

8
. Complexed cellulase systems (Cellulosomes) on the 

other hand are native to anaerobic bacteria. 

Cellulosomes are protuberances on the cell wall of the 

bacteria, which harbor stable enzyme complexes. The 

cellulolytic system of Clostridia has been studied in 

detail
64

. In C. thermocellum, the cellulosome consists 

of a non catalytic cipA protein
73

 which has different 

catalytic modules responsible for exo and endo 

glucanase activities. Individual composition of the 

cellulosome varies with respect to the organism
8
.  

 Cellulases are inducible enzymes and the regulation 

of cellulase production is finely controlled by 

activation and repression mechanisms. In T. reesei, 

genes are coordinately regulated
74

. The production of 

cellulolytic enzymes is induced only in presence of 

the substrate, and is repressed when easily utilizable 

sugars are available. Natural inducers of cellulase 

systems have been proposed as early as 1962
75

, and 

the disaccharide sophorose is since then considered to 

be the most probable inducer of at least the 

Trichoderma cellulase system. It is proposed that the 

inducer is generated by the trans-glycosylation 

activity of basally expressed β-glucosidase
76,77

. 

Cellobiose, δ-cellobiose-1-5 lactone and other 

oxidized products of cellulose hydrolysis can also act 

as inducers of cellulose
8,78,79

. Lactose is another 

known inducer of cellulases and it is utilized in 

commercial production of the enzyme owing to 

economic considerations. Though the mechanism of 

Table 1  Major microorganisms employed in cellulase 

production 
   

Microorganism 
Major group 

Genus Species  
Ref 

    

Fungi Aspergillus A. niger 40 

  A. nidulans 43 

  
A. oryzae 

(recombinant) 
44 

 Fusarium F. solani 46 

  F. oxysporum 47 

 Humicola H. insolens  36 

  H. grisea 42 

 Melanocarpus M. albomyces 48 

 Penicillium P. brasilianum 38 

  P. occitanis 37 

  P. decumbans 45 

 Trichoderma  T. reesei 9 

  T. longibrachiatum 41 

  T. harzianum 18 

Bacteria Acidothermus A. cellulolyticus 52 

 Bacillus  Bacillus sp 49 

  Bacillus subtilis 50 

 Clostridium C. acetobutylicum 54 

  C. thremocellum 55 

 Pseudomonas P. cellulosa 51 

 Rhodothermus R. marinus 53 

Actinomycetes Cellulomonas C. fimi 58 

  C.bioazotea 32 

  C.uda 59 

 Streptomyces S. drozdowiczii 60 

  S. sp 61 

  S. lividans 62 

 Thermononospora  T. fusca 56 

  T. curvata 57 
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lactose induction is not fully understood, it is believed 

that the intracellular galactose-1-phosphate levels 

might control the signaling
80,81

. Glucose repression of 

cellulase system overrides its induction
74,82

, and de-

repression is believed to occur by an induction 

mechanism mediated by trans-glycosylation of 

glucose
83,84

.  

 The promoter region of cellulases harbor binding 

sites for the CREI catabolite repressor protein as well 

as sites for the transcriptional activators including 

Activator of Cellulase Expression protein II (ACE II), 

besides CCAAT sequence, which binds general 

transcriptional activator complexes designated as 

‘HAP’ proteins
85

. ACEII binds to the promoters of 

cbh1 in T .reesei, and is believed to control the 

expression of cbh1, cbh2, egl1, and egl2
86,87

. Ace1 

gene also produces a transcription factor similar to 

ACEII and has binding sites in cbh1 promoter, but it 

acts as a repressor of cellulase gene expression
88,89

. 

Glucose repression of cellulase is supposed to be 

mediated through carbon catabolite repressor protein 

CRE1 in T.reesei
90,91

. The promoter regions of cbh1, 

cbh2, eg1 and eg2 genes of T. reesei has CRE1 

binding sites indicating fine control of these genes by 

carbon catabolite repression
77

. A detailed review on 

the induction and catabolite repression of cellulases
92

 

gives better insight into molecular biology of cellulase 

gene regulation.  

 
Bioprocesses for Cellulase: Fermentation 

Production of Cellulolytic Enzymes 
 Majority of the reports on microbial production of 

cellulases utilizes submerged fermentation technology 

(SmF) and the widely studied organism used in 

cellulase production is T. reesei, which has also been 

tested mostly in liquid media. However, in nature, the 

growth and cellulose utilization of aerobic 

microorganisms elaborating cellulases probably 

resembles solid substrate fermentation than a liquid 

culture. Nevertheless, the advantages of better 

monitoring and handling are still associated with the 

submerged cultures.  

 Cellulase production in cultures is growth 

associated and is influenced by various factors and 

their interactions can affect cellulase productivity
93

. 

Among known inducers of cellulase genes, lactose is 

the only economically feasible additive in industrial 

fermentation media
72

. In T. reesei, a basal medium 

after Mandels & Reese
70

 has been most frequently 

used with or without modifications. Carbon sources in 

majority of commercial cellulase fermentations are 

cellulosic biomass including straw, spent hulls of 

cereals and pulses, rice or wheat bran, bagasse, paper 

industry waste and various other lignocellulosic 

residues
13,26,50,94-98

. Though majority of the processes 

are batch processes, there has been attempts to 

produce cellulase in fed batch
13,99

 or 

continuous
27,100,101

 mode, which supposedly helps to 

override the repression caused by accumulation of 

reducing sugar. The major technical limitation in 

fermentative production of cellulases remains the 

increased fermentation times with a low productivity.  

 Solid-state fermentation (SSF) for production of 

cellulases is rapidly gaining interest as a cost effective 

technology, not only for production of the enzyme but 

also for the bioconversion of lignocellulosic biomass 

employing cellulolytic microorganisms
102-105

. 

Tengerdy
106 

indicated that there was about a 10-fold 

reduction in the production cost in SSF than SmF. 

Pandey et al
107

 on SSF for industrial enzyme 

production also describes the application of the 

technology for cellulase production. Though there are 

reports on SSF production of cellulases, the large 

scale commercial processes are still using the proven 

technology of SmF (Table 2).  

 
Applications of Cellulases 
 Cellulases were initially investigated several 

decades back for the bioconversion of biomass which 

gave way to research in the industrial applications of 

the enzyme in animal feed, food, textiles and 

detergents and in the paper industry
123

. With the 

shortage of fossil fuels and the arising need to find 

alternative source for renewable energy and fuels, 

there is a renewal of interest in the bioconversion of 

lignocellulosic biomass using cellulases and other 

enzymes. In the other fields, however, the 

technologies and products using cellulases have 

reached the stage where these enzymes have become 

indispensable.  

 
Textile Industry 

 Cellulases have become the third largest group of 

enzymes used in the industry since their introduction 

only since a decade
123

. They are used in the bio-

stoning of denim garments for producing softness and 

the faded look of denim garments replacing the use of 

pumice stones which were traditionally employed in 

the industry
13,124-126

. They act on the cellulose fiber to 

release the indigo dye used for coloring the fabric, 
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producing the faded look of denim. H. insolens 

cellulase is most commonly employed in the 

biostoning, though use of acidic cellulase from 

Trichoderma along with proteases is found to be 

equally good
127.

 Cellulases are utilized for digesting 

off the small fiber ends protruding from the fabric 

resulting in a better finish
127-128

. cellulases have also 

been used in softening
129

, defibrillation
130

, and in 

processes for providing localized variation in the 

color density of fibers
125,131

. 

Laundry and Detergents 

 Cellulases, in particular EGIII and CBH I, are 

commonly used in detergents for cleaning textiles. 

Several reports
28,132-133

 disclose that EG III variants, in 

particular from T. reesei, are suitable for the use in 

detergents. T. viride and T. harzianum are also 

industrially utilized natural sources of cellulases, as 

A. niger
15

. Cellulase preparations, mainly from 

species of Humicola (H. insolens and H. grisea var. 

thermoidea) that are active under mild alkaline 

Table 2  Cellulase production –Bioprocesses and organisms employed 
      

Microorganism Substrate Method  Magnitude Enzymes - Activity  Ref (s) 

      

Aspergillus niger A 20 Cellulose  SmF Shake flask Cellobiase -27.5 U/ml 108 

A. niger NRRL3 Wheat bran/Corn cob SSF Flask Cellobiase-215 IU/g cellulose 117 

Bacillus pumilus CMCellulose/Glycerol SmF SF 

CMCase-1.9 U/ml, Cellobiase -

1.2U.ml 109 

Bacillus sp KSM N252 Carboxymethyl cellulose SmF Shake flask CMCase - 0.17 U/mg protein 110 

B. subtilis  Soybean industry residue SSF Cylindrical bioreactor FPAse -1.08U/mg protein 50 

B. subtilis  Banana waste SSF Shake flask 

FPAse - 2.8 IU/gds CMCase - 

9.6 IU/gds Cellobiase - 4.5 IU/gds 118 

Chaetomium 

thermophilium CT2 Cellulose (sigma cell)  SmF Shake flask CMCase -2.7 IU/ml  111 

Melnocarpus albomyces Solka floc SmF 700L fermentor 

Cellulase -1160 ECU/ml, 

Endoglucanase -3290 ECU/ml,  48 

Mixed culture: T. reesei, 

A. niger 

Rice chaff/ Wheat bran 

(9:1) SSF Flask FPAse -5.64 IU/g 119 

Mucor circinelloidens Lactose SmF Shake flask EGL - 0.25 U/ml 112 

Neurospora crassa Wheat straw SmF Shake flask 

FPAse - 1.33 U/ml CMCase - 

19.7 U/ml BGL - 0.58 U/ml 94 

Penicillium decumbans  wheatstraw/bran (8:2) SSF SSF bioreactor Fpase -20.4 IU/g 120 

P. occitanis Paper pulp 

SmF-Fed 

batch 20L fermentor 

FPAse - 23 IU/ml CMCase - 

21 IU/ml 13 

P. janthinellum  Sugar cane bagasee SmF Shake flask 

FPAse -0.55U/ml, CMCase - 

21.5 U/ml, BGL - 2.3I U/ml 97 

Phaenerocheate 

chrysosporium Cellulose (Avicell) SmF 100L fermentor Cellulase - 29mg/g cellulose 113 

Rhodothermus marinus CM cellulose SmF 150L fermentor Endoglucanase-97.7 U/ml 53 

Steptomyces sp T3-1 Carboxymethyl cellulose SmF 50L fermentor 

CMCase - 148 IU/ml Avicellase- 

45 Iu/ml BGL- 137 IU/ml 114 

S. drodowiczii Wheat bran SmF Shake flask CMCase - 595 U/L 60 

Thermoascus auranticus Wheat straw SSF 

Perforated Drum 

Bioreactor 

FPAse - 4.4 U/gds CBH -2.8 U/gds 

Endoglucanase - 987 U/gds BGL-

48.8 U/gds  121 

Thermotoga maritima Xylose  SmF Shake flask 

Cellobiase-11 mU/ml, Avicellase -

0.3 mU/ml,  

Beta Glucosidase-30mU/ml 115 

Trichoderma  reesei Xylose /Sorbose 

SmF-

Continuous Bioreactor FPAse - 0.69 U/ml/h 100 

T. reesei Steam treated willow SmF 22L fermentor FPAse- 108 U/g cellulose 26 

T. reesei RUT C30 Cellulose (Avicell) SmF 

Microbubble 

dispersion bioreactor FPAse- 1.8U/ml 116 

T. reesei RUT C30 Corrugated cardboard  SmF 30L fermentor FPAse- 2.27 U/ml 95 

T. reesei ZU 02 Corn cob residue SSF Tray fermentor FPAse - 158 U/gDS 122 

T. reesei ZU-02 Corn stover residue SmF 30L fermentor 

Cellulase - 5.48 IU/ml, FPAse - 

0.25 U/ml 96 

T. viridae Sugar cane bagasee SmF Shake flask 

FPAse - 0.88 U/ml, CMCase - 

33.8 U/ml, BGL - 0.33 U/ml 97 
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conditions and at elevated temperatures, are 

commonly added in washing powders
134

, and in 

detergents
135

.
 
 

 
Food and Animal Feed  

 In food industry, cellulases are used in extraction 

and clarification of fruit and vegetable juices, 

production of fruit nectars and purees, and in the 

extraction of olive oil
18

. Glucanases are added to 

improve the malting of barley in beer 

manufacturing
136

, and in wine industry, better 

maceration and color extraction is achieved by use of 

exogenous hemicellulases and glucanases
18

. 

Cellulases are also used in carotenoid extraction in the 

production of food coloring agents
137

. Enzyme 

preparations containing hemicellulase and pectinase 

in addition to cellulases are used to improve the 

nutritive quality of forages
138,139

. Improvements in 

feed digestibility and animal performance are reported 

with the use of cellulases in feed processing
17, 140

. 

Bedford et al
141

 describes the feed additive use of 

Trichoderma cellulases in improving the feed 

conversion ratio and/or increasing the digestibility of 

a cereal-based feed.  

 
Pulp and Paper Industry  

 In the pulp and paper industry, cellulases and 

hemicellulases have been employed for 

biomechanical pulping for modification of the coarse 

mechanical pulp and hand sheet strength 

properties
142,143

, de-inking of recycled fibers
144

 and for 

improving drainage and runnability of paper mills
145

. 

Cellulases are employed in the removing of inks, 

coating and toners from paper
146,147

. Bio-

characterization of pulp fibers is another application 

where microbial cellulases are employed
148

. 

Cellulases are also used in preparation of easily 

biodegradable cardboard
149

. The enzyme is employed 

in the manufacture of soft paper including paper 

towels and sanitary paper
150,151

, and preparations 

containing cellulases are used to remove adhered 

paper
152

.  

 
Biofuel  

 Perhaps the most important application currently 

being investigated actively is in the utilization of 

lignocellulosic wastes for the production of biofuel. 

The lignocellulosic residues represent the most 

abundant renewable resource available to mankind 

but their use is limited only due to lack of cost 

effective technologies. A potential application of 

cellulase is the conversion of cellulosic materials to 

glucose and other fermentable sugars, which in turn 

can be, used as microbial substrates for the production 

of single cell proteins or a variety of fermentation 

products like ethanol. Organisms with cellulase 

systems that are capable of converting biomass to 

alcohol directly are already reported
153-155

. But none 

of these systems described are effective alone to yield 

a commercially viable process. The strategy employed 

currently in bioethanol production from 

lignocellulosic residues is a multi-step process 

involving pre-treatment of the residue to remove 

lignin and hemicellulase fraction, cellulase treatment 

at 50°C to hydrolyze the cellulosic residue to generate 

fermentable sugars, and finally use of a fermentative 

microorganism to produce alcohol from the 

hydrolyzed cellulosic material
156

. The cellulase 

preparation needed for the bio-ethanol plant is 

prepared in the premises using same lignocellulosic 

residue as substrate, and the organism employed is 

almost always T. ressei. To develop efficient 

technologies for biofuel production, significant 

research have been directed towards the identification 

of efficient cellulase systems and process conditions, 

besides studies directed at the biochemical and 

genetic improvement of the existing organisms 

utilized in the process. The use of pure enzymes in the 

conversion of biomass to ethanol or to fermentation 

products is currently uneconomical due to the high 

cost of commercial cellulases. Effective strategies are 

yet to resolve and active research has to be taken up in 

this direction. Overall, cellulosic biomass is an 

attractive resource that can serve as substrate for the 

production of value added metabolites and cellulases 

as such.  

 Apart from these common applications, cellulases 

are also employed in formulations for removal of 

industrial slime
157

, in research for generation of 

protoplast
158

, and for generation of antibacterial 

chitooligosaccharides, which could be used in food 

preservation
159

, immuno-modulation
160 

and as a potent 

antitumor agent
161

. 

 
Future Perspectives – The Challenges in Cellulase 

Research 

 Lignocellulose is the potential source of biofuels, 

biofertilizers, animal feed and chemicals, besides 

being the raw material for paper industry. 

Exploitation of this renewable resource needs either 

chemical or biological treatment of the material, and 



J SCI IND RES  VOL. 64  NOVEMBER 2005 

 

 

838

in the latter context cellulases have gained wide 

popularity over the past several decades. Research has 

shed light into the mechanisms of microbial cellulase 

production and has led to the development of 

technologies for production and applications of 

cellulose degrading enzymes. However, there is no 

single process, which is cost effective, and efficient in 

the conversion of the natural lignocellulosic materials 

for production of useful metabolites or biofuel. Use of 

the current commercial preparations of cellulase for 

bioconversion of lignocellulosic waste is 

economically not feasible.  

 The major goals for future cellulase research would 

be: (1) Reduction in the cost of cellulase production; 

and (2) Improving the performance of cellulases to 

make them more effective, so that less enzyme is 

needed
162

. The former task may include such 

measures as optimizing growth conditions or 

processes, whereas the latter require directed efforts 

in protein engineering and microbial genetics to 

improve the properties of the enzymes.  

 Optimization of growth conditions and processes 

has been attempted to a large extent in improving 

cellulase production. The section on fermentation 

production of cellulases describes many of these 

works basically dealing with empirical optimization 

of process variables to improve productivity. Many of 

the current commercial production technologies 

utilize submerged fermentation technology and 

employ hyper producing mutants
163

. In spite of 

several efforts directed at generating hyper producers 

by directed evolution, the cost of enzymes has 

remained high
164

. Alternative strategies thought of in 

cellulase production include mainly solid substrate 

fermentation on lignocellulosic biomass particularly 

by using host/substrate specific microorganisms. 

There are several reports on such use of filamentous 

fungi in production of optimal enzyme complex for 

the degradation of host lignocellulose
106,165-167

. 

 Performance of enzyme complexes on ligno-

cellulosic material is best when these complexes are 

prepared with the same lignocellulosic material as the 

host/substrate in fermentation
167,168

. Another strategy 

is to use mixed culture in the production of enzyme. 

Several reports have shown that mixed culture gives 

improved production and enzyme complexes with 

better hydrolytic activity
119,169,170

. Thus, SSF may be 

considered as a cost effective means for large scale 

production of cellulases which probably would be 

several fold cheaper compared to the current 

commercial preparations.  

 Cellulases are subject to regulation by various 

factors and some of the cis-acting promoter elements 

have been characterized
72

. Active research in this field 

has led to genetic improvement of cellulase 

production by various methods including over 

expressing cellulases from the cbh1 promoter of 

T. reesei 
41,171-173

, and generation of desired variation 

in the cellulase production profile of organism
174,175

. 

The cbh1 and cbh2 promoters of T. reesei have also 

been exploited for expression of foreign proteins in 

Trichoderma
176-178

. Feedback inhibition of cellulase 

biosynthesis by the end products, glucose and 

cellobiose, generated by endogenous cellulolytic 

activity on the substrate is another major problem 

encountered in cellulase production. Cellobiose is an 

extremely potent inhibitor of the CBH and EG 

biosynthesis. Trichoderma and the other cellulase-

producing microbes make very little β-glucosidase 

compared to other cellulolytic enzymes. The low 

amount of β-glucosidase results in a shortage of 

capacity to hydrolyze the cellobiose to glucose 

resulting in a feed back inhibition of enzyme 

production and in the case of biomass conversion 

applications in the inhibition of cellulases. This issue 

has been addressed by various means like addition of 

exogenous β-glucosidases to remove the cellobiose
179

 

and engineering β-glucosidase genes into the 

organism so that it is overproduced
175

. More and more 

research is oriented in genetic manipulations of 

cellulase producers for improving productivity. The 

developments in process design and medium 

formulations have come to an age and the future 

definitely requires controlled genetic interventions 

into the physiology of cellulase producers to improve 

production and thereby make the cellulase production 

process more cost effective. The major tasks ahead 

include overriding the feedback control by glucose 

and development of integrated bioprocesses for the 

production of cellulases. 

 Improvements in cellulase activities or imparting of 

desired features to enzymes by protein engineering 

are probably other areas where cellulase research has 

to advance. Active site modifications can be imparted 

through site directed mutagenesis and the mutant 

proteins can be used for understanding the 

mechanisms of action as well as for altering the 

substrate specificities or improving the activities. 

There are several reports of developments made in 
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this direction. Meinke et al
180

 has generated a mutant 

enzyme with endoglucanase like features and 

improved activity by deleting C-terminal loop of 

Clostridium fimi CELB. Protein engineering has been 

successfully employed to improve the stability of a 

Humicola cellulase in presence of detergents
181

, to 

improve the thermostability of an alkaline, mesophilic 

endo-1, 4-β-glucanase from
 
alkaliphilic Bacillus sp

182
 

and for altering pH profile of cellobiohydrolase
183

 and 

more recently endoglucanase
184

 from T. reesei. Such 

modifications affecting the enzyme properties may be 

beneficial in improving the overall performance of 

cellulases and a better understanding of their mode of 

action, which will enable better utilization of enzymes 

in biomass conversion. More basic research is needed 

to make designer enzymes suited for specific 

applications. 

 
Concluding Remarks  

 The biological aspects of processing of cellulosic 

biomass become the crux of future researches 

involving cellulases and cellulolytic microorganisms. 

The problems which warrants attention is not limited 

to cellulase production alone, but a concerted effort in 

understanding the basic physiology of cellulolytic 

microbes and the utilization of this knowledge 

coupled with engineering principles to achieve a 

better processing and utilization of this most abundant 

natural resource. The aspects open to consideration 

include technologies for pre-treatment of cellulosic 

materials for a better microbial attack, processes for 

cost effective production of cellulases, treatment of 

biomass for production of hydrolytic products, which 

can then serve as substrates for downstream 

fermentative production of valuable metabolites, 

organism development by metabolic engineering, and 

finally protein engineering to improve the properties 

of enzymes to increase their specific activities, 

process tolerance and stability. 
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