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SUMMARY
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity
between cortical surface sulci to construct a sulcal phenotype network (SPN) from eachmagnetic resonance
imaging (MRI) scan in an adult cohort (n = 34,725; 45–82 years). Networks estimated from pairwise similarities
of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bimodal dis-
tribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in
unimodal cortex, and complex sulci were less heritable and typically located in heteromodal cortex. Aligning
these results with an independent fetal brain MRI cohort (n = 228; 21–36 gestational weeks), we found that
linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Us-
ing high-resolutionmaps of cortical gene expression, we found that linear sulcation is mechanistically under-
pinned by trans-sulcal gene expression gradients enriched for developmental processes.
INTRODUCTION

The adult human brain has a complex surface of grooves (sulci)

and ridges (gyri). The cerebral cortex forms embryonically from

distension of the neural tube, and its surface remains smooth (lis-

sencephalic) until about 20 weeks gestational age (GA) in hu-

mans.1,2 In the second half of pregnancy, the cortical sheet be-

comes progressively more wrinkled (gyrencephalic) as more

sulci indent its surface.3–5 At birth, the sulco-gyral patterning of

the brain is thought to be close to its life-long final configura-

tion,6–8 as complexly patterned and individually unique as the fin-

gerprints that are also enduringly formed at birth.9 However, it

has been challenging to quantify such a spatio-temporally com-
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plex and individually variable process as human brain cortical

surface patterning.

In existing sulcal taxonomies, expert but largely qualitative

postmortem examinations of limited quantities of human brains

have supported the classification of adult sulci into two or three

categories or classes, linked to their timing of fetal emergence or

sulcation.3,4 These classifications—into primary, secondary, or

tertiary sulci—have been defined differently across studies but

can converge on notions of time of sulcal emergence, hierarchi-

cal relationships in sulcal size, and phylogenetic presenta-

tion.3,10,11 Sulci consistently classified as primary, like the central

sulcus, are the first and longest sulci to form and are conserved

in shape across primates.12 In humans, primary sulci begin to
r Inc.
eativecommons.org/licenses/by/4.0/).
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Figure 1. A suite of sulcal morphometrics spanning radial and tangential dimensions

(A) 20 sulci per brain hemisphere were segmented and labeled in each of 34,725 adult brain MRI scans. Sulci were measured along the dimensions radial (from

sulcal fundus to sulcus exterior) or tangential to the cortex (along the sulcus exterior).

(B) Five shape metrics were measured for each sulcus. Two metrics measured radial dimensions: average depth of the sulcal floor and variability of the depth

along the length of the sulcus. Three metrics measured tangential dimensions: the length of the longest branch, branch span, and fractal dimension (FD). Depth

(legend continued on next page)
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appear in the second trimester of pregnancy, from about

20weeksGA, until�32weeksGA (early third trimester). Second-

ary sulci are sometimes defined as the more variable branches

from primary sulci3,8 and emerge between �32 and 38 weeks

GA. The few tertiary sulci similarly emerge after 38 weeks and

for some months post-natally.2,3 However, this primary-to-ter-

tiary labelingmodel remains quite arbitrary with considerable un-

certainty over the correct labeling for many sulci (e.g., the middle

frontal sulcus is labeled differently in Chi et al.,3 Dubois et al.,8

and Voorhies et al.13). Fundamentally, our understanding of sul-

cal complexity and its fetal ontogenesis has been limited by the

scale and quantitative scope of postmortem brain studies.

The advent of computational methods for sulcal morphometry

from magnetic resonance imaging (MRI) data, e.g., BrainVISA’s

Morphologist toolbox (http://brainvisa.info),14–16 has advanced

the field by standardizing and automating sulcal segmentation,

enabling fully quantitative assessments of sulcal shape. Geo-

metric measurements, such as sulcal surface area and depth,

are heritable,17,18 related to cognition,13,19 and related to psychi-

atric and neurodevelopmental disorders.18,20 Measures driven

by sulcal patterning such as global and local gyrification,21–23

as well as cortical surface area and curvature,24,25 also highlight

sulcal patterning’s importance in health and disorder. Although

there is increasing interest in measuring the similarity of cortical

areas in terms of multiple MRI measures of geometry and

tissue composition, using methods like morphometric similarity

network (MSN) analysis,26 there have been very limited compa-

rable investigations of systemic patterns of covariation between

sulci in terms of their size and shapemetrics. Additionally, recent

advances in analysis of complex sulcal anatomy from adult MRI

scans have not yet been linked to insights into the fetal develop-

mental timing of sulcation.

In this context, we integrate two complementary technical in-

novations to define a new taxonomy of human cortical sulcation:

(1) sulcal phenotype network (SPN) analysis of adult brain MRI in

the UK Biobank27,28 and (2) sulcal growth curve modeling of

fetal brains from the Developing Human Connectome Project

(dHCP).29 We show that this new taxonomy of cortical sulcation

in adulthood can be linked to the timing of brain sulcation in

development and is coupled with diverse facets of multiscale

cortical organization. Transcriptomic analysis allowed us to

examine the mechanistic hypothesis that the most heritable,

earliest-forming, linear sulci form at the boundaries between cy-

toarchitectonically differentiated cortical areas. Our resource

provides containerized code for automated measure of an

expanded suite of sulcal morphometrics. This suite allows

for novel assessment of inter-regional differences in sulcal
metrics were based on depth histograms, computed as the distance between po

encompassing gyral peaks. The median estimated central location and the med

branch was themaximumgeodesic distance along any sulcal branch. Branch spa

and calculating the ratio of the hull area to the area that circumscribes the hull, 0

space and have higher branch span thanmore linear, sparsely branched sulci. FD

boxes of different sizes and the number of boxes occupied by the sulcus at each

linear relationship between the size of boxes and the number of occupied boxes

branched or complex sulci have FD closer to the limit of a Euclidean plane (2).

(C) We display the anatomical standard for the sulcal nomenclature used throug

regions (20 per hemisphere), which were delineated by BrainVISA sulcal recogni

See also Figure S2.
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complexity that reflect maturationaly preserved features of the

human cortical fingerprint. Together, our analyses comprise a

resource of benchmark data for normative adult sulcal anatomy

and fetal sulcal emergence, gene-level transcriptional annota-

tion of sulci, and other adult maturational and functional annota-

tion of sulci to enable future works to recognize and integrate our

new taxonomy in fetal and adult human neuroscience.

RESULTS

Sample
Adult brain structural MRI (sMRI) data were obtained from the

second release of the UK Biobank sMRI cohort.27,28 A single

sMRI scan was available for each of n � 39,000 participants

(mean age = 64 years; 47% male) and was processed

with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)30,31 and

BrainVISA Morphologist (http://brainvisa.info)14–16 software.

After excluding participants with neurological diagnoses32

(n = 1,568) and scans that did not pass quality control (n =

2,247; see STAR Methods), we retained an analyzable sample

of n = 34,725 scans (mean age = 64 years; age range = 45–82

years; 46% male) (Figure S1).

Fetal brain sMRI data were collected and processed with the

dHCP (https://www.developingconnectome.org/) structural

pipeline.29,33 A total of n = 228 fetuses aged 21–36 gestational

weekswere scanned in utero (Figure S1) and passed quality con-

trol for reconstruction of the inner cortical surfaces bilaterally

(STAR Methods).

Sulcal phenotypes
For each adult brain scan, we segmented and labeled 40 sulci

(20 per cerebral hemisphere [Figure 1A], see nomenclature in

Figure 1C, elaborated in Figure S2) and estimated 5 shape met-

rics or features for each sulcus (Figure 1B): average (median) and

variability (median absolute deviation [MAD]) of sulcal depth,

longest branch length, branch span, and fractal dimension

(FD). These five measures were chosen to encompass morpho-

metric variation both tangential and radial to the cortical surface.

Prior studies have examined these features in isolation from each

other3,13,19,34–39 but have not harnessed them as a combined

group that can collectively triangulate the complex topography

of any given sulcus.

Plots of average sulcal phenotypes had similar cortical

patterning across phenotypes (Figure 2A), indicating coordina-

tion between phenotypes within subjects. The {1 3 40} feature

vectors describing each phenotype’s distribution across 40 sulci

within an individual brain were correlated between the five sulcal
ints along the bottom of a sulcal valley (sulcal fundus) to the enclosing surface

ian absolute deviation (MAD) estimated variability. The length of the longest

n was estimated by drawing a convex hull around each sulcus projected into 2D

< branch span < 1. More complex, densely branched sulci occupy more of the

was estimated by a box-counting algorithm: the sulcus was iteratively tiled with

size was counted; then �1 < FD < 2 was estimated by gradient of the log-log

. More linear sulci have FD close to the limit of a Euclidean line (1), and more

hout the study. Sulcal phenotypes were measured for each of these 40 sulcal

tion or by merged sulcal labels in the standard BrainVISA parcellation.

http://brainvisa.info
http://surfer.nmr.mgh.harvard.edu/
http://brainvisa.info
https://www.developingconnectome.org/
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Figure 2. Cortical surface patterning of sulcal phenotypes and relationships between phenotypes

(A) Mean values of sulcal phenotypes are plotted to highlight relative differences between sulcal regions. Colors are shown on average sulci models, delineating

their typical paths between gyri. The gradients of sulcal anatomy are similar across phenotypes, with sulci at the extremes of one phenotype often occupying

extremes of other phenotypes.

(B) Average correlation between {13 40} sulcal phenotype vectors within brains in the adult UK Biobank dataset (left) and distribution of these correlations across

individuals (right). Sulcal phenotypes exhibit a variety of inter-measure correlations, highlighting the shared and complementary information afforded by each

feature.

(C) Between-subject sulcal covariation was low for any given set of sulci and sulcal phenotype (median absolute correlation = 0.03). Values on the lower triangle

show the median absolute correlation between sulci across subjects for any set of two sulcal phenotypes. Diagonals within any given block represent the

correlation between the same sulcus for two different phenotypes; the greater magnitude correlations along these diagonals are consistent with the idea that

morphology is largely independent between sulci but forms by more consistent rules across phenotypes within a given sulcus.

See also Figures S3 and S5.
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phenotypes and averaged across subjects. Average sulcal

depth and depth variability were strongly positively correlated

with each other and with the longest branch length, whereas

branch span was negatively correlated with sulcal depth metrics

and positively correlated with FD (Figure 2B, left). For example,

the central sulcus and parieto-occipital fissure were both deep

and linear in terms of low branch span and FD. These within-

brain correlations were consistently expressed across subjects

(Figure 2B, right).

Alternatively, sulcal covariation between subjects was

measured as the correlation between the pair of {1 3 34,725}

feature vectors representing a single phenotype, e.g., sulcal

depth, at each of two sulci, e.g., central sulcus and lateral fissure

average depth. In contrast to the strong covariation across folds

within subjects, there was low covariation between folds across

subjects (median absolute correlation = 0.03) (Figures 2C and

S3A). This is in line with findings from Sun et al.18 and is much

less than the between-subject covariation observed with other

commonly studied cortical phenotypes (Figure S3B). In excep-

tion, sulcal covariation across subjects was low but relatively

higher between phenotypes for the same sulcus (block-wise

diagonals in Figures 2C and S3A) (median absolute correlation =
0.17). Thus, it appears that different sulci show broadly repro-

ducible morphological motifs across individuals (e.g., deep and

linear vs. shallow and complex), but substantial individual differ-

ences in sulcal morphology result in generally low between-sub-

ject covariation.

SPNs reveal two dominant modes of sulcal morphology
To further investigate the similarity or dissimilarity between each

pair of sulci in each adult brain, we estimated the {403 40}matrix

of Pearson’s correlations between the feature vectors of the

same 5 metrics measured at each sulcus for each brain scan.

This matrix was designated the SPN, with individual SPNs aver-

aged to estimate the group mean SPN (Figure 3A; Table S1).

Hierarchical cluster analysis of the group mean SPN high-

lighted two large clusters of sulci that were positively correlated

with (or similar to) other sulci in the same cluster and negatively

correlated with (or dissimilar to) sulci in the other cluster (Fig-

ure 3B). The two clusters were also clearly differentiated in terms

of the characteristic morphometry of their constituent sulci: one

cluster, designated linear, comprised sulci with greater mean

depth, variability of depth, and longest branch length; the other

cluster, designated complex, comprised sulci with greater
Neuron 112, 3396–3411, October 23, 2024 3399
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Figure 3. SPN analysis demonstrates that adult sulcal patterning is categorically represented by two major clusters, each comprising sulci

that share distinctive (linear or complex) structural phenotypes

(A) Pearson’s correlation between the five sulcal phenotypes measured at each pair of sulci (Z scored within each brain per metric) estimated the morphometric

similarity of two sulci within the same brain. Repeated for each possible pair of 40 sulci, this analysis generated a {40 3 40} correlation matrix representing the

similarity (r > 0) or dissimilarity (r < 0) of sulcal phenotypes across the cortex, and this was designated the SPN. Edge-wise averaging across subjects yielded the

group mean SPN.

(B) The group mean SPN had two large clusters, separated almost entirely by early (%25 weeks GA) and late (>25 weeks GA) forming sulci.

(C) The cluster termed ‘‘linear’’ was located in more central regions on the lateral and medial faces of the cortex with ‘‘complex’’ sulci situated at more extreme

anterior, posterior, or ventral locations. Linear and complex names for sulcal clusters were based on the distinctive distribution of sulcal phenotypes displayed by

each cluster, with the linear sulci having higher values in linear measures and complex sulci having higher values in fractal measures.

See also Figures S4 and S5 and Tables S1, S2, and S3.
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branch span and FD (Figure 3C). Based on previous, postmor-

tem labeling of when fetal sulci emerge,3 we identified that the

linear cluster’s sulci formed almost exclusively by or before

25 weeks GA and the complex cluster’s sulci formed almost

exclusively after 25 weeks GA (Figure 3B). The clustering was

further validated by the Dunn index, finding hierarchical clus-

tering was maximized at a two-cluster solution (Figure S4A).

SPN topology is highly consistent across subjects and robust

to choice of subjects or sulci (Figures S4B–S4E); is robust to

choice of included phenotypes or parcellation (Figure S4F);

and has generally high test-retest reliability and high individual

identifiability in retest scans (Figures S4G–S4I; Table S1).
3400 Neuron 112, 3396–3411, October 23, 2024
Despite small effects of age, sex, and total brain volume (TBV)

on sulcal phenotypes and their covariation (Figures S3A, S5A,

and S5B; Table S2), the structure of SPNs was overall invariant

to these covariates (Figures S5B–S5D; Table S3). Given the tech-

nical robustness of the group mean SPN, we next explored its

linear and complex patterning.

Sulci can be graded along a bimodal, linear-to-complex
dimension that coheres with diverse gradients of
cortical structure and function
We mapped the group mean SPN to a single, continuous

dimension by computing its first principal component (PC)
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Figure 4. Adult sulcal patterning can be dimensionally represented by the eigen-fold index (EFI, first PC of the SPN) with both themost linear

sulci (EFI � –1) and the most complex sulci (EFI � +1) having the lowest between-subject variability

(A) The EFI was derived as scaled values from PC1 of the group mean SPN, displaying a bimodal distribution with most weights for sulci at extreme ends of the

dimension. Prototypical sulci were plotted in order from lowest to highest group-level EFI, depicting how this latent dimension captured linear to complex sulcal

morphology.

(B) Subject-level EFI distributions for each sulcus were plotted, with distributions ordered from lowest to highest group-level EFI. Violin plots displayed themiddle

80%of EFI distributions for each sulcus to highlight differences in the spread of EFI values. Sub-clusters from the groupmean SPN are highlighted andwere found

to correspond to sulci with the lowest and highest ranking EFI values that also had the lowest inter-subject variability. Cortical patterning of inter-subject variability

in sulcal complexity (MAD of EFI) demonstrated that sulci with high EFI variability could be directly adjacent to sulci with low EFI variability, such as with the pre/

post-central sulcus adjacent to the central sulcus.

See also Table S1.
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(Figure 4A; Table S1), which accounted for 27% of sulcal (co)

variance across the cortex. Each sulcus was scored on the first

PC, or eigen-fold index (EFI), and there was a clearly bimodal dis-

tribution of EFI scores (consistent with the two-cluster commu-

nity structure), with most sulci scoring close to the linear (�1)

or complex (+1) poles of the EFI and relatively few sulci having

intermediate EFI scores (�0). As shown for 10 illustrative exam-

ples, sulci with linear polar EFI scores were identifiably straighter

and deeper than the more branched and fragmented sulci with

complex polar EFI scores (Figure 4A). In these examples, it can

be seen that linear sulci are dominantly composed of a single,

primary sulcus, whereas more complex sulci exhibit additional

secondary and tertiary branching.

The EFI score for each sulcus was also measured for each

individual SPN, which provided a metric of inter-subject vari-

ability in the location of each sulcus on this bimodal, linear-

to-complex dimension of sulcal morphometry (Figure 4B;
Table S1; see STAR Methods). The correlation of subject EFI

scores across subjects for any two sulci was low, just as with

correlations from individual sulcal phenotypes (median absolute

correlation = 0.04) but was generally higher for interhemispheric

sulcal EFI correlations (median absolute correlation = 0.13). We

found that the sulci that were closest to the linear pole (EFI

score � �1), and the sulci that were closest to the complex

pole (EFI � +1), had very low between-subject variability of

EFI scores, whereas the sulci with less extreme EFI scores

were markedly more variable between individual brain scans.

The sulci with the most linear polar and most complex polar

EFI scores formed separate sub-clusters within linear and com-

plex clusters of the group mean SPN (Figure 4B). Between

these poles, many other sulci varied widely between individuals

in their position on the linear-to-complex spectrum of sulcal

morphometry (Figure 4B). The greatest variability in EFI scores

was seen for the left pre-central sulcus and left intra-parietal
Neuron 112, 3396–3411, October 23, 2024 3401
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Figure 5. Dimensional (EFI) and categorical (SPN modular) metrics of sulcal patterning are related to cortical structure, heritability, and

function

(A) Estimates of sulcal allometric scaling, gray matter thickness, and mean depth heritability were derived from BrainVISA sulcal morphometry, allowing direct

comparison against EFI. Heritability estimates and their standard errors were available for a subset of displayed sulci (STAR Methods). EFI positively correlated

with allometric scaling (r = 0.52, p = 0.00055) and gray matter thickness (r = 0.56, p = 0.00016) and negatively correlated with heritability (r = �0.514, p = 0.04).

Therefore, deeper, more linear sulci were more heritable, located in thinner cortex, and received less disproportional expansion of surface area in larger brains.

(B) SPN clusters were convergently distinguished by task and resting-state fMRI networks. Task-based functional annotations from Neurosynth revealed a

sensorimotor to association bias from linear to complex sulci based on dice overlap. Resting-state functional connectivity (FC) gradients supported the relative

enrichment of linear sulci for unimodal regions and of complex sulci for transmodal regions (pspin = 0.0176).

See also Table S1.
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fissure, suggesting that these folds are subject to the weakest

developmental constraints relative to those folds at EFI poles.

This ‘‘tethering’’ of the EFI at highly constrained poles meant

that overall organization of sulcal morphology showed a highly

stereotyped topography across individuals: the cross-sulcus

correlation of individual EFI scores with the group-level EFI

scores was strongly positive (mean = 0.78, standard deviation =

0.09).

Given such striking conservation of SPN clusters and the EFI

axis across individuals, we hypothesized that the spatial ordering

of folds by EFI score or SPN cluster would cohere with other

recently described organizational axes of cortical structure and

function.

We first sought to validate the EFI against independently

derived descriptions of cortical structure based on BrainVISA

metrics not included in SPN computation, including allometric

scaling of sulcal surface area,40–42 cortical thickness of areas

adjacent to sulci,43 and mean sulcal depth heritability17 (STAR

Methods; Figure 5A). These analyses revealed that: (1) EFI was

positively correlated with brain-size dependent expansions of

cortical surface area, i.e., cortical areas with more complex sul-

cal patterning had greatest relative surface area expansion with

increasing brain size (Figure 5A, left); (2) EFI was positively corre-

lated with cortical thickness, i.e., cortical areas adjacent to com-
3402 Neuron 112, 3396–3411, October 23, 2024
plex sulci were thicker than cortical areas intersected by linear

sulci (Figure 5A, middle); and (3) EFI was negatively correlated

with an independently generated estimate of sulcal depth herita-

bility, i.e., linear sulci had greater heritability than more complex

sulci (Figure 5A, right; all |r| > 0.5, p < 0.05). By contrast, inter-

subject variability in EFI was not significantly correlated with sul-

cal depth heritability (r = �0.04).

We next compared SPN linear and complex clusters to func-

tional MRI (fMRI) measures of cortical function during tasks

and at rest (Figure 5B). Comparison with meta-analytic maps

of task-related brain activation from over 11,000 fMRI studies

(https://neurosynth.org)44 revealed that cortical regions adjacent

to linear sulci (EFI < 0) tend to be activated by somatosensory

tasks, whereas regions adjacent to complex sulci (EFI > 0) are

typically activated by higher-order cognitive and association

tasks (Figure 5B, left). This functional differentiation of linear vs.

complex folds was echoed by comparison with the topography

of functional connectivity within the cortex at rest. Specifically,

cortical areas surrounding linear and complex sulci, respectively,

were differentiated in terms of their loadings on the sensory-to-

association cortical gradient derived from diffusion map embed-

ding of resting-state fMRI.45 Cortical areas surrounding linear

sulci had significantly lower (pspin = 0.0176) functional connectiv-

ity gradient loadings, typical of unimodal cortex, compared with

https://neurosynth.org
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Figure 6. Trajectories of sulcal development in fetal brains are related to categorical (SPNmodular) and dimensional (EFI) measures of adult

sulcal patterning

(A) Exemplar cortical surface representations of the human fetal brain, as it develops, folds from gestational weeks 21–36, with exemplar linear (central sulcus)

and complex sulci (inferior temporal sulcus) highlighted. Color codes bilaterally averaged sulcal curvature with negative (convex) curvature in red and positive

(concave) curvature in blue.

(B) Trajectories of mean sulcal curvature as a function of GA were expressed as a percentage of the maximum or final curvature of each sulcus. Bilaterally

averaged trajectories are shown for visualization purposes, but hemisphere-specific trajectories were resolved and used in subsequent analyses. Individual sulci

were colored in a semi-transparent scale by their EFI ranking, with linear and complex sulcal cluster averages overlayed in solid colors. A sulcus was considered

to have emerged once it reached 10% of maximal folding (T10), at which point approximately the sulcal indentation is first visible to the human eye, and a sulcus

was designated as half-folded at 50% of maximal curvature (T50). Linear sulci (with EFI close to �1) fold on average earlier than complex sulci (with EFI close

to +1), but there is large variation in sulcation timing within both linear and complex clusters.

(C) Gestational age at T10 and T50 was strongly correlated with sulcal differences with adult average EFI (T10: r = 0.73, p = 7.92 * 10�8; T50: r = 0.81, p = 3.43 * 10�10),

indicating that more complexly branching sulci form later in development. The association is slightly stronger with T50, near when folds undergo highest rates of

regional expansion. In subsequent analyses, we focused on the GA at half-folded.

(D) Individual differences in sulcal EFI are related to T50, with the earliest and latest folding sulci demonstrating much less between-subject variability in adult EFI

than sulci folding at intermediate GAs (p = 0.0015). Lower individual variability in EFI of the first and last developing sulci presumably represents higher genetic or

geometric constraints on their shape complexity.

See also Table S1 and Videos S1 and S2.
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the higher loadings of areas adjacent to complex sulci, typical of

heteromodal cortex.

Taken together, these categorical and dimensional analyses of

adult sulcal patterning reveal a bimodal axis from linear to com-

plex morphology. The distinct ordering of sulci along this shape

axis not only coheres with other structural and functional mea-

sures but also demonstrates constraints at the most linear and

complex poles, suggesting potentially different modes or phases

of linear and complex sulcal development in utero.

Fetal sulcal emergence is linked to adult sulcal
patterning
Based on these results and prior work,2,3 we hypothesized that

the linear-to-complex dimension of adult sulcal patterning could

be rooted in the phased emergence of cortical sulci during fetal

brain development. We directly tested this hypothesis by using

brain MRI scans in utero for n = 228 fetuses aged 21–36 weeks

GA (Figure 6A) to precisely quantify sulcus-specific trajectories
or growth curves. Mapping against the prospective sulcal re-

gions observed in adults (STARMethods) allowed us to compare

key milestones in when sulci form to how sulci present their

shape in adulthood.

By tracking mean sulcal curvature over fetal life with a Gom-

pertz growth model,46 we captured development from 0%

folding (lissencephaly, at 21 weeks GA) to 100% folded (relative

plateau of curvature development, at 36 weeks GA) for each sul-

cus. Model fits were strong (R-squared > 80% for 95% of sulci)

and were visualized with animations to confirm theymatched the

visual evolution of cortical folding along spatially interpolated

fetal cortical surface templates (Videos S1 and S2). From

these curves, we estimated key milestones in development of

each sulcus, including the time to reach 10% maximum curva-

ture, T10, and the time to reach 50% maximum curvature, or

half-folded, T50 (Figure 6B; Table S1). We found that both mile-

stones of fetal sulcation were strongly positively correlated

with EFI scores of the corresponding sulci in the adult brain
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(T10: r = 0.73, p = 7.92 * 10�8; T50: r = 0.81, p = 3.43 * 10�10) (Fig-

ure 6C). In other words, sulci that had later sulcation milestones

had more positive EFI scores, indicating more complex adult

patterning. Convergently, sulcationmilestones were significantly

different between linear and complex clusters of the group

mean SPN in terms of T10 (linear cluster mean = 26.6 weeks

GA, complex cluster mean = 29.4 weeks GA; t = �5.4,

p < 0.05) and T50 (linear cluster mean = 28.9, complex cluster

mean = 31.7; t = �6.5, p < 0.05). The inter-subject variability of

adult sulcal morphology, quantified by the MAD of sulcal EFI

scores, had a significant non-linear relationship with sulcation

milestones (p = 0.0015), as expected from prior results (Fig-

ure 4B). Sulci with earliest or latest milestones of emergence

had much less inter-subject variability than sulci that emerged

midway through the neurodevelopmental cascade of sulco-gyral

patterning (Figure 6D). Thus, we found that differential timing of

fetal sulcation across the cortex was strongly associated with

the typical form and individual differences of each sulcus on

the linear-to-complex dimension of adult sulcal patterning.

Assessment of gene expression differences across
sulcal boundaries
It has previously been theorized that fetal sulcation could be

driven by ‘‘buckling’’ of the cortical sheet at the boundaries be-

tween early-established zones of cytoarchitectonic differentia-

tion between nascent cortical areas.10,47–49 This model would

predict that (1) sharper transitions from low to high gene expres-

sion, i.e., greater magnitude of tangential gradients of gene

expression, are expected around the more genetically con-

strained linear sulci than complex sulci; and (2) genes with

expression gradients that are strongly orthogonal to the fundus

of linear folds in adulthood should proxy early-established cy-

toarchitectonic differences between neighboring cortical re-

gions. We directly tested thesemechanistic predictions by align-

ing the sulcal maps from our automated morphometry pipeline

(STAR Methods) with spatially fine-grained cortical maps of

tangential expression changes for 20,781 genes from Wagstyl

et al.50

Confirming our first prediction, we found that the mean tran-

scriptional gradient across all analyzed genes was indeed rela-

tively increased in regions adjacent to bilaterally linear sulci,

comparedwith regionsadjacent tobilaterally complexsulci (pspin=

0.0152) (Figure 7B). By focusing on the principal angle andmagni-

tude of tangential gene expression changes in the vicinity of linear

sulci (STAR Methods), we found that the central sulcus and pari-

eto-occipital fissure in particular had pronounced trans-sulcal

gradients of gene expression change aligned orthogonally to the

fundus of each sulcus (pspin < 0.05) (Figure 7C).

To test our second prediction, we characterized the genes that

had significant trans-sulcal gradients of expression across each

of 9 linear sulci (Figure 7D; Table S4). These gene rankings were

most highly correlated between proximal or parallel sulci but

were more weakly correlated between anatomically distant sulci

(Figure 7E), suggesting that linear sulcation is underpinned by

different trans-sulcal gradients of expression in different cortical

regions.51 Gene ontology enrichment analysis of trans-sulcal

expression gradients for the central sulcus and parieto-occipital

fissure highlighted multiple developmentally salient gene sets
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(pspin < 0.05, Bonferroni corrected, Figure 7F; Table S5). For

example, gene expression gradients orthogonal to the central

sulcus were enriched for inhibitory neurons, microglia, oligoden-

drocyte precursor cells, cytoskeleton compartment, nuclear

compartment, endosome compartment, and rare risk genes for

autism spectrum disorder, schizophrenia, severe developmental

disorders, and epilepsy. Each of these gradients represented a

transition from low expression in pre-central gyrus to higher

expression in post-central gyrus. The trans-sulcal gradient for

the parieto-occipital fissure was distinctively enriched for layer

V marker genes with expression generally increasing superior

to the fissure in medial parietal cortex.

Additionally, since adult and fetal cell marker genes for cy-

toarchitecture share patterning in dense expression maps

(DEMs),50 we further tested for enrichment of fetal cell types.

Fetal cell enrichments for the central sulcus were oriented

along the same pre- to- post-central gyrus direction and

included excitatory neurons (ExDp1/ExM-U), inhibitorymigrating

neurons (InMGE/InCGE), intermediate and cyclic progenitor

cells (PgG2M/PgS), and fetal andperinatal gene sets (pspin <0.05,

Bonferroni corrected). To provide further developmental context,

we used measures of cortical gene expression between

�10 weeks GA and 40 years52 to estimate developmental trajec-

tories of expression for genes with tangential gradients of

expression that were orthogonal to folds in the adult cortex.

This procedure revealed that genes with significant trans-sulcal

gradients across the central sulcus had peak cortex-wide

expression during fetal development (Figures 7G and S6). Taken

together, these findings supported our second hypothetical pre-

diction that linear sulci in the adult brain are orientated such that

they intersect or bisect large zones of rapid tangential change in

gene expression.

DISCUSSION

We applied innovative tools for sulcal morphometry to large-

scale MRI datasets on adult and fetal human brain structure to

discover a bimodal organizational axis of SPNs linked to sulcal

emergence in utero. By comparing against cortical measures

from diverse datasets, we provide a deep annotation of this

new perspective on human cortical surface patterning. We

release this annotation along with containerized tools for auto-

mated sulcal morphometry and SPN analysis to accelerate

future research on cortical folding. We consider each of the

main outputs of our work in more detail below.

A new taxonomy of adult sulcal morphology
High-throughput sulcal morphometry in the UK Biobank cohort

provided a unique dataset for quantitative analysis of human sul-

cal variation. Our approach integrated complementary diverse

metrics of sulcal shape traditionally considered in isolation

from each other. For example, sulcal depth has been related to

cognition and developmental disorder.3,13,19,20,36 Depth vari-

ability39 captures sulcal pits and plis de passage (respectively,

local maxima and minima of depth along the sulcal fundus),

which are genetically constrained and functionally important fea-

tures of sulcal anatomy.53,54 Multiple studies have examined

sulcal length in relation to developmental disorders and
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Figure 7. Developmentally salient cortical gene expression gradients are delineated by archetypal linear sulci

(A) Dense expression maps (DEMs) and their associated gradients were collated for 20,781 genes.

(B) Linear sulci had increased average DEM gradient compared with complex sulcal regions, indicating linear sulci were more likely to have signatures of

tangential expression change (pspin = 0.0152).

(C) The principal gene expression vectors, or dominant directions of gene expression change, significantly aligned with the central sulcus and parieto-occipital

fissure (pspin < 0.05).

(D) Sulcal fundi and gene expression weremapped to a common space fromwhich gradient vectors and fundus orientation vectors were computed. Gene scores

were given by the strength of the gradient and orthogonality (angle sine) of gradient and fundus vectors, with extreme low or high scores representing strong

expression changes orthogonal either direction through the sulcal fundus (e.g., pre-post or post-pre central gyrus).

(E) {13 20,781} vectors of gene scores per linear sulcus were correlated, with absolute values of correlations higher between proximal or parallel sulci and lower

between anatomically distant sulci.

(F) Exemplar gene ontology enrichments for gene scores are shown, with all central sulcus enrichments showing transitioning from low to high expression about

pre- to post-central sulcus. The dashed line indicates the significance threshold, and displayed p values are capped at p = 1/10,000.

(G) Genes with significant trans-sulcal gradients across the adult central sulcus were mapped to the BrainSpan developmental brain gene expression dataset,

revealing that these genes were enriched for expression during fetal life.

See also Figure S6 and Tables S4 and S5.
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genetics.17,18,20,40 Auzias et al.55 found that the sulci with the

longest branches were sufficiently consistent in their orientation

(i.e., low branch span) to define latitudinal and longitudinal axes

of the cortex. Only a few other studies have explicitly considered

fractal geometry of brain gyrification56 or sulcal shape, including

studies of the FD of sulcal surfaces embedded in a 3D vol-

ume.35,37 Here we used different but related fractal measures,

focused on the embedding of sulcal lines tangent to the cortex,

as innovative measures of sulcal non-linearity or complexity

(Figure 1).

Leveraging this diverse set of sulcal shape phenotypes,

we revealed two archetypes of sulcal organization, conver-
gently represented by distinct clusters of the SPN and

by the bimodal distribution of sulci on a linear-to-complex

dimension (EFI). Linear polar sulci, e.g., central sulcus

and parieto-occipital fissure, were typically deep, straight

(FD � 1) indentations across unimodal cortex and were

more heritable than complex polar sulci, e.g., orbito-frontal

sulcus, which were typically shallow, complex (FD > 1),

and located in heteromodal cortex. This bimodal taxonomy

of sulcal patterning cohered with diverse other axes of

cortical organization, including allometric scaling, gray mat-

ter thickness, and sensorimotor-association functional hier-

archy57 (Figure 5).
Neuron 112, 3396–3411, October 23, 2024 3405



ll
OPEN ACCESS NeuroResource
Timing of fetal formation of sulci was linked to polarity of
adult sulcal shape
The clear bipartite clustering of the group mean SPN (Figure 3B)

aligned approximately with prior postmortem measurements of

fetal sulcal formation. To more comprehensively compare be-

tween dimensional measures of adult sulcal shape and fetal sul-

cation, we reconstructed cortical surfaces for 228 fetal brain MRI

scans and estimated high temporal resolution trajectories of cur-

vature development for each of 40 sulci identifiable in adult

brains.

We confirmed that linear sulci (with EFI � �1) formed earlier

than complex sulci (with EFI�+1), e.g., therewas a strongly pos-

itive correlation between-adult sulcal EFI and the GA at which

that sulcus was 50% (or 10%) fully formed in utero (Figure 6).

Slightly stronger correlation was found with the 50% (T50) mile-

stone (r = 0.81), possibly because this milestone marks the

peak rate of sulcal curvature development, likely co-occurring

with rapid neurodevelopmental programs of tangential expan-

sion of the cortical plate.58 We also confirmed prior expectations

that between-subject variability or individual uniqueness of adult

sulcal shape should be minimized for linear sulci that formed

earliest.7,59

Knowing that the earliest-forming, most linear sulci are more

heritable, it is intuitive that their development should be stereo-

typically determined by a genetic program that is expressed

regardless of stochastic or environmental differences between

individual brains. However, more counter-intuitively, we also

observed low levels of between-subject variability of adult shape

for the most complex, latest-forming sulci (Figure 4), i.e., there

was a non-linear, inverted-U relationship between individual

variability of sulcal EFI and the milestone of 50% complete fetal

sulcation (Figure 6). Themost individually variable sulci had inter-

mediate, less polarized values of EFI on average; emerged at in-

termediate GAs between the earliest, linear, and latest, complex

sulci; and were sometimes directly proximal to sulci with the

lowest between-subject variability of EFI (Figure 4). This vari-

ability could reflect competing mechanisms of cortical arealiza-

tion driven by proximity to primary or unimodal cortex60 met

with stochastic buckling pressures midway through sulcal

ontogenesis.

These observations suggest that fetal sulcation is more con-

strained (less individually different) at the start and the end

than in the middle of the cascade of cortical folding. But the na-

ture of such constraints remains to be parsed. Some studies

frame sulcal development as a homogeneous process wherein

all sulci form by the same mechanisms,10 but recent models

have begun to shed light on mechanistic heterogeneity between

different sulci.58 As noted, genetic constraints could explain the

reduced sulcal complexity variability for the first-forming sulci.

However, their relatively low heritability suggests that non-ge-

netic constraints must apply to the latest forming, complex sulci.

Just as models of crumpled paper demonstrate how further

crumpling is constrained to maximally relieve tension in mate-

rial,61 the final cortical folds to form in utero could experience

physical constraints on their formation due to multiple prior sulci

having already ‘‘carved up’’ the cortical sheet available for new

sulcation. The prior presence of sulci very likely impacts the later

formation of proximal sulci,47,62 so it is important for future
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studies to resolve more precisely how the end-point of the fetal

sulcation cascade could be physically constrained.

Trans-sulcal expression gradients as a mechanism for
linear sulcation
One prominent mechanistic model for sulcation is that the

cortical sheet buckles under the physical stress of differential

tangential expansion (DTE) between the stiffer cortical plate rela-

tive to deeper fetal tissue compartments.58 Elaborations of the

DTE model have considered that predictable location of sulcal

in-folding could arise from differential expansion properties or

cytoarchitecture of regions across the cortex.62,63 Compatible

with thismodel, linear sulci like the central sulcus and parieto-oc-

cipital fissure have long been recognized to demarcate cy-

toarchitectonically distinct areas,48 with more recent histological

work49 demonstrating that primary fissures (comprising linear

sulci) better predict cytoarchitectonic boundaries than sulci in

association cortex (comprising of complex sulci). By this ac-

count, the topographical patterning of cortical gene expression

that controls areal differentiation should relate to linear sulcal

anatomy, with differential gene expression either side of the sul-

cal line or fundus being compatible with differential expansion of

the adjacent cortical areas divided by the fundus.

To test this model, we used DEMs of cortical gene transcrip-

tion that allowed us to measure the magnitude and geometric

alignment of tangential expression gradients with specific sulcal

fundi. First, as predicted hypothetically and by prior work,48,49

we found that the magnitude of tangential gene expression gra-

dients was indeed significantly greater in cortical regions adja-

cent to linear sulci than in regions adjacent to complex sulci.

Second, we focused on a more detailed analysis of the angle

as well as the magnitude of gene expression gradients with

respect to 9 linear sulci, including the central sulcus and the pa-

rieto-occipital fissure. We reasoned that gene expression gradi-

ents driving sulcus formation by differentiation of adjacent

cortical areas should be orientated orthogonal to the sulcal

fundus. We identified genes with trans-sulcal expression gradi-

ents for linear sulci, with some consistency between physically

proximal sulci but also clear evidence that different sulci were

associated with genetically and functionally distinct trans-sulcal

expression gradients. For example, trans-sulcal gradients

across the central sulcus were enriched for genes associated

with neuronal development and neurodevelopmental disorders,

whereas the genes that were most differentially expressed

across the parieto-occipital fissure were enriched for layer V

neurons of medial parietal cortex.

These coordinated configurations of folding and gene expres-

sion in adulthood are consistent with a biophysical model where

early-established cytoarchitectural gradients predispose the

buckling cortical sheet to form sulci in stereotyped locations. It

is also possible—although less likely—that the stereotyped loca-

tion of linear sulci is aligned with but not caused by cytoarchitec-

tonic differences, or is itself a mechanism by which cytoarchitec-

tonic differences are achieved between neighboring cortical

regions,10,64 requiring further investigation. Genome-wide asso-

ciation study (GWAS) would be useful to further assess mecha-

nisms for linear or complex sulcal formation; one prediction is

that common variation in the cytoarchitectural genes we
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identified would predict the shape of generally linear sulci or that

complex sulci are regulated by genes important for cortical

expansion. Previous work17,18 suggests such an approach

would require careful handling of shared brain volume effects

and careful consideration of quality control impacts on GWAS

estimates to disentangle potential regionally specific mecha-

nisms for sulcal complexity expression.

Tools for high-throughput sulcal morphometry and SPN
analysis
To facilitate future investigations, we provide our suite of

new metrics for comprehensive characterization of sulcal

morphology, which drove ourmain discovery of a bimodal taxon-

omy of sulcal morphology. Our sulcal morphometrics differ from

previous works as they are designed to maximally differentiate

sulci by region of cortex, reflecting inter-regional differences initi-

ated in utero that track through the life span. This new container-

ized tool for SPN analysis is built on the foundation of the

BrainVISA software but also represents a significant advance

in technical capability for automated analysis of whole brain sul-

cal patterning from humanMRI. Our containerized pipeline auto-

matically generates the 5 new morphological metrics of average

sulcal depth, depth variability, longest branch, branch span, and

FD, in addition to subject-level SPN and EFI results. The pipeline

can run from a single command within�2 min for each MRI scan

processed with BrainVISA Morphologist, or �25 min from

frequently generated FreeSurfer outputs, e.g., on a single CPU,

8 GB RAM, Linux machine.

Limitations and future considerations
There are several limitations inherent to the study’s datasets and

approaches. First, it will be important to apply our adult sulcal

morphometry analyses to younger and more diverse cohorts to

test the generalizability of this bimodal taxonomy of sulcal

patterning and its links to fetal sulcation. Future studies should

also consider novel sulcal segmentation procedures that do

not rely on existing sulcal atlases, which are currently necessary

to consistently measure sulci across subjects. Additionally, while

we used the largest fetal brain imaging cohort available, ques-

tions remain regarding between-subject variability in sulcal

emergence and in sulcal complexity that would only be acces-

sible in a longitudinally scanned cohort followed up through

term birth.

Overall, more work needs to be done to evaluate mechanisms

of cellular differentiation and differential gene expression across

linear and complex sulci. Popular model organisms for gyrence-

phalic development, like the ferret,65 only have linear sulci, which

could impede translational studies of the bimodal sulcal taxon-

omy evident in humans. We used adult human brain transcrip-

tomics to infer cytoarchitectural patterns likely established by

term birth since, to date, there are no human datasets of fetal

gene expression encompassing the full 21–36 weeks GA period

over which both linear and complex sulci form. While there are

multiple resources for fine-grained single-cell spatiotemporal

fetal brain transcriptomics,66,67 no such resource covers both

linear and complex sulcal regions with comparable sampling be-

tween regions for inclusion of sulcal banks or gyral peaks, unlike

the adult transcriptional atlas. There are extant fetal gene
expression data for the �23 week GA period,52 but they do not

have sufficiently fine-grained spatial resolution to measure

gene expression gradients as precisely as in DEMs of the adult

brain. It is therefore a limitation that we have not been able to

link fetal sulcation with the concurrent spatiotemporal emer-

gence of trans-sulcal gene expression gradients.

Conclusion
We have introduced and applied new methods for measuring

SPNs from human brain MRI. We have presented evidence in

support of a bimodal taxonomy for adult sulcal shape that is

directly linked to fetal development and in support of the more

mechanistic hypothesis that linear sulcation is driven by trans-

sulcal gradients of gene expression. The annotated datasets

and computational tools used to generate these results are pub-

lished as an open resource to facilitate futuremechanistic, devel-

opmental, and clinical studies of sulcal patterning.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Benchmark adult, fetal, and transcriptional

sulcal annotations

This paper Supplemental tables, GitHub: https://

github.com/willsnyder12/sulcal_

phenotype_networks

UK Biobank Miller et al.27 https://www.ukbiobank.ac.uk

dHCP fetal MRI Edwards et al.29 https://nda.nih.gov/edit_collection.html?

id=3955

Multi-modal MRI reproducibility resource Landmann et al.68 https://www.nitrc.org/projects/multimodal/

Neurosynth functional MRI topic maps Poldrak et al.69 https://neurosynth.org/analyses/topics/v4-

topics-50/

NeuroMaps Markello et al.70 https://github.com/netneurolab/

neuromaps

Dense cortical expression maps (DEMs) Wagstyl et al.50 https://figshare.com/s/

82c8f6ebda38af670cd1

PsychEncode processed BrainSpan data Li et al.71 http://development.psychencode.org/

Software and algorithms

Sulcal Phenotype Network container and

analysis

This paper SPN container, Figshare: https://doi.org/

10.6084/m9.figshare.25874425 (DOI active

prior to publication)

Additional analysis code, GitHub: https://

github.com/willsnyder12/sulcal_

phenotype_networks

FreeSurfer Fischl30 http://surfer.nmr.mgh.harvard.edu

BrainVISA Morphologist Mangin et al.14 http://brainvisa.info

Smallest Enclosing circle Project Nayuki https://www.nayuki.io/page/smallest-

enclosing-circle

3D Fractal dimension calculation Chatzigeorgiou Lab https://github.com/ChatzigeorgiouGroup/

FractalDimension

R R Development Core Team https://www.r-project.org/

netneurotools Network Neuroscience Lab https://github.com/netneurolab/

netneurotools

DRAW-EM Makropoulos et al.72 https://github.com/MIRTK/DrawEM

MSM Robinson et al.73 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MSM

Python Python Software Foundation https://www.python.org/

ABLE Fernández-Pena et al.74 https://github.com/HGGM-LIM/ABLE

MATLAB MathWorks https://www.mathworks.com/

Brain development animation Stuart Oldham https://github.com/StuartJO/

BrainSurfaceAnimation

Connectome Workbench Marcus et al.75 https://www.humanconnectome.org/

software/get-connectome-workbench

Developmental gene expression analysis Stauffer et al.76 https://github.com/evastauffer/

schizophrenia-and-brain-structure
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, William Snyder (will.

snyder@nih.gov).
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Materials availability
This study did not generate new materials other than data and code.

Data and code availability
d Benchmark adult, fetal, and transcriptional sulcal annotation data are included in Supplemental Tables and have been depos-

ited on GitHub. Website access to this data and publicly available source data used to derive it are listed in the key re-

sources table.

d All original code for the sulcal phenotype networks pipeline and main analysis is deposited on GitHub and Figshare and is pub-

licly available prior to the date of publication. We provide this code as a containerized pipeline (DOI active prior to publication) to

derive sulcal phenotypes directly from brain scans processed by the frequently used FreeSurfer neuroimaging software. The

GitHub website and DOI are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

UK Biobank cohort
The UK Biobank is an effort led to collect diverse phenotypic data to promote population-level assessments of lifestyle, environment,

and genetics on biology and health presentation. A subset of subjects enrolled in the study participated in brain imaging, from which

the first imaging session’s data were retrieved (https://www.ukbiobank.ac.uk).27,28

Scanner acquisition of brain structural MRI is detailed elsewhere (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.

pdf). In brief, all three scanning sites used standard Siemens Skyra 3T scanners with a Siemens 32-channel RF receive head coil.

T1 and T2-FLAIR acquisitions were both downloaded to support gray and white matter tissue segmentation. T1 acquisition involved

a five-minute 3D MPRAGE session at 1x1x1 mm resolution, in-plane acceleration iPAT=2, and prescan-normalization. T2-FLAIR

acquisition involved a six-minute 3D SPACE session at 1.05x1x1 mm resolution, in-plane acceleration iPAT=2, partial Fourier =

7/8, fat saturation, elliptical k-space scanning, and pre-scan normalization.77

Extraction of sulci and quality control
Cortical surfaces were first reconstructed for all subjects with T1 images and additionally with T2- FLAIR images if available as in

Mallard et al.78 using FreeSurfer neuroimaging software (version 6.0.1)30,31 packaged in fmriprep 21.0.2.79 FreeSurfer segmented

boundaries of gray and white matter from the images, which were input to BrainVISA neuroimaging software (version compiled

on August 8th, 2022) for watershed algorithm detection of sulcal boundaries. BrainVISA’s Morphologist pipeline was used to extract

sulci as the regions filling between gyral peaks, subsequently skeletonized to the wall of voxels halfway between bordering gyri.14–16

All sulcal phenotypes were derived from points defined on the tops and bottoms of the voxel medial walls (Figure 1A, right).

After excluding n = 1,568 subjects with neurological conditions,32 three quality control measures were implemented. First, previous

work has demonstrated that robust automated quality control of MRI can be performed by detecting outliers of FreeSurfer mesh

reconstruction quality.80 As is standard,81 outlier detection of Euler Number (EN) was performed within each scanning site, with in-

terquartile range outliers excluded from analysis (n = 2,026). The second quality control procedure was to define a set of sulci measur-

able in virtually all subjects such that subjects without all labeled sulci were considered to have failed the BrainVISA Morphologist

sulcal labeling pipeline. Previous works have excluded small sulci not labeled by BrainVISA in the majority of subjects.17,18,20 We

found that retaining 51 out of 123 possible bilateral sulcal labels allowed 95% of the original sample to be retained, with significant

drop-off in the analyzable sample for any additional included sulci. From this set, we excluded sulci without anatomical meaning

consistent with other sulci (i.e., the anterior lateral fissure label does not trace between gyri), included additional sulci that were com-

ponents of larger sulcal regions, and then merged anatomically adjacent labels from a set of 64 sulcal labels (e.g., merging five labels

of the pre-central sulcus into one label), mitigating BrainVISA Morphologist mislabeling that typically propagates between anatom-

ically proximal regions (Figure S2). We retained labels for 20 sulci per hemisphere that spanned the lateral, medial, and ventral faces

of the cortex (Figure S2) and were identifiable in almost all subjects. A small set of subjects that did not receive a label for one of these

40 major sulcal regions were excluded from analysis (n = 191). A final, necessary quality control measure was discovered during an-

alyses. A small set of subjects (n = 30) had outlier residuals from log-log regression models40–42 fit between total sulcal surface area

(summed sulcal surface area from all 40 sulci) and total brain volume (Freesurfer’s ‘‘BrainSegVol’’). These subjects were visually

confirmed to have been segmented poorly by FreeSurfer, leading to overestimation of sulcal surface area by BrainVISA. These sub-

jects were also excluded from further analysis, leaving a final 34,725 subjects for analysis.

We considered additional cortical phenotypes measured adjacent to sulci for comparison in an inter-subject covariation analysis.

Sulcal surface area and gray matter thickness were computed from the standard BrainVISA sulcal morphometry pipeline following

merges of some sulcal labels. Gray matter volume, mean curvature, and gaussian curvature were measured along parcels from a

sulcal parcellation in FreeSurfer fsaverage template space warped back to subject brains (https://github.com/willsnyder12/sulcal_

phenotype_networks/tree/main/sulcal_parcellations) (see STAR Methods section ‘‘Structural and functional brain map annotation

against SPNs’’).
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Sulcal phenotype networks (SPNs)
SPNs were defined as the {40 x 40} matrix of correlations from {1 x 5} vectors of sulcal phenotypes between sulci in a given brain.

First, sulcal phenotypes were extracted from subject scans in order to generate SPNs. Extracted sulcal medial walls contained points

closest to the depths of sulci (bottom points, or fundus points) and points closest to the exterior of the brain, termed hull-junction

points in BrainVISA as they lie along the hypothetical convex hull (inflated or unfolded surface) of the cortex (Figure 1A). Depth profiles

or histograms (Figure 1B) were generated for any sulcus by finding the shortest geodesic path along the sulcal medial wall from

fundus points to hull- junction points. Average depth was given by themedian distance and depth variability was given by themedian

absolute deviation of distances, as in Klein et al.39 We also explored the effect of substituting the normalized coefficient of variation

(CV) in depth for the MAD metric of sulcal depth variability. We found these two metrics were positively correlated (r = 0.75) and the

results of downstream network analyses were nearly identical regardless of whether we usedMAD or CV to capture variation in sulcal

depth (Figures S7A–S7C). We therefore used MAD for the principal analyses.

Exterior or hull-junction points were useful for branching pattern measures (longest branch, branch span, fractal dimension) as the

full tangential sprawl of the sulcus is exposed at this minimum depth on the sulcal medial wall. Similar to length calculations native in

BrainVISA, longest branch was defined as the longest contiguous geodesic path along hull-junction points given the same sulcal la-

bel. Branch spanwas inspired by analyses of dendriticmorphology that used a ‘‘circularity index’’ to assess how uniform or dispersed

the orientation of dendrites were about their soma.38 This calculation is performed in a two-dimensional reference frame, so hull-

junction points from contiguous sulcal branches were projected to a plane tangent to the hull of the cortex centered at the center

of mass of a given sulcal branch. The sulcal branch point sets in the plane were all aligned to the center of mass of the largest sulcal

branch if multiple sulcal branches were present. Branch span was given by the ratio of the convex hull area of this point set divided by

its circumscribed area, as in Levy et al.38 Circumscribed area was derived from the smallest enclosing circle of the point set (https://

www.nayuki.io/page/smallest-enclosing-circle). Finally, fractal dimension was calculated from a three-dimensional box-counting al-

gorithm (https://github.com/ChatzigeorgiouGroup/FractalDimension) applied to the hull-junction points all assigned a given sulcal

label to assess self-similarity of sulcal branching patterns on the exterior of the cortex.

Age, sex, and TBV effects on sulcal phenotypes were modeled with multiple linear regression. Plots of each sulcal phenotype

versus age and TBV were visually inspected and confirmed to have either linear or no relationship. Therefore, for consistency across

the 200 linear models (40 sulci * 5 phenotypes), the same multiple linear regression model was used with linear terms for covariates.

Bonferroni correction was performed for 120 tests (40 sulci * 3 covariates) to investigate significance within each model on a pheno-

type-by-phenotype basis.

All five sulcal phenotypes were calculated for all 40 bilateral sulci and for each subject to enable SPN generation. Each sulcal

phenotype was Z-scored within each brain to capture within-brain inter-regional differences in sulcal phenotypes. Then, a {40 x

40} correlation matrix or SPN was generated by the sulcus pairwise correlation of the five sulcal phenotypes. Age, sex, and TBV ef-

fects on the 780 unique edges in the symmetric SPNs were modeled with multiple linear regression in the same manner as with in-

dividual sulcal phenotypes. Bonferroni correction was performed for 2,340 tests (780 edges by 3 covariates) to investigate signifi-

cance within each model on an edge-by-edge basis.

Categorical and dimensional analyses of SPNs
Hierarchical clustering of group mean SPNs was performed in R (https://www.r-project.org/), finding an optimal split of the resulting

dendrogram at two clusters, given by the number of clusters that maximized the Dunn index over 2 through 10-cluster solutions. The

group-level eigen-fold index (EFI) was given by the first principal component of the full groupmean SPN correlation matrix, assigning

a PC loading to each sulcus, specifying low (negative) EFI scores to include linearly shaped sulci and high (positive) EFI scores to

include more complex sulci. We chose to focus on the first PC as additional PCs accounted for substantially less (co)variance,

had decreased interhemispheric consistency in PC loading, had increased inter-subject variability in subject-level PC loadings (Fig-

ure S7D), and were more prone to outlier PC loadings (Figure S7E). Group-level EFI was scaled from -1 to 1 for interpretability. The

interpretation of linear and complex sulci was determined from viewing prototypical sulci across the PC loading space and by looking

at sulcal phenotype distribution by sulcal cluster. For subject-level PCA decompositions, PC signs are arbitrary, so it would not be

feasible to inspect and interpret all subject-level components. Additionally, subject-level PCs could each represent slightly different

organizational axes. Therefore, subject-level EFI was calculated as sulcal coherence with the group-level EFI, calculated as the cor-

relation between a subject SPN row for a given sulcus with the EFI.

Test-retest reliability of sulcal measures
We analyzed the multi-modal MRI reproducibility cohort77 (https://www.nitrc.org/projects/multimodal/) from the Kennedy Krieger

Institute (KKI) to assess reliability of sulcal measures. This cohort was selected so that we could benchmark the test-retest reliability

of our sulcal metrics, and the SPN and EFI statistics derived from them, against the reliability of previously investigated sulcal mor-

phometrics.23 The KKI cohort of healthy subjects was scanned with T1 and T2 weighted acquisitions on a 3T scanner, comparable to

the MRI protocol for the UK Biobank cohort.77 We analyzed all available MRI data on 21 subjects (age 22-61 years, 11 males and 10

females) at baseline and follow-up assessments scheduled within 2 weeks of each other.77 Each scan was processed in the same

way as UK Biobank scans, using FreeSurfer, BrainVISA, and sulcal phenotype extraction pipelines. As in Pizzagalli et al.,23 intraclass

correlation (ICC) was used to assess test-retest reliability for the EFI and for each of the 5 sulcal phenotypes for each sulcus. The
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upper triangle of individual subject-level SPNs was used to assess SPN identifiability, i.e., whether the SPN derived from a subject’s

follow-up scan was maximally correlated with the SPN derived from their baseline scan, compared to all SPNs derived from other

subjects in the sample. Finally, Pearson’s correlation between test-retest reliability of EFI (ICC) in the KKI cohort and between-subject

variability of EFI (MAD) in the UK Biobank cohort was used to test the hypothesis that sulci with higher between-subject variation in

the UK Biobank cohort might also have lower test-retest reliability in the KKI cohort.

Structural and functional brain map annotation against SPNs
Structural and functional maps comparable with EFI and SPN clusters were either derived from other studies or computed in the pre-

sent study. Allometric scaling coefficients represented the degree to which two-dimensional sulcal surface area scaled with three-

dimensional TBV, with values above 0.67 indicating positive allometric scaling (i.e., more sulcal surface area than expected given

TBV). Sulcal surface area was measured as in Fish et al.40 for each sulcus, calculated as sulcus mean depth * length. Log-log regres-

sion models,40–42 between age and sex residualized sulcal surface area and TBV (Freesurfer’s ‘‘BrainSegVol’’, encasing volume of

the cortex) were fit and had coefficients associated with total brain volume pulled for Pearson’s correlation with EFI. The coefficients

represented the degree to which sulcal surface area disproportionately increased with total brain volume increases.

Gray matter thickness measures for each sulcus and subject were computed by BrainVISAMorphologist, calculating thickness as

the average geodesic distance from gray-white matter interface to the outer-most gray matter in volumetric space. Sampled points

for each sulcus stretched from its fundus (bottom) through the sulcal bank up to the gyral peak (top), as defined by the volumetric

parcellation BrainVISA generates (sulci Voronoi diagram) from sulcal labels.43 Gray matter thickness values were averaged across

subjects to allow Pearson’s correlation with EFI.

Heritability estimates were derived from mega-analytic family-based studies using BrainVISA Morphologist to measure mean sul-

cal depth,17 the measure most linked to the EFI in our study. Where heritability estimates were available for multiple sulcal labels that

were merged into one label for the 40-sulcus parcellation used in this study, we used the maximum heritability (and corresponding

standard error) of these sub-labeled sulci, since maximum values represented the most sensitive and meaningful sub-labeled sulci.

Using themean heritability of sub-labeled sulci did not considerably change significance or interpretation of the Pearson’s correlation

between mapped heritability values and EFI (r = -0.63, P = 0.0094).

Neurosynth meta-analytic functional annotation of SPNs, as performed in Wagstyl et al.,50 used the Dice overlap between func-

tional regions and regions of interest to infer functions subserved by the regions of interest. We generated a parcellation of sulcal

regions in FreeSurfer’s FreeView application (http://surfer.nmr.mgh.harvard.edu/) consistent with BrainVISA standard sulcal label-

ing16 and endpoints of sulcal regions in the Destrieux atlas82 or complex sulcal clusters with functional regions. All sulcal parcellations

used in this study are to test for overlap between linear provided (https://github.com/willsnyder12/sulcal_phenotype_networks/). 30

functional regions were computed from 30 topic-modeling derived terms from over 11,000 functional MRI tasks (https://neurosynth.

org).44,69 Significant functional regions were downloaded (https://neurosynth.org/analyses/topics/v4-topics-50/), mapped to closest

vertices on an average pial surface mesh, and tested for dice overlap with linear and complex sulcal regions.

Functional hierarchy was measured as the first principal component loadings of functional connectivity fromMargulies et al.45 and

downloaded using NeuroMaps.70 The difference in loadings between linear and complex sulcal regions was compared to a null dis-

tribution based on permuted linear and complex sulcal labels, asking whether this difference was more extreme than in randomly

constructed SPN cluster definitions. Permuted labels were generated from spinning the original labels projected onto a sphere

and reassigning labels to sulcal regions 10000 times, using the gen_spinsamples Python function from the netneurotools package

with the Hungarian algorithm selected.83

Fetal cortical surface processing
Sulcal curvature was measured in each of 40 bilateral sulci for n = 228 subjects aged 21-36 weeks GA from the Developing Human

Connectome Project’s (dHCP) fetal imaging cohort. Fetal MRI were passed through the dHCP structural processing pipeline,33 with

initial tissue segmentation performed by DRAW-EM.72 Quality control of T2-weighted images, segmentations, and surface recon-

structions informed subsequent manual editing of tissue segmentations by expert (V.K.) for every subject. Edited segmentations

were again passed through surface reconstruction to yield final surfaces.84 Subjects with low quality assessment scores (n = 5)

from expert evaluation were visually inspected to confirm poor quality and were excluded.

We annotated sulcal regions on a template fetal cortical surface and registered fetal cortical surfaces to templates to enable mea-

surement of sulcal curvature along prospective sulcal regions annotated in alignment with adult sulcal parcellation. Coordinates of

subject surfaces were aligned with nearest age templates created for surfaces 21- 36 weeks GA.85 Surface alignment was performed

using spherical representations of cortical surfaces, aligning dHCP subject maps of sulcal depth with template sulcal depth using

Multimodal Surface Matching (MSM).73,86 Aligning surfaces via sulcal depth to nearest-week spatiotemporal templates87 has

been found to be effective for fetal surface registration.88 By computing vertex- wise averaging of curvature across subjects mapped

to a given GA week template, we were able to visually inspect and confirm that MSM successfully aligned all major sulcal landmarks

as expected (Figure 6A). Sulcal borders were delineated on the 36 weeks GA template in FreeView in alignment with BrainVISA stan-

dard sulcal labeling16 and endpoints of sulcal regions in the Destrieux atlas82 to allow comparison between BrainVISA sulcal mea-

sures from adults. All sulcal parcellations from our analysis are available at www.github.com/willsnyder12/sulcal-phenotype-

networks. These borders were then mapped to each next earliest GA template successively using MSM and were visually assessed
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for successful registration. As in Xu et al.,46 the gray-white matter interface was used for measurement of cortical curvature.89 Ab-

solute values of the curvature in each sulcal region measured sulcation as the degree of deviation from a flat surface.

Following Xu et al.,46 curvature along the grey-white matter interface surface can be cross- sectionally modeled along develop-

ment using a Gompertz function. For all 40 bilateral sulci, we fit a Gompertz function using Python’s curve_fit function as part of

the SciPy optimizemodule. All models had an R-squared of approximately 0.8 or higher, except for two sulci (left intermediate frontal

and right orbitofrontal) which were visually confirmed to have models that accurately portrayed sulcal emergence. Additionally, we

visually compared each model against an animation (https://github.com/StuartJO/BrainSurfaceAnimation) created from temporal

interpolation of template surfaces, again confirming that the models behaved in agreement with visually recognizable timing of sul-

cation (Videos S1 and S2). Gestational age at fitted values for 10% and 50% of the estimated plateau of Gompertz functions defined

T10 and T50 sulcal development milestones, which were subject to Pearson’s correlation against EFI. Additionally, a general additive

model with 5 knots (optimized to balance over and under-fitting) was fit between T50 and themedian absolute deviation of subject EFI

scores for each sulcus using the gam function from the mgcv library in R.90

Transcriptional annotation of SPNs
We used the dense expression maps (DEMs) created in Wagstyl et al.50 to test for sulcal alignment with gene expression gradients.

Microarray gene expression for each of 20,781 geneswas assessed inmultiple different cortical locations from six postmortem donor

brains from the Allen HumanBrain Atlas.52 The spatially smoothed and averagedmapswere found to replicate other known cytoarch-

itectonic boundaries inWagstyl et al.50 In the present work, we first askedwhether gradients of gene expressionmapswere greater in

linear as compared to complex sulci, hypothesizing that gene expression would undergomore drastic changes about linear sulci. We

again used spin-based permutations83 with 1000 spins to evaluate evidence for greater gradient magnitude in linear sulci.

Post-hoc analysis tested whether specific linear sulcal fundi marked the distinct boundary between high and low cortical gene

expression. Sulcal fundi can be determined for linear sulci in averagemesh representations of the cortex due to their low inter-subject

variability, so we first extracted linear sulcal fundi using Automated Brain Line Extraction (ABLE)74 in MATLAB (https://www.

mathworks.com). Resulting sulcal fundi lines were corrected for small errors by redrawing on the cortical surface using Connectome

Workbench’s image viewer.75 The fundi represented the midline between gyral crests that traced through the points of highest cur-

vature at the deepest points of sulci. Sulcal fundi and DEMs were both projected to spherical representation of the cortical surface,

with gene expression gradients and sulcal fundus orientation recomputed on the sphere using the Workbench -metric-gifti com-

mand.75 Principal expression vectors were calculated as the first principal component of gene expression gradient vectors at

each vertex across all genes. To first test whether these vectors ran orthogonal to sulcal fundi at large magnitude, each sulcal fundus

was scored with the following equation:

1

n

 Xn
i

mi � sinðgi; fiÞ
!

(Equation 1)

where n = number of vertices in a sulcal region, mi = magnitude of the mean gradient at vertex i, i = ith vertex, gi= gradient vector at

vertex i, and fi = fundus orientation vector for the closest fundus vertex to vertex i. For each sulcus, this value was recomputed

following 10,000 random spins of the sulcal fundus about the sphere, ensuring the spun fundus did not cross into subcortical vertices.

The degree to which all vectors pointed the same direction was not considered as the sign of the principal expression direction is

arbitrary. For gene-level scores for each sulcus, the same score was used but also had to consider the degree to which all vectors

pointed the same direction about the sulcal fundus, given by the equation:
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!!
� do (Equation 2)

where di was a binary variable representing the direction the gradient vector pointed to (e.g., 0 = left-to-right through sulcal fundus

and 1 = right-to-left through sulcal fundus when the majority of vertices had gradient vectors oriented right-to-left) and do(overall di-

rection) was -1 or 1 depending on the direction themajority of vertices’ gradient vectors pointed through the sulcal fundus. This calcu-

lated the strength of orthogonal gene expression gradient to sulcal fundi, weighted by the angle, amount of vectors pointing the same

direction, and magnitude of gradient. Thus, signed gene scores gave information on the direction and coherence of the trans-sulcal

alignment of gradient vectors with the sulcal fundus. Gene ontology enrichment for gene scores were computed using spatial per-

mutation nulls, wherein the sulcal fundus was randomly rotated 10,000 times with gene scores recomputed for each rotation. As in

Fulcher et al.,91 the mean gene score for a gene category was tested for whether it was more extreme than mean gene scores from

spatially permuted data. Bonferroni correction accounted for two sulci (significant from principal expression analysis) times two di-

rections from which genes could transition from low to high or high to low expression.

Cross-sectional analysis of post-mortem gene-expression data was performed using the BrainSpan dataset (http://brainspan.

org)52 which included sparse samples from ages �10 weeks (GA) to 40 years. Normalized gene expression data (http://

development.psychencode.org/)71 were interpolated using code from Stauffer et al.76 andWarrier et al.25 to visualize developmental

trajectories of genes that demonstrated significant trans-sulcal gradients of expression orthogonal to the central sulcus.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and statistical analysis was performed in R (https://www.r-project.org/) and Python (https://www.python.org/). All

relationships between sulci within subjects, across subjects, and with covariates were assessed in R with statistical tests

as described above in method details. When comparing separate maps of regional sulcal morphology, we used linear models

in R. When comparing sulcal morphology to dense, vertex-level data on the cortical surface, we used spatial permutation testing83,91

in Python to account for spatial autocorrelation effects. Sample size and measures of spread are indicated either in the text of

the results section or in figure captions. Significance was assessed at P<0.05 with correction for multiple corrections as speci-

fied above.
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