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Abstract: Metabolomics is emerging as a promising tool to understand the effect of immunometabolism
for the development of novel host-directed alternative therapies. Immunometabolism can modulate
both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infec-
tions can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate
pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced
biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other
systems biology tools or treatment modes can enhance the cure, response rate, and control over the
emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host
metabolism for its survival, while there are many biochemical pathways that the host adjusts to com-
bat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to
affect the host metabolic pathways thus modulating immune responses. In this review, we highlight
the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune
metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic
modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon
metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained
immunity and its applications are increasing day by day and it can be used to develop the next
generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide
fresh insight into this direction and connect various dots to develop a conceptual framework.

Keywords: metabolomics; Bacillus Calmette-Guerin; Mycobacterium tuberculosis; tuberculosis; vaccinomics;
vaccine metabolism; immunometabolism; trained immunity; epigenetics and immunity

1. Introduction

Before the COVID-19 pandemic, Tuberculosis (TB) an infection caused by Mycobac-
terium tuberculosis (Mtb) was the leading cause of death from a single infectious agent
ranking above both Human Immunodeficiency Virus (HIV) and malaria. The situation has
become even worse amid the COVID-19 pandemic which has disrupted the global health
infrastructure; causing the number of deaths due to TB to rise for the first time in over
20 years [1,2]. Bacterial drug resistance is a growing concern as even newly introduced
anti-TB drugs such as bedaquiline and delaminid are failing to fight the infection [3]. Long
treatment regimens, rising cases of HIV-TB coinfection, and the rapid emergence of drug-
resistant strains underscore the necessity for newer prophylactic and therapeutic modalities
with less or no dependency on antibiotics. Inhibiting the transmission cycle of TB with
novel effective vaccines have the potential to achieve the World Health Organization’s
(WHO) ambitious goal of ending the TB epidemic by 2035 [4].
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To date Bacillus Calmette-Guerin (BCG) is the only licensed vaccine against TB. First
used in 1921, it was orally administered to a child in Paris by Dr. Benjamin Weill-Halle [5].
Although BCG vaccination in infants is moderately effective in preventing severe, extra-
pulmonary TB, it has shown varied efficacy in preventing TB in adolescents and adults in
different clinical trials [6]. It is unclear what different physiological and metabolic factors
account for these variable immune responses to the BCG vaccine.

Several studies have revealed extensive alterations in the host metabolism upon
Mtb infection [7,8] and subsequent treatment [9,10] (Table 1). These changes represent
not only the state or progression of the diseases but also the success of the therapeutic
interventions. Analysis of host-directed metabolomics can profile the non-genomic and
non-transcriptional aspects of these by providing a snapshot of the metabolites released in
body fluids such as blood or urine. It has been used to screen specific metabolic identifiers
of hypoxic metabolism and inflammation during Mtb infection [11–15].

A distinct metabolic reprogramming is observed in response to demands caused by
various bacterial or viral infections as well as vaccinations [16]. Glycolysis, fatty acid
biosynthesis, bile acid metabolism, sphingolipid, and sphingomyelin production, different
amino acid metabolism and catabolism, creatine metabolism, and glutaminolysis are com-
mon metabolic pathways essential for the immune system’s response against Mtb, E. coli,
influenza, SARS-CoV-2, chikungunya, and dengue (Figure 1) [15].
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Figure 1. Analyzing Immunometabolomic effects of TB vaccination. In a clinical setup, body fluids
(such as blood serum or plasma and urine) would be collected and processed to run on a GC-MS
or LC-MS to profile the levels of the metabolites and then analyzed various bioinformatic tools.
Quantitative analysis shows the changes in different pathways as compared to placebo subjects. A
correlation has been shown between metabolic remodeling, trained immunity, and epigenetics. These
may potentiate the effect of the vaccine to mount a better immune response. (Abbreviations: GC-MS:
Gas chromatography-mass spectrometry, LC-MS: Liquid chromatography-mass spectrometry.) (The
figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative
Commons Attribution 3.0 unported license).

It is well known that our immune system develops cellular memory upon infection
and vaccination. However, the process by which this memory helps to protect against future
exposures to unrelated pathogens is not well understood. A recent study observed the acti-
vation of innate immunity in an experiment where β-glucan (a component of C. albicans cell
wall) challenged human monocytes and showed an ex vivo increase in cytokine synthesis
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in response to an unrelated stimulation [17,18]. There are some studies describing similar
relationships of BCG vaccination with non-specific protection against different causes of
mortality. This process of innate immune system adaptation was found to be associated
with epigenetic changes in immune cells and is known as trained immunity [19,20]. A
few studies have illuminated the effect of the BCG vaccine on host metabolism and its
relationship with trained immunity. Specifically, changes in central carbon metabolism and
lipid metabolic pathways have been linked to histone modification enzymes. In this review,
we summarize the metabolic reprogramming that occurs due to the BCG vaccination, as
well as its relationship with trained immunity, and strategies for the development of novel
vaccines and applications. This discussion aims to describe TB pathogenesis and provide a
condensed set of understandings of the host immunometabolism upon Mtb infection and
vaccine administration (Figure 1).

Table 1. Metabolic changes upon Mtb infection and BCG vaccine administration.

Metabolic
Modulator Sample Type Metabolomics Technique Used Affected Metabolites or Pathways References

Mtb Infection Blood serum,
plasma, and urine

Gas chromatography-mass
spectrometry, Liquid

chromatography-mass
spectrometry, Flow injection

analysis-tandem mass
spectrometry

Urea, sphingolipid, sphingosine-1-phosphate,
sulfoxymethionine, fatty acid metabolism,

sphingomyelins, phosphatidylcholines,
lysophosphatidylcholines, amino-acyl tRNA,

lysosome pathways, mannose metabolism,
pyruvate, citrate, protein digestion pathways,

asparagine, aspartate, citrulline, cysteine, lysine,
leucine, methylamine, gamma-glutamylglutamine,
glutamate, formate, glutamine, histidine, inosine,
methionine, tryptophan, kynurenine, lactate, fatty

acid beta-oxidation, itaconate, mycolic acids,
phthiocerol dimycocerosate,

glycerophosphocholine, nicotinate.

[7,8,21–27]

BCG
Vaccination Blood serum Liquid chromatography-mass

spectrometry

Purine biosynthesis,
N6-carbomoyltheronyladenosine, glucose

metabolism, alpha-ketobutyrate,
1,5-anhydroglucitol, methylguanine, fumarate,

glutamate, glutamine, acetyl-CoA, lactate, glucose,
nicotinamide adenine dinucleotide,

2-sulfotrehalose, trehalose 6-phosphate,
mycobactin, 1-tuberculosynadenosine,

conjugate-mycothiolhexadecanoyl-sn-glycero-3-
phospho-(1′-myo-inositol), Hypoxanthine,

para-aminobenzoic acid, lysophosphatidylcholines,
lysophosphatidylethanolamines, sphingolipid

metabolism, docosahexaenoic acid.

[9,10,14,28,29]

2. Mtb: A Smart Pathogen

Mtb has coexisted with human hosts since our early hominid ancestors over 3 million
years ago. The long period of co-evolution between Mtb and humans has led to the devel-
opment of complex molecular interactions between the pathogen and the host’s immune
system [30]. Mtb is admitted into alveolar macrophages via host C-type lectin, CD91,
and membrane Toll-like receptors [TLRs], which recognize the mycobacterial molecular
patterns, such as cell wall lipoglycans and lipoarabinomannan [31]. Mtb not only evades
the body’s primary defenses against pathogen entry but also survives within-host im-
mune cells. Inside macrophages, Mtb prevents normal processes, such as phagolysosome
formation and antigen presentation [32], by secreting virulence proteins that affect host
pathways like the endosomal sorting complex. Mtb virulence factors (such as ESAT-6,
phenolic glycolipid, and phthiocerol dimycocerosates) further drive macrophage polariza-
tion [33]. Upon stimulation by pathogen exposure macrophages shift metabolic pathways,
allocating recourses to attack the pathogen. Understanding the molecular and metabolic
reprogramming occurring in Mtb and the host cells can enhance our understanding of Mtb
survival techniques; and improve therapeutic development. Mtb employs multiple strate-
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gies to survive inside the macrophage. It first avoids phagosome digestion by interfering
with phagosomal maturation markers, such as Rab GTPase, involved in membrane fusion
events [34–36]. This can also prevent the acidification required for the activity of lysosomal
enzymes [37–39]. Studies report that Mtb not only survives inside the macrophage but
ensures contact with the cytosol using the ESX-1/T7S and phthiocerol dimycocerosates
(DIM/PDIM) systems [40–44]. This cytosolic accessibility is an important aspect of the
complex host-pathogen interaction as it provides the access to essential nutrients [45,46].
A better understanding of this cytosolic exposure mechanism of the pathogen can help to
improve the protective efficacy of vaccine candidates. Mtb’s interference with lysosomal
enzymes and host metabolism may also impact host cell apoptotic and necrotic pathways,
further contributing to Mtb survival, replication, and dissemination [44,47–49].

Mtb infection can result in granuloma formation, wherein the bacterium is sequestered
and prevented from causing infection, but it is also protected from host immune destruc-
tion [50]. Mtb displays self-regulated epigenetic changes when entering the latent stage,
allowing for adjustment of metabolism and survival in low pH [51]; permitting Mtb to
persist within the granuloma. Each site of granuloma formation provides a microenviron-
ment that induces phenotypic and metabolic heterogeneity. Cavitation, when a granuloma
penetrates the underlying tissue, can allow the pathogen to access oxygen and a privileged
environment [52]. Relative adaptation to these stringent environments results in increased
pathogenicity during secondary reactivation [53]. It has been reasoned that this plasticity is
a result of Mtb’s long period of co-evolution with humans. Through the duration of the
latent infection, CD4+ T-cells specifically produce a Th1 cytokine reaction that functions to
maintain granuloma integrity. Later during TB infection, a more significant role is played
by CD8+ T-cells, which regulate the lysis of infected cells. T-cells also activate macrophages
by releasing Tumor Necrosis Factor Alpha (TNF-α) and Interferon gamma (IFN-γ) [54].

3. Host Metabolic Adaptation upon Mtb Infection

Along its timeline of evolution, Mtb has learned to survive within the human host
through fine-tuning metabolism and counteracting the host immune system. Gluconeogen-
esis is the primary source of carbon for the bacterium in the host. Phosphoenolpyruvate
carboxykinase (PEPCK) was found to play an essential role in bacterial survival during
macrophage infection [55]. With the help of isotope labeling and metabolomic profiling, it
was found that Mtb can simultaneously utilize multiple types of carbon substrates (such as
glycerol, acetate, and dextrose) for sustained growth [21] (Table 1). Mtb favors fatty acid
metabolism during the infection but can rely on many metabolic pathways [56,57]. The
serum metabolome shows higher amounts of aspartate, sulfoxy methionine, and glutamate
and lower levels of asparagine, methionine, and glutamine in patients with active TB as
compared to patients with latent infections or healthy subjects [8]. Macrophages over-
express HIF-1α (hypoxia-inducible factor-1) which upregulates lactate dehydrogenase-A
(LDH) and lowers pyruvate levels, thus reducing the availability of glucose for Mtb sur-
vival [7] (Table 1). Targeted metabolomics of human plasma has revealed that both active
and latent Mtb enhance the catabolism of tryptophan to kynurenine, and it is reversed
with the anti-TB treatment [22]. Increased tryptophan metabolism was linked to a CD4+

T cell response promoting immune tolerance and protecting the host from inflammation
bursts [58]. Host phospholipase D was also found to play a key role in controlling the Mtb
infection via Sphingosine 1-phosphate (S1P) metabolism [59] (Table 1).

4. BCG Vaccine: Immunometabolic Reprogramming and Trained Immunity

Calmette and Guerin first used a live-attenuated Mycobacterium bovis strain along with
beef bile and found this resulted in protection against TB in bovine and rodent animal
models [60,61]. Genomic studies further revealed that knocking out the region of deletion 1
(RD1) was associated with loss of Mtb virulence. This attenuated strain was termed BCG.
RD1 is a 10.7 kb fragment containing 9 Open Reading Frames (ORFs) normally present
in virulent Mtb and M. bovis strains. Genes present in the RD1 region encode for two
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major proteins of Mtb, ESAT-6, and CPF-10, parts of ESX1 secretion system. Although the
non-virulent phenotype is predominantly associated with the deletion of the RD1 region,
however, its reintroduction does not completely restore the virulence suggesting the role of
other factors [62].

Heterogeneity between individuals causes some variation in the trained immune
system and responses to BCG vaccination, however, the basis for these differences has not
been well defined [63,64]. The composition of circulating metabolites impacts both innate
and adaptive immune components and might contribute significantly towards variations
observed in the immune responses to vaccines among individuals.

Many metabolites are associated with trained immunity. Particularly BCG vaccination
led to an increase in glycolysis and glutamine metabolism (Figure 2, Table 1). Conversely,
inhibiting glutaminolysis reduces the trained immune responses [65]. Fumarate is another
key metabolite that accumulates in the primed cells following glutaminolysis. Specifically,
it has been shown to facilitate trained immunity by inhibiting KDM5 histone demethylase
activity and enhancing H3K4me3 at the promoters of immune genes [66]. BCG-induced
trained immunity has been implicated in modulating the plasma concentration of suc-
cinate and malate, key intermediates of the TCA cycle, and glutamine and glutamate
metabolism [10] (Table 1). Furthermore, succinate is implicated in innate immune signaling
and promoting increased production of IL-1β in macrophages [67]. Overall, these stud-
ies highlight the critical role of metabolites in regulating the trained immune responses
following BCG vaccination (Figure 2).

The rapid protection by BCG in newborns suggests it might be mediated by the
induction of innate immune responses. The different mechanisms involved in BCG-induced
protection are being actively investigated [68–70]. In a recent study involving 6544 high-risk
neonates, it was found that BCG induces granulocyte colony-stimulating factor (G-CSF) to
promote granulopoiesis resulting in the enhanced generation of neutrophils that protect
from neonatal sepsis [71].

One potential mechanism for BCG-induced heterologous protection is the epigenetic re-
programming of innate immune cells, a process termed trained immunity (Figure 2) [19,20,72].
Through this process, innate immune cells such as macrophages, monocytes, and natu-
ral killer (NK) cells, are prepared for rechallenge with heterologous stimuli later in life
(Figure 2) [19,20,72]. The changes induced by BCG exposure affect immune cell respon-
siveness, resulting in their enhanced effector functions, such as the release of cytokines
and reactive oxygen species upon encountering non-related infections. BCG-associated
protective effects might be driven by the modulation of metabolites [73]. These metabolites
may serve as cofactors for enzymes involved in the modification of chromatin and DNA to
train the immune cells [72]. The active metabolites needed for maintaining trained immune
responses are derived from the modulation of glucose, glutamine, and cholesterol metabolic
pathways [74]. Diverse factors including physiological or pathological states of individuals
and environmental factors such as nutrition, impact the human metabolome [75,76].

The differences in active or dysregulated metabolic pathways identified in healthy
and diseased individuals are being extensively categorized. Compared to other basic
research, the mechanistic insights yielded through a metabolomic approach focus more on
the gene- interactome intersection. By nature, these are key regulatory points with high
therapeutic potential [76,77]. There is a reciprocal relationship between plasma metabolite
levels and the immune response. Plasma composition can modulate immune activation,
while systematic immune responses can affect metabolism and thus plasma metabolite
levels. Hematologic and other modes of metabolite quantification are emerging as novel
tools in disease staging and possibly prediction of pathologic progression [15,78].
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Figure 2. Mechanism of BCG-induced metabolic reprogramming and its role in the activation of
trained immunity through epigenetic modifications of histones. BCG stimulates innate immune cells
such as naïve monocytes, macrophages, and natural killer (NK) cells. Phagolysosomal digestion
of BCG induces PI3/Akt and mTOR signaling pathways which directly affect the expression of
HIF1α thus modifying the glycolysis and the TCA cycle. Acetyl-CoA (Ac.CoA), fumarate, and
succinate can affect the activity of HATs and KDMs and induce epigenetic modifications of histones.
These modifications of histones result in better access to promoters of proinflammatory cytokines
(e.g., IL-1β, IL-6, TNF-α) and program immune cells for the next encounter. Booster or second
exposure results in an excessive amount of cytokines and activation of different markers (TLR4,
CD11b, and CD14). This trained immunity can protect against many diseases like sepsis, type 1
diabetes mellitus, pneumonia, asthma, allergic rhinitis, melanoma, etc. (Abbreviations: BCG: Bacillus
Calmette-Guérin, PI3: Phosphatidylinositol 3-kinase, Akt: Serine/Threonine protein kinase B, mTOR:
mammalian Target of Rapamycin, HIF1α: Hypoxia Inducible Factor 1 Subunit Alpha, ATP: Adenosine
triphosphate, TCA: Tricarboxylic Acid cycle, IL-1β: Interleukin-1 beta, IL-6: Interleukin 6, TNF-α:
Tumor necrosis factor alpha, TLR4: Toll-Like Receptor 4, CD11b: Cluster of Differentiation molecule
11B, CD14: Cluster of Differentiation 14, 2DG: 2-Deoxy-d-glucose, Ac.CoA: Acetyl coenzyme A,
Me: Methylation, HAT: Histone Acetyltransferases, KDMs: Lysine Demethylases.) (The figure was
partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons
Attribution 3.0 unported license.).

As discussed above the BCG vaccine is generally given earlier in life as it shows less
protective effects when administered in adolescence and adulthood. In infants, several
metabolites in monocytes and macrophages, including fatty acids, acetyl-coenzyme A, and
succinate, regulate the epigenetic modulations required for trained immunity [64,79–81]. In
recent years, mass spectroscopy-based metabolomics has been utilized to examine neonatal
plasma [82] however, few studies have used this technique to examine the immune response
to vaccines in infants [83–85]. In another clinical study (n = 100), metabolomic profiling of
infant plasma demonstrated that BCG vaccination induces a metabolic shift in lysolipid
pathways, including lysophosphatidylcholines [9] (Table 1). Significantly increased levels
of some monoacylglycerols, sphingolipids, steroids, and lipoprotein lipase metabolites
along with decreased biosynthesis of progestin steroids and palmitoylglycerols, were also
observed upon BCG vaccination [9]. While recent research has shed light on the complexity
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of metabolic shifts during the immune response, more investigation toward understanding
neonatal immunometabolism is required [86].

5. Can BCG Be Used for Other Diseases?

In addition to protecting against tuberculosis, BCG vaccination is associated with
enhanced protection from some unrelated infections and leads to reduced mortality. Inter-
estingly, upon BCG administration, healthy human subjects showed a phenomenon similar
to the cytokine storm, which persisted for almost 3 months after the vaccination [19,87].
BCG can also trigger heterologous immunity (antigen-independent) characterized by IL-17
and INF-γ productions from T-cells [88]. Studies have demonstrated that the presence
of a BCG scar or PPD (purified protein derivative) is associated with a significant reduc-
tion in infant mortality [89,90]. Further research using randomized trials concluded the
reduction of neonatal mortality associated with early BCG-vaccination may be a result of
decreased incidence of respiratory infections and sepsis [91–93]. BCG vaccination was also
found to have protective effects against lethal candidiasis in regular mice [94], and severe
combined immunodeficient (SCID) mice, suggesting a role of B and T cell-independent
immune response [19].

A study by Arts, R.J.W. et al. revealed a significant association of BCG with non-specific
production of IL-1β and protection against yellow fever viremia [64]. Subsequently, it is
known to offer protection against the Influenza virus [95], Candida albicans [19], Leishmania
species [96,97], malaria [63], human immunodeficiency virus (HIV) [98], and hepatitis C
virus (HCV) [99] infections. Additionally, this may occur due to BCG-mediated modulation
of T-cell-directed autoimmunity [100]. Moreover, BCG was found to be effective in bladder
cancer. Various clinical trials show that intravesical injection of BCG can control the recur-
rence of superficial bladder tumors by provoking local immune activity [101]. Since BCG
affects the host glucose metabolism, its effect on Type 1 diabetes mellitus (T1DM) was also
studied by many groups. Shehadeh et al. administered 17 T1DM patients with a single dose
of BCG and found that 65% of subjects show clinical remission by 4th week [102]. While
many other clinical trials failed to establish the correlations between BCG and T1DM [13],
they all were done before the year 2000, when metabolomics was not well developed.
Because BCG affects the host-trained immunity and metabolism, it has also been proposed
as a treatment for asthma, allergic rhinitis, and atopic dermatitis. When administered
via the intranasal route, BCG significantly attenuated allergy-related inflammation and
hypersensitivity [103,104]. However, enough significant epidemiological and metabolomic
data are not yet available to establish a relationship between BCG and atopy.

Novel TB Vaccines

The target of WHO’s ‘End TB’ program to achieve a 95% reduction in deaths from TB
and a 90% reduction in TB incidence by 2035, requires multisector efforts incorporating
socio-economic identity, novel diagnostic and therapeutic interventions, and effective vac-
cine development. Vaccines have shown their potential in controlling and even eradiating
many life-threatening diseases. For this reason, the End TB program has an immediate
need for a vaccine candidate that is effective in all age groups, for preventing infection,
improving antibiotic treatment outcomes, and reducing relapse events. Current TB vaccine
candidates are grouped into several categories including viral vector vaccines, attenuated
live vaccines, inactivated whole cell vaccines, and adjuvanted protein subunit vaccines,
among other formulations.

Examples of recombinant viral vector vaccines include the Ad5 Ag85A, MVA85A,
ChAdOx1 85A, and TB/FLU-04L engineered strains (Table 2). The Ad5 Ag85A vaccine
in particular is designed as a replication-deficient adenoviral serotype 5 (Ad5) vector
containing the Ag85A antigen from Mtb (Table 2). Typically, this strain is incorporated in
the booster vaccine given after BCG priming [105–108]. MVA85A (recombinant modified
vaccinia virus Ankara containing antigen 85A from Mtb) was reported to induce a robust
Ag85A-specific CD4+ and CD8+ response. In animal cell models incubated with low-dose
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aerosol infections, this immunologic modem displayed increased protection compared
to those induced with BCG [109]. These same studies have described the chimpanzee
adenovirus [110] as expressing the Ag85A antigen of Mtb (ChAdOx1 85A) [111]. The
corresponding mucosal vector vaccine composed of a replication-deficient attenuated
influenza virus expresses Ag85A and ESAT-6 Mtb antigens (TB/FLU-04L), the protective
efficacy of BCG (Table 2) [112].

VPM1002 and MTBVAC are viable whole-cell vaccines that can carry multiple anti-
gens (Table 2). Like BCG, these strains also have complex and individualized immune
reactions. As observed in the case of BCG, pre-sensitization by these nontuberculous
mycobacterial strains reduces the pathologic consequences of subsequent mycobacterial
infections. VPM1002 is developed as a recombinant BCG vaccine with improved efficacy.
The immunogenicity of this vaccine was tempered with genetic engineering techniques,
modulating the release of mycobacterial antigens into the host cell cytosol. Specifically,
the gene encoding the urease C (UreC enzyme) was replaced with the Listeriolysin O
(LLO) encoding sequences (Hly) of Listeria monocytogenes (Table 2) [113,114]. Normally the
urease C enzyme inhibits phagocytic lysosome maturation and improves the survival of
Mtb in macrophages [115,116]. The other possible vaccine candidate, MTBVAC is a live,
attenuated Mtb strain derived from an Mtb clinical isolate belonging to modern lineage 4
which retains the T cell epitopes described in tuberculous mycobacterial strains, as well
as the ESAT6 and CFP10 antigens. In preclinical evaluation, MTBVAC showed improved
efficacy as compared to BCG (Table 2) [117]. Attenuation was achieved by the deletion of
two genes, phoP, and fadD26, a crucial modulator of virulence [117]. Currently, the MTBVAC
formulation is being adapted for use as a preventive vaccine as well as a booster vaccine
for BCG-primed adults.

RUTI, Vaccae, DAR-901, and Immuvac are vaccine candidates based on inactivated
whole-cell derivatives (Table 2). RUTI is a multi-antigen vaccine derived from the cell
wall of Mtb cultivated in hypoxic conditions and is formulated as a liposomal suspension
(Table 2) [118]. Vaccae is derived from heat-killed Mycobacterium vaccae, a non-pathogenic
environmental mycobacterium. It was reported to complement the effectiveness of BCG
vaccination, resulting in an enhanced immune response against TB (Table 2) [119]. Similarly,
DAR 901 is derived from heat-killed non-tuberculous mycobacteria identified from the
SRL-172 master cell bank [120]. Clinical trials examining the efficacy and safety of the
DAR-901 vaccine in BCG-immunized adults determined that it effectively induced the
formation of cellular and humoral immune responses while displaying no adverse effects
after three doses (Table 2) [121–123]. Immuvac, is a vaccine derived from heat-killed My-
cobacterium indicus pranii a non-pathogenic mycobacterium closely related to M. avium [124].
It is currently approved by the Central Drugs Standard Control Organization, India (CD-
SCO) and the FDA as an immunotherapeutic and immunoprophylactic agent for treating
multibacillary leprosy [125–127].

Multiple protein subunit vaccines have also been developed including AEC/BC02
(using Ag85B and ESAT6-CFP10 antigens with BC02 compound adjuvant) [128]; H56:IC31
(using Ag85B, ESAT-6, and Rv2660c antigens with IC31 adjuvant) [129]; ID93 + GLA-
SE (using Rv2608, Rv3619, Rv3620 and Rv1813 antigens with GLA-SE adjuvant) [130],
and M72/AS01E (using Mtb32 and Mtb39 antigens with AS01B, AS02A, or AS01E ad-
juvant) [131–135] (Table 2). Protein subunit vaccines are primarily developed for use as
booster vaccines in BCG-primed individuals to extend immune protection.

Despite all the efforts in this area the goal of ending the TB epidemic is still far
away. During 2015–2021 the total incidence of TB infection and mortality was reduced
by 10% and 5.9%, respectively. This is modest considering the 50% and 75% reduction
milestones for infection and mortality set for 2025 by the WHO (Global tuberculosis report,
WHO, 2022). The development and introduction of newer technologies are needed to fuel
research in the TB diagnostic and therapeutic areas. While the whole genome sequence
(WGS) of the Mtb (H37Rv) was uncovered in 1998 [136], recent developments in genomic
techniques have provided a clear resolution at the nucleotide level. Whole genome analysis
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allows for screening clinically relevant genetic information, such as sequences related to
drug resistance, and variations between bacterial species and strains [137]. Additionally,
these techniques can help identify specific genetic regions responsible for antigenicity
and virulence.

The TB vaccine development space can be improved by enhancing our understanding
of the host immune response to TB infection and finding an effective route of antigen deliv-
ery (immunization) leading to sensitization [138]. Nanomaterial-based vaccine delivery
systems have also shown potential in vaccine storage, improved stability of antigens in
blood, and greater specificity in targeted delivery [139,140]. Rapidly emerging mRNA-
based vaccination technology has shown its potential in vaccine development against
many diseases including SARS-CoV-2 [141]. Current research in this area is focused on
improving mRNA stability, optimizing delivery vectors, and enhancing control of protein
expression. These advances have already led to the development of novel therapeutics
such as self-amplifying RNA vaccines [142]. A recently adapted Mtb subunit vaccine, ID93,
is composed of a self-replicating RNA molecule with a nanostructural carrier [143].

Table 2. TB vaccine candidates with clinical trial status.

Vaccine Category Vaccine Candidate Antigen and Formulation Latest Clinical Trial
Phase (Status) #

NCT Number
(References)

Recombinant viral vector

Ad5 Ag85A Ag85A antigen expressed in
Adenovirus serotype 5 I (Completed in 2021) NCT02337270 [144–146]

MVA85A Ag85A antigen expressed in
modified Vaccinia virus Ankara IIa (Completed in 2021) NCT03681860 [109]

ChAdOx1 85A Ag85A antigen expressed in
Chimpanzee adenovirus I (Completed in 2021) NCT03681860 [110,147]

TB/FLU-04L

Ag85A & ESAT-6 antigens
expressed in attenuated

replication-deficient influenza
virus vector

I (Completed in 2015) NCT02501421 [148]

Viable whole-cell

VPM1002 Recombinant BCG vaccine III (Ongoing) NCT04351685 [149,150]

MTBVAC

Attenuated Mtb clinical isolate
with ESAT6 & CFP10 and

independent genetic deletions of
phoP & fadD26 genes

II (Completed in 2022) NCT03536117 [151,152]

Inactivated whole-cell

RUTI
Polyantigenic liposomal

formulation of detoxified,
fragmented Mtb

II (Ongoing) NCT04919239 [153–155]

Vaccae Heat-killed M. vaccae III (Completed in 2017) NCT01979900 [156]

DAR-901 Heat killed nontuberculous
mycobacteria II (Completed in 2020) NCT02712424

[121,122,157,158]

MIP/Immuvac Whole cell, heat inactivated
Mycobacterium indicus pranii III (Completed in 2012) NCT00341328 [159]

Protein subunit

AEC/BC02 Ag85b, ESAT6-CFP10 fusion
protein, with BC02 adjuvant II (Ongoing) NCT05284812 [128]

H56:IC31 Fusion protein of Ag85B, ESAT-6
and Rv2660c with IC31 adjuvant II (Ongoing) NCT03512249 [160–163]

ID93 + GLA-SE
Fusion protein of Rv1813,

Rv2608, Rv3619, and Rv3620
with GLA-SE adjuvant

IIa (Unknown) NCT03806686 [164–166]

M72/AS01E Fusion protein of Mtb32A and
Mtb39A with AS01E adjuvant II (Ongoing) NCT04556981 [167,168]

# Status of the respective clinical trial as shown on clinicaltrials.gov (accessed on 7 December 2022).

6. Key Challenges and Recommendations

With the increasing prevalence of infections by drug resistant Mtb strains, it is impor-
tant to find alternative therapies. The integration of vaccinology and metabolomics has

clinicaltrials.gov
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formed a key development pipeline. Due to its impact on immune and metabolic responses,
BCG has been considered a therapeutic and prophylactic tool against various autoimmune
and inflammatory diseases. However, it comes with many challenges. One outstanding
problem is that metabolomic studies have mainly been limited to murine models, but the
molecular mechanism of the actions of these effects are yet to be investigated. There are
many enhancers like rapamycin (a modulator of the mTOR complex), which have been
used along with BCG to boost immunogenicity in mice [169]. However, these need to be
validated in clinical trials with bigger cohorts. Coadministration of some other metabolic
modulators (for example Dichloroacetate, Metformin, Silybin, and 2-deoxyglucose) can
also be useful to amplify the immune impact of the BCG vaccination [65].

Tuberculosis infection has heterogeneous pathology containing both active and latent
bacilli. This makes complete eradication of the Mtb infection difficult [170]. Metabolomic
understanding of the immune system is still in its infancy. In addition to genetics many
non-heritable variables such as food habits, geographical location, previous disease or
vaccination status, and other environmental factors can confound the observations of
different clinical studies. To account for this, all therapeutic studies might be designed
using a multifactorial approach and analysis [171]. Furthermore, combining other omics
datasets with immunometabolomics information can reveal complex genomic, proteomic,
or transcriptomic clusters, implicating their role in immune activity and vaccination.

Future Prospective

Tuberculosis is an old disease however, its cure remains a major challenge. Advanced
systems biology approaches present solutions to understand the disease and account
for the complex host-pathogen relationship. Novel metabolomic and chromatographic
technologies such as hydrophilic interaction chromatography (HILIC), ion-exchange chro-
matography, chiral liquid chromatography, capillary electrophoresis mass spectrometry
(CE-MS), ion-mobility separation (IMS), and liquid-liquid micro extraction (LLME) can be
helpful to analyze a broad range of metabolites with great accuracy [172]. Machine learning
(ML) and artificial intelligence (AI) based programs are facilitating next-generation solu-
tions for high-resolution mass spectrometry (HRMS) with improved data quality, accurate
metabolite annotations, and network analysis [173]. With the emergence of the COVID-19
pandemic, the landscape of infectious disease research has changed. Vaccines like BCG,
which have an impact on trained immunity and metabolism, provide an adjunctive ap-
proach to pandemic preparedness. We strongly believe that the formation of global shared
databases can aid in the development of precision models of personalized vaccination
against several life-threatening diseases. This collaborative effort could also help to allocate
vaccine resources and to predict possible epidemiologic events well in advance.

7. Conclusions

The human metabolome is vast and is under the influence of many pathological
and physiological factors. With the development of high-quality mass spectrometry and
chromatography, metabolomics is evolving as a tool to study diseases and therapies. In
the last few years, various studies have shown that metabolism is associated with the
functional state of the human immune system. Metabolic factors can affect the protective
natural immune response against diseases as well as the efficacy of vaccines. Knowledge of
immunometabolism in diseased and vaccinated individuals presents an immense unhar-
nessed therapeutic potential to cure many autoinflammatory diseases, viral and bacterial
infections, and metabolic disorders.

BCG is one of the oldest vaccines in human history, saving millions of lives every year.
By highlighting metabolic aspects of the BCG vaccine pertaining to the human immune
system, our review presents metabolomics as a promising vaccinomics tool for discovering
novel avenues to cure difficult infections. BCG impacts glycolysis in immune cells and
activates lactate biosynthesis through mTOR and HIF-1α signaling. It was also found to
affect the levels of TCA cycle intermediates, hence affecting lipid biosynthesis and the
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activity of histone-modifying enzymes (such as HAT and KDMs) via fumarate and succinate.
These lead to epigenetic modifications and induction of trained immunity in different
innate immune cells such as monocytes, macrophages, and NK cells. Upon subsequent
exposure, these cells increase the relative secretions of proinflammatory cytokines and
provide protection against many non-specific diseases and infections for which no therapy
yet exists. Many unanswered questions remain, such as what frequency of BCG vaccination
is required to sustain the trained immunity. Greater analysis is needed to uncover the
exact role of metabolic modulators in trained immunity and the impacts of many unknown
metabolites (the dark matter of metabolism). As we enter the era of Big Data, novel analysis
methods such as machine learning are required to implement a multi-omics approach to
understanding immunity. This understanding can aid the development of novel anti-TB
vaccines, leading to better immunogenic vectors with wider applications. Combining such
vaccines with other modes of treatment can allow for targeted therapy of many diseases and
reduce the emergence of drug resistance. Cross-discipline collaborations and global data
integrations can accelerate the development of metabolomics applications in vaccinomics,
to make informed decisions in clinical settings.
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