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Dynamic Support Vector Regression Control
System for Overlay Error Compensation

With Stochastic Metrology Delay
Marzieh Khakifirooz , Member, IEEE, Chen-Fu Chien , Member, IEEE, and Ying-Jen Chen

Abstract— This study aims to develop a robust monitoring
system for advanced control and compensation of the overlay
errors based on �-insensitive support vector regression (SVR),
considering metrology delay. The proposed �-insensitive SVR
control system has the ability to solve quadratic optimization
problems in real settings. To investigate the consistency and
reliability of the proposed algorithm, a simulation study based
on empirical data was conducted to validate the solution quality
enhancement by the proposed approach. The stability of the
system under metrology delay was investigated when Lyapunov
stability function takes place as the kernel function of the
�-insensitive SVR optimization system. For sensitivity analysis,
we compared and analyzed the effect of noise and time-varying
metrology delay, within an online process with a simulation study
based on empirical data. This approach can effectively reduce
the misalignment of the overlay errors through the self-tuning
process of �-insensitive SVR and provide real-time decision aid
for process engineers.

Note to Practitioners—In practice, there are dynamic metrology
delays that have not been adequately addressed. This study devel-
oped a robust monitoring system that can consider metrology
delay for advanced control and effective compensation of the
overlay errors. A study based on empirical data has validated
the practical viability of the proposed approach. Indeed, the pro-
posed algorithm can obtain a high degree of reliability for the
measurement data in the complicated semiconductor fabrication
process. Indeed, the developed solution is implemented in real
practice.

Index Terms— �-insensitive support vector regression (SVR),
intelligent manufacturing, Lyapunov mapping function, metrol-
ogy delay, overlay error, stochastic time-delay system (TDS).
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I. INTRODUCTION

SEMICONDUCTOR manufacturing consists of a lengthy
process for printing of multiple integrated circuit patterns

in successive layers on the wafer through photolithography
tools such as steppers or scanners that are capital-intensive
and also the bottleneck for wafer fabrication [1]. The scanner
is used to superimpose a masking pattern on the top of a
wafer. Overlay errors denote the displacements between the
actual position and the placement of the mask image over the
wafer [2], [3]. The overlay errors require to be compensated
rather than migrated. Migration leads to desired results when
a potential risk is either properly segregated or controlled,
while compensation minimizes the risks of accumulated error.
Indeed, compensation is a preventive control. Therefore, as the
tolerance of critical dimensions of integrated circuits is tightly
and slightly increasing, effective compensation of the overlay
errors is needed for advanced technology transformation and
maintaining competitive advantages of leading semiconductor
companies.

A variety of advanced process control (APC) and advanced
equipment control (AEC) approaches have been devel-
oped to control and reduce process overlay errors for
yield enhancement [4], [5]. The crafted APC approaches
incorporated collections of methodologies, including sta-
tistical inferences [6], [7] machine learning [8], run-to-run
(R2R) control [9], stochastic methods [10], and virtual
metrology (VM) [11].

In addition to various feedback controllers based on
exponentially weighted moving averages (EWMA) esti-
mations, a number of alternatives techniques including
matrix completion [12], artificial neural networks [13], image
processing [14], and state-space control design [15] have been
proposed to identify influential process variables for the
overlay error. Furthermore, overlay error compensation has
been used as feedforward control signals to support process
control of other manufacturing steps including dry-etching or
chemical-mechanical polishing [16].

The main concern in the design of control systems is linked
to the flow of signals in the closed system. A number of
models have been developed in control design based on the
offline data obtained from experimentation. Only a few studies
have dealt with real-time data-based control designs, while
most of them have assumed a boundary in a compact set of
state variables [17]. However, for the stability of the system
in an online setting, system errors would be involved in the
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information, and hence a constant range for the data cannot be
assumed. Focusing on real settings, this study aims to develop
an approach using self-determined self-learning models from
empirical data.

Due to the need for providing rapid feedback to the process
control, the lack of real-time metrology data has caused
extensive limitations in the R2R control. Generally, there is
a gap to transfer measurement data between the metrology
tools and the production line, which is called metrology delay.
Most semiconductor manufacturing processes are suffering
from issues caused by the metrology delays due to the
time needed for measurements, metrology capacity, and the
queueing time spending between the process tool and the
metrology station [18]. The stability and performance of the
control process are affected by the metrology delay. Moreover,
in the real-time data-based control design, the delay is not fixed
but flows stochastically.

On the other hand, tuning of control parameters rapidly
and optimally is required for achieving an acceptable
control performance in modern wafer fabrication facilities
(fabs). However, most of the control models cannot update
themselves due to the dynamic nature of the controlling
process, and thus the system may suffer from modeling
inaccuracies.

The interior design of a control system should be equipped
with a function approximator that can minimize the total
risk. However, most approximators, such as neural networks
and polynomial estimators, are only minimizing empirical
risks. The limited training set, compared with the number
of free parameters, can cause a high generalization risk of
overfitting. By minimizing the empirical risk, in combination
with generalization risk, a better approximation technique
for reducing the total risk called structural risk minimization
(SRM) [19] can be used. Support vector regression (SVR) uses
the principle of SRM [20].

This study used the modified SVR formulation as an
optimization function to support the online control process.
The modified version of SVR, instead of inequality con-
straints, takes equality constraints and a quadratic cost function
into account, called �-SVR [19]. The �-SVR has a strong
mathematical foundation with a high generalization ability
and can find the global minimum for regression estimation
problems, while avoiding the trap of finding the local min-
ima. Several studies have used SVR to perform approxi-
mations of unknown nonlinear functions in adaptive control
systems [21], [22]. However, only a few studies have extended
the application of this method into the semiconductor industry.
Song et al. [23] used the least square SVR to establish a
quantitative analysis model for gas sensor components in a
metal–oxide–semiconductor. Guo et al. [24] developed online
sequential learning optimization based on �-SVR optimization,
incremental extreme learning machine, and proximal SVR for
process monitoring of critical dimension in the dry-etching
process.

This study proposes an approach for controlling overlay
factors with dynamic metrology delay that is equipped with
�-SVR and a quadratic cost function for the feedback R2R
controller to increase the capability for dealing with the needs

for process control. The main contributions of this study are
as follows:

1) Introducing �-SVR optimization technique as a
learning-based control system with disturbance rejection
capability for compensating misalignment during the
photolithography process of wafer fabrication.

2) Considering the real-time control process into a
learning-based control system.

3) Improving the stability of the control system in the
presence of unmeasurable disturbances (i.e., metrology
delay, process delay, process variation, and measurement
noise) by adjusting the kernel function of �-SVR as
stability rules.

The remainder of this article is organized as follows.
Section II describes the fundamentals for this study. Section III
describes the proposed on-line control approach based on
�-SVR. Section IV estimates the validity of the proposed
approach with simulation and empirical data. Section V con-
cludes this research with a discussion on contributions and
future research directions.

II. FUNDAMENTALS
A. Overlay Error

The overlay errors are measured from the displacements
between the present and previous exposure layers, through the
box-in-box design [6]. The overlay errors can be attributed to
intrafield and interfield errors [6]. The interfield overlay errors
are the result of mismatch problems between the mask and the
wafer. The intrafield overlay errors are due to fitment problems
between the light source filter lens and the mask. The interfield
overlay errors are measured at the center of the wafer, whereas
the intrafield errors are measured with respect to the center of
the exposure field.

Due to increases in dimensions of wafers, the variables
affecting the overlay errors have become progressively com-
plicated. In this study, the proposed overlay model by
Chang et al. [2] has been adopted to estimate the overlay
error of the scanner. The proposed overlay model in [2] con-
sidered 10 variables including mask-related intrafield overlay
errors such as translation, rotation, and magnification, and
wafer-related interfield overlay errors involving expansion and
rotation, in the x-axis (dx+X ) and y-axis (d y+Y ), respectively,
as follows:

dx+X = Tx+X + SX X − (θω + φ)Y + (Mi + Ma)x
−(θr + θa)y + εx+X , (1)

dy+Y = Ty+Y + SY Y + θω X + (Mi − Ma)y
+ (θr − θa)x + εy+Y (2)

where (X, Y ) and (x, y) denote the interfield and the intrafield
coordinate systems, respectively.

The corresponding conventional models based on empirical
data for models in (1) and (2) are presented by models (3)
and (4), respectively,

d̂x+X = tx + sX X − rX Y + mx x − rx y (3)
d̂y+Y = ty + sY Y + rY X + my y + ry x . (4)

The parameters of the overlay variables in (1) and (2) are
derived from the coefficients of the models in (3) and (4),
as summarized in Table I.
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TABLE I

ESTIMATED COEFFICIENT PARAMETERS OF OVERLAY ERROR MODELS

B. R2R Control With Metrology Delay

The implementation of APC in semiconductor manufactur-
ing affected with an inherent problem known as metrology
delay. Thus far, numerous APC techniques in the semicon-
ductor industry have failed because of infrequent measure-
ment data and extensive metrology delays. VM is deemed
as the most popular technique and is a potential solution
for overcoming these difficulties [25]–[27]. However, most
of the existing studies focused on the improvements of the
control performance of controllers rather than the stability
properties of the control system when using VM method-
ology. Only few research has been done to investigate the
ways of enhancing the stability of R2R-type controllers under
measurement delay [28], [29], and only few research has
addressed the dynamic nature of time delay in semiconductor
manufacturing [23], [30].

To address the stochastic time delay in monitoring the
overlay variables, this study designed two scenarios. The first
scenario considered that the delay happened due to the time
needed for measurements, metrology capacity, and the waiting
time in the wafer queue between the production station and the
metrology station along with the wafer-to-wafer (W2W) fre-
quency. The W2W measurement scheme overlooks each wafer
independently within a lot and needs sampling information
from across the wafer to give rapid feedback for potential
adjustments of process parameters for the subsequent wafers.
Although integrated metrology [31] can help achieve a quick
feedback, still there could be a lag of one to six wafer delay
in receiving the feedback signals, using integrated metrology.

The second scenario considered real-time processing delay,
due to the communications between the sensors and the
controller, inside the controller, and between the controller and
the actuator. In these cases, the process delays are assessed
from when a signal is observed, to when the transformation
takes place in the actuator. In addition, sometimes process
delay happens because of bottleneck tools/processes in the
system.

C. Dynamic Control System

The notations and terminologies for implementing the �-
SVR control system are listed as follows.

μ, λ Parameters of zero-inflated poison (ZIP) dis-
tribution.

x̄, s2 Sample mean and sample variance of ZIP
distribution.

Remp(.) The empirical risk function of the control
system.

C(.) Cost function for optimization objective.
ut Process input for run t , t ≥ 1.
Qt Process output for run t , t ≥ 1.
dt Process disturbance for run t , t ≥ 1.
Et Deviation from the target for run t , t ≥ 1.
T Target of overlay variables.
εt White noise for run t, t ≥ 1.
ω Vector of control system parameters.
h Mapping function.
C �-SVR regularization parameter.
� �-SVR epsilon parameter.
b �-SVR bias term.
κ(., .) �-SVR kernel function.
(α − α∗) �-SVR support vector.
xt State vector in the state-space model for run

t .
A, B Coefficient matrices in the state-space

model.
M Upper bound of the output variable.
λ Admissibility parameter.
η Learning rate parameter of online �-SVR.
N Number of samples per each run.
l, j The length of process delay and measure-

ment delay, respectively.
VLyap Lyapunov stability function.
P Lyapunov positive definite symmetric

matrix.
K Number of folds for cross-validation.
i, t Index for process run, 1 ≤ i ≤ t .
k Index for cross-validation folds, 1 ≤ k≤K .
δ Upper bound for Lyapunov–Razumikhin

function.
m Total number of runs.

The semiconductor manufacturing system is controlled
mainly through the feedback loops. When a change in
one process variable causes a dynamic variation in other
variables, the system provides feedback loop to the ori-
gin step and makes a functional relationship or autocor-
relation dynamics among process variables. This situation
occurs quite often in semiconductor manufacturing. Therefore,
dynamic approaches are required to be admitted for efficiently
improving operational and performance monitoring of wafer
fabrication.

The proposed dynamic model can compensate most
of the process dynamics and noise disturbances in the
semiconductor manufacturing process, such as multivari-
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Fig. 1. Block diagram of the proposed control system.

ate process offset and process gain, the quadratic effect
of process variables, autocorrelation and deterministic
drifting effects, stochastic metrology delay, and nonstationary
disturbances.

The proposed dynamic model that used to carry out the opti-
mization and identification of empirical risk of approximation
is described as follows:

min Remp(ω) = 1

t

t∑
i=1

C(T + εi , Q̂i )

s.t. Q̂t = h(Q̂t−1, . . . ,Q̂1, ut−1, . . . ,u1, dt )
� (5)

where both C(.) as the cost function and h(., .) as the mapping
function are assumed to be twice continuously differentiable.
This model structure is intended for modeling a discrete-time
dynamic system, with ∀t : ut , Qt ∈ R.

The block diagram of the proposed control system is illus-
trated in Fig. 1. According to Fig. 1, the input is the variation
in each overlay variable from the target, which is affected by
system delay, noise, and disturbance. The sensors continually
and effectively measure the value of each overlay variable.
The size of the actual variation which is an output of the
manufacturing system compared with the input is augmented
by the control plant in the fab.

The difference between the input and the output from
the control device efficiently generated an impulse that acti-
vated the adaptive laws for implementing appropriate actions.
In addition, uncertainties, including process time variance,
measurement delays, measurement noise, and unknown dis-
turbances, are variables which significantly affect the perfor-
mance of the control system.

III. PROPOSED APPROACH

To address the overlay error problem in real settings,
a dynamic �-SVR controller is designed to implement correc-
tive actions with links to feedback signals. Fig. 2 presents the
general operational framework of the proposed control system.
The proposed control system consists of the following criteria:
1) optimization analysis and providing the cost and constraints
of the optimization problem for overlay error compensation;
2) an online �-SVR algorithm for a real-time monitoring
system; 3) stability analysis for learning algorithm; 4) stability
analysis of the control system with delay; and 5) adjustment
of the kernel mapping function for encompassing stochastic
time delay.

A. Optimization Analysis

Consider a class of a single-in, single-out (SISO) system in
the following form:

x̂t = f (x1, · · · , xt−1) + g(x1, · · · , xt−1)ut−1 + dt

Q̂t = x̂t (6)

where unknown f and g functions are bounded and no prior
knowledge is required for bounding. The state vector of the
system assumes to be estimated through the optimization
process of the control loop. To have a controllable system
for the model in (6), the following assumptions are required:

Assumption 1: lim
t→∞ E(Q̂t ) = T + εt

Assumption 2: lim
t→∞ V ar(Q̂t ) < ∞.

The control objective is designed to provide the control
signal based on the system and an adaptation law for adjusting
control parameters as illustrated in Fig. 1. Therefore, the state
vector of the approximator function in (6) follows the desired
trajectory state (target) even in the presence of disturbance.
Consequently, the tracking error in (7) is aimed to converge
to zero

Et = Q̂t − (T + εt ) (7)

where εt ∼ N(0, λε) and E(εt ) is a near-zero variance
predictor. Indeed, εt is joined to the constant value of the
target T , to model a stochastic target variable.

The cost function determines how adequately the given
model is working with the noisy actual data. In this study,
the cost function is selected as the quadratic �-insensitive cost
function as follows:

Ct =
{

0, if |Q̂t − (T + εt )| < �

(Q̂t − (T + εt ))
2 − �, o.w.

(8)

where � ≥ 0.
A quadratic cost function is designed to make the convex

quadratic cost function, and thus build a smooth strategy to
determine the hyperparameters for SVR algorithm.

Considering a set of training points {(u1 + d1, T +
ε1), . . . , (ut−1 +dt−1, T +εt−1)}, the �-SVR is trained to map
from the input space to the feature space in the presence of
the disturbance, dt . The kernel function κ(ut , u) handles the
mapping role in the feature space.

Therefore, the linear equation in (9) is called the dual form
of the optimization problem in (5) with regard to (8)

min
αi ,α

∗
i

1

2

t∑
i=1

(
αi − α∗

i

)T
(

κ(ui , u) + 1

C

) (
αi − α∗

i

)

+ �

t∑
i=1

(
αi + α∗

i

) +
t∑

i=1

(T + εi )
(
αi − α∗

i

)

s.t.
t∑

i=1

(
αi − α∗

i

) = 0, 0 ≤ αi , α
∗
i ≤ C (9)

where nonzero values of (αt − α∗
t ) are called support vectors

and are bounded by positive unknown number C , as the
regularization parameter. The dual problem in (9) in terms of
the kernel matrix is converted by introducing the Lagrangian
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Fig. 2. Dynamic LS-SVR control system framework.

multiplier and applying the Karush–Kuhn–Tucker (KKT) con-
ditions on a convex quadratic form of SVR model with affine
constraints [20].

The main objective of the control system is to find the
optimal control laws by the optimization model in (9), while
the optimal control laws are used for minimization of the cost
function. Therefore, regarding the kernel optimization method
in (9), the corresponding approximation function in (6) should
be estimated using the kernel function. Hence, the estimated
output in (6) is

Q̂t =
t∑

i=1

(−αi + α∗
i

)
κ(ui , u) + b (10)

where b = − ∑t
i=1(−αi +α∗

i )κ(ui , u)+ T +εi −� is the bias
term.

In linear system dynamic models in (5) and (6), the actual
value of the input variable is unknown at the current run,
before the metrology station forwards the value of process
variables to the production station. Therefore, the input value
of the current run, ut , can be updated by the parameters of
the approximator function at the last run as follows:

ût = ut−1 + Et−1
∂κ(ut−1,u)

∂ut−1

∑t−1
i=1

(−αi + α∗
i

)
κ(ui , u)

. (11)

For details, refer to the Appendix.

B. Online �-SVR Algorithm

With regard to the procedure of all the learning-based algo-
rithms, including �-SVR, the model first learns from training
points and then evaluates by testing points. In addition, the key
assumption is that the distribution for both training and test
points is fixed over time, and that points are selected based on
identically and independently distributed (i.i.d.) rule. However,
due to the nature and design of a control system, an online
algorithm can receive only one sample within each run.
Therefore, with online learning, no distribution assumption is
required.

Fig. 3. Online algorithm of �-SVR.

Fig. 3 gives a pseudocode of the online algorithm with
arbitrary positive semidefinite (PSD) kernel function, while
being in the presence of bias and disturbance. The general
online setting for a control system involves t runs. At the tth
run (step 3 in Fig. 3), the algorithm will receive the estimated
input, ût , which is equivalent to (ut + d̂t ) (step 4 in Fig. 3)
and make the prediction of Q̂t (step 5 in Fig. 3). Then, it can
receive the true label (T + εt ) (step 6 in Fig. 3) and estimate
the cost t . The objective of online setting is to minimize the
cumulative cost

∑t
i=1 (T + εi , Q̂i ) over all t runs [32].

The online version of the �-SVR algorithm (steps 7 and 8
in Fig. 3) can be obtained by the application of a stochastic
gradient descent with the dual-objective function of SVR
(more details can be found in [33]).

To avoid inefficiencies due to sequential computations and
speed up of the processing time, a parallel execution algorithm
is developed to check the stability of optimal cumulative
cost function. Steps 9–14 in Fig. 3 are related to stability
checking of online learning algorithm which is discussed in
Section III-C.
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C. Local Stability for Learning Algorithm

The local stability of a function denotes the control limits
that allow function changes on a time horizon. In particular,
additional condition on the �-SVM (support vector machine),
controller is considered for imposing local stability of the
closed-loop control system. Lipschitz continuity or λ− admis-
sibility condition [34] is used for local stability checking of
online �−SVM.

The λ -admissibility condition is integrated through the
cross-validation scenario to enhance the stability of the pro-
posed online learning algorithm. In particular, the training
data split in K folds, in which for each pair of folds, the
admissibility condition is checked based on the following
definition:

Definition 1: A cost function C is λ− admissible with
respect to the output class Q if there exists λ ∈ R+ such that
for any two outputs Qt

�, Q��
t ∈ Q and for all label information

(T + εt )

|C(Q�
t , T + εt ) − C(Q��

t , T + εt)| ≤ λ |Q�
t − Q��

t |. (12)

This assumption holds for the quadratic cost functions
where the output set and the set of target values are bounded
by some M ∈ R+ such that

∀Qt ∈ Q, |Qt | < M and |T + εt | < M .
Stability-based learning bound for quadratic �-SVR is

λ− admissible with λ = 2
√

M [34]. Through this condition,
when an optimization method is applied, the constraints in (9)
will particularly hold within a limited tolerance.

D. Global Stability for Control System

For stability analysis of a controller under time-delay
systems (TDSs), Lyapunov method is applied in this study.
Considering the stability analysis of linear TDS, the proposed
approach is validated for all similar systems intending to
minimize the quadratic cost function.

Considering the system in (6), the TDS model of (6) can
be derived as follows [35]:

xt = Axt−1+ B( f (x1, · · · ,xt− j )+g(x1, · · · ,xt− j )ut−l +dt),

Q̂t = xt (13)

where A and B are known as constant state and input matrices,
respectively. In addition, j and l denote the length of delay
caused by the metrology tool and queuing system from the
past process, respectively. The general theory of Lyapunov’s
method that can guarantee the stability of linear TDS [36] is
described as follows.

Proposition 1: Consider the following Lyapunov function
of the system in (13):

VLyap(t) = xT
t Pxt . (14)

The stability of the dynamic system in (13) can be granted if
and only if P will be a PSD matrix and (d)/(dt)VLyap(t) < 0.

The stability analysis of the model in (13) could be reduced
to the analysis of the higher order system without delay if
Lyapunov–Razumikhin theory [37] is applied to the system.
The underlying condition of Razumikhin method for the ideal

estimation of Lyapunov P matrix in (14) can be explained by
the following proposition.

Proposition 2: Consider that the solution of the model
in (13) begins inside the ellipsoid VLyap(t) = xT

t Pxt < δ. At
each time when the system receives an information by delay if
the solution is going to leave this ellipsoid at some time t � ≥ t ,
then Lyapunov–Razumikhin theory will check the condition
and will not let the solution leave the ellipsoid region as long
as it satisfies the following Razumikhin condition:

xT
t �− j Pxt �− j≤ x

T

t
Pxt . (15)

or

VLyap(t
� − j)≤V Lyap(t) < δ, 0 ≤ j < t �. (16)

E. Kernel Function of �-SVR

To choose the kernel function for �-SVR, Lyapunov con-
dition of global stability as the kernel function is considered,
while the mapping function is considered as linear.

Indeed, Lyapunov–Razumikhin condition can be used for
stability checking, due to the linear mapping performance of
Lyapunov function and its PSD nature. Bhatia and Elsner [38]
have shown that Lyapunov function in (14) can be rephrased
to say that its map is invertible. The following proposition
states the conditions under which Lyapunov stability function
characterizes the innerproduct particularity and can be used as
the kernel function:

Proposition 3: Lyapunov inner product: suppose the stability
property for the linear time-invariant (LTI) system at (13),
under Lyapunov function. Therefore, for P as a PSD matrix

�xi , x j P = xT
t Pxt (17)

defines an inner product. Therefore, the above inner product,
induced by Lyapunov function, can be considered as the
inner product of the system in (13), and subsequently for the
optimization problem in (9) (see [39]).

This study used Lyapunov inner product as the kernel
function for �-SVR optimization. Without any loss of gener-
ality, the KTT conditions are still valid for this modification.
Through this amendment, the convergence to the stability
status under delay can be speeded up, while still keeping
Razumikhin condition in the closed loop of the control system,
which can facilitate the convergence of online learning of the
�-SVR controller.

IV. PERFORMANCE ANALYSIS

To estimate the validity of the proposed control system,
the online �-SVR controller proposed in Fig. 3 is used to
estimate the input–output and the parameters of a control
system, while the admissibility checking is conducted through
a cross-validation scenario, and stability is carried out based
on Lyapunov mapping operator as a kernel function of �-SVR.

To run the simulation for the proposed control system,
first, the input value is extracted from the empirical data
with the target value equal to zero. However, for changing
the constant target value to a variable, a random variable
εt from N(0, 10−15) is added to the constant target value
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Fig. 4. Density probability plot of total overlay error on x- and y-axes (vertical blue dashed line is T +εt = 0).

Fig. 5. Trend chart for Tx+X (horizontal blue dashed line is T + εt = 0).

at each run. To prepare the minimum requirements of train-
ing data for learning algorithm of �-SVR, a sequence of
dummy data is generated based on the linear relationship of
T + εt,1 ∼ T + εt,2.

The EWMA controller that is a common APC/R2R solu-
tion in practice is selected as a baseline for performance
comparison.

To validate the performance of the proposed approach,
the overlay error model in [2] and the sampling strategy
suggested by Chien et al. [32] are integrated to estimate the
corresponding overlay error on the x- and y-axes.

At each run, the cumulative overlay error measurements
for the x- and y-axes are calculated for the performance
comparison between the �-SVR and EWMA controllers.
The density probability plot is used to visualize the control
performance for the cumulative overlay error compensation
on the x- and y-axes. Fig. 4 illustrates this comparison for
42 runs. In summary, according to the illustration in Fig. 4,
the proposed �-SVR controller has archived an improvement
of at least 24% and 8% of the variation and 96% and 97% of
overlay error reduction for x- and y-axes, respectively.

This study used two metrics: range (18) and root-mean-
squared error (RMSE) (19) to evaluate the variation in

Fig. 6. Trend chart for Tx+X for the model with stochastic (normal) delay
(horizontal blue dashed line is T + εt = 0).

Fig. 7. Trend chart for Tx+X for the model with stochastic (fast and deep)
delay (horizontal blue dashed line is T + εt = 0).

individual overlay variables for t runs

Range = max
t

Q̂t − max
t

Q̂t (18)

RMSE =
√∑t

i=1[Q̂i − (T + εi )]2

t
. (19)
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Fig. 8. Box plot for Tx+X for the model with stochastic (fast and deep) delay, random variation, and random �.

TABLE II

VARIATION AND RANGE IMPROVEMENT FOR OVERLAY VARIABLES

Fig. 5 represents the simulation result for the comparison
between EWMA and �-SVR for the input and output of the
Tx+X variable. Consequently, �-SVR has a smoother variation
and a better compensation performance (e.g., lower variance
and closer to target) than EWMA, given the input and output
values of Tx+X , respectively.

To investigate the effect of disturbance on the system,
plus having an overall overview of the performance of the
proposed �-SVR controller, the overlay variables are classified
into four groups based on the variation in individual overlay
variables. The results of the percentage improvement of the
total variation and the range for all the input and output
variables of the proposed �-SVR compared with the EWMA
controller are summarized in Table II. Variables in Table II are
classified based on the variation in Et , where Et is calculated
from empirical data and the result of the EWMA controller.

The results have shown that the proposed �-SVR controller
tightens up the excellent performance bound and eventually
achieves a lower cost in comparison to the EWMA control
system, even in the presence of an extensive disturbance. The
RMSE and range percentages in Table II indicate how much
the result of �-SVR is better than EWMA control. That is,
when the variation increases, the advantages of �-SVR are
more tangible.

For investigating the performance of the proposed control
system in the presence of a delay, this study designs two
simulation scenarios. First, when delay happens during the
W2W process control (process delay) for each of 25 runs with
a maximum length of 6, and second, when delay occurs during
the real-time processing (measurement delay). The duration of
the delay is set to nine lags during the W2W process control
for measurement delay. To illustrate the delay situations,
random numbers are generated from the zero-inflated Poisson
(ZIP) distribution, with parameters λ = (s2 + x̄2 − x̄)/(x̄),
μ = (s2 − x̄)/(s2 + x̄2 − x̄), where s2 denotes the sample
variance, and x̄ is the sample mean.

For the delay with a normal speed, the stochastic delay is
generated randomly through ZIP distribution with the parame-
ter setting at λ = 2 and μ = 0.6. Similarly, for the fast and
deep delay, the scenario is designed when the stochastic delay
occurred at random from ZIP (λ = 3, μ = 0.3).

To investigate the stability of the system under uncertainty,
the kernel function of the �-SVR controller is set in the
form of Lyapunov function in (17). The adaptive control laws
are added to the system as Razumikhin condition in (16).
Figs. 6 and 7 illustrate the performance of the proposed model
for normal and fast–deep delays for the overly variable Tx+X ,
respectively. The results have shown that under a fast and deep
delay, while the stability of the system is more susceptible,
Lyapunov mapping function and Razumikhin condition can
perfectly grant the stability of the system.

In the above analysis, the parameter � remains as a para-
meter that cannot freely be controlled by the process control
designer, while due to the roles and designations of this
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parameter, it should remain fixed and controllable. Providen-
tially, the positive definite Lyapunov kernel function can keep
the � parameter fixed and solve the optimization problem in
a 2-D space when only parameters P and C are required
to be estimated. To verify this fact, a scenario is designed
for one simulated overlay variable from N(0, λ ) when λ is
changed from 0.01 to 0.5 with a lag of 0.01, and the setting
for the parameter � is adjusted to the interval [0.1,1] with a
lag of 0.1. This simulation runs under the fast and deep delay
situation. Three statistics including range (18), RMSE (19),
and the average of variation from zero are used to show the
performance of parameter � under the fast and deep delay. The
results are illustrated in Fig. 8. The boxplots of � variation
in Fig. 8 can be used as a guideline to select the best setting
for �, considering the level of variation in the system. Although
with a higher variation the system performance may lose its
resistance, the variation in � almost remains the same.

V. CONCLUSION

A. Discussion

This study has developed a novel, online �-SVR controller,
synthesized with the predictive feedback scheme and a self-
tuning algorithm, to dynamically adjust the control parameters
for compensating the overlay errors while effectively consid-
ering stochastic metrology delay.

In comparison to other regression-based methods such as
Kernel ridge regression (KRR) or partial least square (PLS),
Lagrange multipliers in �-SVR use the concept of support
vectors. The advantage of support vectors for a new test
observation can eliminate the use of whole training data (such
as the KRR), and only support vectors could be used for
prediction. Therefore, the speed of prediction in �-SVR is
faster in comparison to other regression-based techniques.

The benefits of �-SVR are also associated with its capability
to support a variety of cost functions and the bias term.
Indeed, �-SVR is equivalent to KRR if � in (8) is set to
be zero. In addition, the quadratic cost function of �-SVR
brings an additional advantage in comparison to other SVR
models such as least squares-support vector regression (LS-
SVR), showing its robustness to non-Gaussian noise and
disturbances. Furthermore, the proposed approach can also
support the decisions for determining equipment backups [40]
for maintaining productivity and yields for semiconductor
manufacturing.

Another advantage of �-SVR is the potential to describe
nonlinear input–output relationships that some methods such
as PLS may not be able to deal with it. However, the perfor-
mance of �-SVR for small data with multi-collinearity is not
as promising as the PLS technique [41].

B. Concluding Remarks

As uncertain variables in the online control system such
as delays may diminish the performance and stability of
the control system, yet little research has been done to
address this issue for controlling overlay errors. The proposed
approach is equipped with a time-delay compensation method,
based on Lyapunov kernel function, which can improve the

practical viability of the �-SVR controller. In particular, this
study designed two types of experiments with regard to the
length and speed of the delay, to estimate the validity of
the model and examine the stability characteristics of the
�-SVR controller in practical situation. The experimental
results have shown that the proposed approach has a robust and
qualified performance than conventional EWMA approaches.
Furthermore, according to the feedback of domain experts, this
approach is viable for utilization in real setting in the presence
of unmeasurable uncertainty for controlling the overlay errors
during the photolithography process.

C. Future Research Directions

Future studies should be done to examine the practical
performance of the proposed approach under various settings
of uncertainties. While this study has considered stochastic
time delay for compensating overlay errors, further research
is needed to design the manufacturing system and the infor-
mation infrastructure for effectively estimating potential time
delay in the network control system to empower real-time
decision for smart production. Further studies can be done
to modify the configuration of the proposed approach and
extend it to other semiconductor manufacturing processes such
as dry-etching and chemical-mechanical polishing in different
contexts.

The limitations of the existing approaches can be traced
in part to the lack of a framework within which different
uncertain factors can be considered in light of the dynamic
nature of process changes for APC. Due to the complexity
and emergence in process control of semiconductor industry,
other learning-based optimization models can be investigated
in future studies. Furthermore, due to more adoption of
APC/AEC, R2R, and VM for smart production, the processing
time in advanced wafer fabs has become uncertain. Since semi-
conductor manufacturing is a complicated flexible job-shop
scheduling problem (FJSP) [43], future research should be
done to minimize production cycle time while considering
uncertain processing time and satisfying the precedence rela-
tionships of the jobs and other constraints. More studies should
be done to empower the proposed hybrid strategy Industry
3.5 [44] that is based on the existing Industry 3.0 platform to
address the needs of flexible decision and smart production
for the visions of Industry 4.0.

APPENDIX

For the discrete-time state model in (5) without considering
the disturbance effect, a Taylor expansion can be expressed
by

Qt+1 = h(Qt−1, ut−1)+
∑ 1

r !
∂r [h(Qt−1, ut−1)]

∂ur
t−1

(ut −ut−1)
r

+
∑ 1

r !
∂r [h(Qt−1, ut−1)]

∂qr
t−1

(q t − qt−1)
r (A.1)

where h(Qt−1, ut−1) is the output at time t − 1, and qt−1 =
(Qt−1, . . . , Q1). Here, h(Qt−1, ut−1) is equivalent to Qt .
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The output Qt is highly sensitive to the input ut [42], that
is,∣∣∣∣∂[h(Qt−1, ut−1)]

∂ut−1

∣∣∣∣ �
∣∣∣∣∣∣
∑ 1

r !
∂r [h(Qt−1,ut−1)]

∂qr
t−1

(�qt)
r

�ut

∣∣∣∣∣∣ (A.2)

where � is the increment operator. From this assumption, we
can drop the third term on the right-hand side of (A.1) to
represent the model (6) by

Qt+1 = Qt + ∂[h(Qt−1, ut−1)]
∂ut−1

�ut + R(qt−1, ut−1)�ut .

(A.3)

For simplification, (∂[h(Qt−1, ut−1)])/(∂ut−1) is denoted
by h�(Qt−1). The remainder term R(qt−1, ut−1) approaches
zero at a faster rate than �ut approaches zero. Thus, the model
can be derived by neglecting the remainder R(qt−1, ut−1)�ut

in (A.3) as follows:
Qt+1 ≈ Qt + h�(Qt−1)�ut . (A.4)

We consider that h�(Qt−1) exists and it is estimated using �-
SVR approach. From (A.4), the control law can be determined
directly if the increment �ut behaves linearly, such that

ut = ut−1 + �ut

�ut = Q∗
t − Qt

h�(Qt−1)
(A.5)

where Q∗
t is the desired trajectory (the target value).

The feedback control law in (A.5) will be practical if and
only if h�(Qt−1) �= 0.

Now, considering �-SVR estimates a new point as (10),
the estimated function h�(Qt−1) can be computed by the
feedback control law as follows:

h�(Qt−1) = ∂
[∑t

i=1

(−αi + α∗
i

)
κ(ui , u) + b

]
∂ut−1

= ∂κ(ui , u)

∂ut−1

t∑
i=1

(−αi + α∗
i

)
κ(ui , u). (A.6)

With regard to (7), the control law can be determined as
follows:

ut = ut−1 + Et−1
∂κ(ut−1,u)

∂ut−1

∑t−1
i=1

(−αi + α∗
i

)
κ(ui , u)

. (A.7)
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