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Human brain functional networks are embedded in anatomical
space and have topological properties—small-worldness, modular-
ity, fat-tailed degree distributions—that are comparable to many
other complex networks. Although a sophisticated set of measures
is available to describe the topology of brain networks, the selec-
tion pressures that drive their formation remain largely unknown.
Here we consider generative models for the probability of a func-
tional connection (an edge) between two cortical regions (nodes)
separated by some Euclidean distance in anatomical space. In par-
ticular, we propose a model in which the embedded topology of
brain networks emerges from two competing factors: a distance
penalty based on the cost of maintaining long-range connections;
and a topological term that favors links between regions sharing
similar input. We show that, together, these two biologically plau-
sible factors are sufficient to capture an impressive range of topo-
logical properties of functional brain networks. Model parameters
estimated in one set of functional MRI (fMRI) data on normal vol-
unteers provided a good fit to networks estimated in a second
independent sample of fMRI data. Furthermore, slightly detuned
model parameters also generated a reasonable simulation of the
abnormal properties of brain functional networks in people with
schizophrenia. We therefore anticipate that many aspects of brain
network organization, in health and disease, may be parsimoni-
ously explained by an economical clustering rule for the probabil-
ity of functional connectivity between different brain areas.

neuroimaging | graph theory | systems | trade-off

The human brain is a large and complex network, operating over
several decades of scale in space and time (1, 2). Its organi-

zation defies complete description at a cellular scale (3); but
neuroimaging techniques forwhole-brain scanning have beenused
to describe network organization, or connectomics, at anatomical
scales on the order of millimeters and centimeters (2). In the
language of graph theory, these large-scale human brain networks
have already been shown consistently to demonstrate a number
of key topological properties in common with other complex
networks. For example, human brain networks have the small-
world property of high clustering and high efficiency (or short path
length) (4); they are also modular (5) and comprise a number of
highly connected hub nodes in a fat-tailed degree distribution (6).
It is well known that the brain overall is expensive, in the sense

of having high metabolic cost relative to its mass (7), and that cost
control or cost minimization is likely to have been an important
selection criterion for the evolution of the nervous system (8–11).
One measure of cost in a spatially embedded network like the
brain is the physical distance of connections between nodes:
generally, connection costs will increase with distance (8, 12). In
the nervous system of the nematode worm Caenorhabditis elegans,
which has been mapped completely at the cellular level of syn-
aptic connections between neurons (13), most axonal projections
are shorter than the average distance between neurons, as ex-
pected in response to an economical selection pressure (14, 15).
Likewise, in sparsely connected human brain functional networks,
short distance connections predominate and are typically associ-
ated with greater strength of functional connectivity between
regional nodes (16).

Given these observations on the topologically complex and
anatomically economical aspects of brain networks, we asked
this question: what set of generative factors could explain the
topology of anatomically embedded brain networks? To address
this question, we consider simple models for the probability of
functional connection (an edge) between two cortical areas
(nodes) separated by some Euclidean distance in anatomical
space (≈cm). The simplest (one-parameter) models specify that
connection probability is a function only of distance between
nodes (17, 18), but we show that cost penalization alone cannot
account for the small-worldness, modularity, and degree distribu-
tion of normal human brain functional networks. Two-parameter
models specify that connectivity is a function of distance and
the topological properties of the connected nodes (19). We
show that a two-parameter model, for example including a
“clustering” function of nodal topology as well as a power law
function of connection distance, is required to emulate many of
the key topological and anatomical statistics of normal brain
functional networks.
We used resting-state functional MRI (fMRI) to measure low-

frequency neurophysiological oscillations at each of 140 cortical
brain regions in the right hemisphere in two groups of 20 healthy
volunteers and 19 participants with childhood-onset schizophre-
nia (COS). We estimated functional connectivity by the correla-
tion between each pair of regional time series; and we thresh-
olded the resulting connectivity matrices to generate sparse, fully
connected graphs (Materials and Methods).

Results
For each graph, we measured global efficiency [a measure of net-
work integration inversely related to path length (20)]; average
clustering coefficient (a measure of cliquish interconnections be-
tween topologically neighboring nodes); modularity [a measure of
how nearly the network can be decomposed into a set of sparsely
interconnected modules, each comprising several densely intra-
connected nodes (21)]; the degree distribution (the probability
distribution of degree, or number of edges per node); and the
distance distribution (the probability distribution of Euclidean
distance between connected pairs of regions) (Fig. 1). These data
confirmed prior reports of economical small-worldness, modu-
larity, and hub nodes in human brain networks (2).

Exponential Decay with Distance. To investigate the extent to which
the topological profile of the brain networks could be attribut-
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able solely to cost minimization, we adopted a simple model for
the probability of connection Pi; j between any pair of regions as
a function of the distance between them (17, 18):

Pi; j ∝ expð−ηdi; jÞ; [1]

where di; j is the anatomical distance between regions i and j, and
η is the only parameter of the model. Using this exponential
decay model with a range of different values of η, we could gen-
erate networks with variable degrees of cost penalization dictating
the probability of connection between nodes.
We found, for example, that at a certain value of the model

parameter, η ≈ 0.09, the simulated networks had an average
modularity that matched exactly the modularity of the brain
networks. However, these simulated data failed to match the
empirical networks well in terms of global efficiency, clustering, or
degree distribution. Indeed, it can be shown that there is no single
value of η that will generate networks that are well matched to
brain networks in terms of both modularity and efficiency (SI Text
1, Fig. S1). When η is large and distance penalization is high, the
networks are not as efficient as brain networks, owing to the lack
of long-distance connections; whereas when η is small the mod-
eled networks are not as modular as the empirical ones. To find
the compromise value of η that overall best fits the data, we used
simulated annealing (SA) on an energy function based on the
P values for the difference in clustering, efficiency, modularity,
and degree distribution between a set of model networks and the
data (Materials and Methods and SI Text 2, 3, and 4). As expected,
however, the model-generated networks were not able to match

simultaneously all key network characteristics observed in the
data (Fig. 1). Similar results were obtained using other models of
decay in connection probability as a function of distance [e.g., the
power law model Pi; j ∝ ðdi; jÞ−η]. In general, it seems that penal-
izing connection probability by a function of distance alone will be
insufficient to simulate the topological statistics of brain func-
tional networks (Table S1).

Economical Preferential Attachment. Growth models for the for-
mation of other real-life complex systems have previously been
more successful by including an additional topological term in
the connection probability function (19, 22), for example:

Pi; j ∝ ðkikjÞγðdi; jÞ−η: [2]

Here, Pi; j is the probability of connecting nodes i and j, of degree
ki and kj, respectively, that are a distance di; j apart; η is the pa-
rameter of distance penalization, as before; γ is the parameter
of preferential attachment (the exponent of a power law in the
product of the degrees of the connected nodes). Intuitively, this
model trades off the cost-minimizing drive to shorter connection
distance against the tendency to form highly connected hubs.
The best-fitting parameters (estimated by SA) generated better
approximations of brain networks than those simulated by cost
penalization alone: the degree distribution was more realistically
fat-tailed; and global efficiency, clustering, and modularity were
all closer to their experimental benchmarks (Fig. 1 and Table S1).
These results support the general principle that cost minimi-

zation is likely to be a necessary but not a sufficient criterion for
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Fig. 1. Comparison of networks simulated by three generative models vs. brain functional networks derived from experimental fMRI data on a group of 20
healthy volunteers (blue). Both the simple one-parameter model based on an exponential distance penalty (green) and the two-parameter economical
preferential attachment model (orange) fail to simultaneously capture several topological characteristics of functional brain networks. In contrast, the
economical clustering model (red) yields significantly more realistic networks by all of the following measures. (A) Normalized clustering coefficient, global
efficiency, and modularity of brain functional networks are all well matched by the economical clustering model. All values are averaged over 20 instan-
tiations of each network, and error bars represent the 95% confidence interval for the mean. Degree (B) and distance (C) distributions are shown in solid
colored and dashed black lines for the models and data, respectively. Both distributions are better captured by the economical clustering model (red) than by
the exponential decay (green) or economical preferential attachment (orange) models. (D–G) Schematic representation of the right hemisphere of the fMRI
brain network for one participant (blue) and of a representative network generated by a single instantiation of each model. To ensure that these networks
are representative, the single participant and the specific model instantiations displayed were each chosen to have the median value of skew in their degree
distributions. The size of each node represents the degree of the corresponding brain region within the network. All networks have an overall connection
density of 4% and comprise 140 nodes.
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formation of brain networks. To more fully account for the ob-
served characteristics of brain networks, we need to assume some
complementary or countervailing generative factors that pro-
mote the emergence of complex topological features, such as the
existence of hubs.

Economical Clustering Model. We explored other possible variants
of Eq. 2, using various functions of the degrees of the connected
nodes to weight the formation of complex topological features,
and tested each model against the same set of experimental
benchmark data on human fMRI networks (Table S1). The best-
fitting of these connection probability models included a power
law distance penalty, as before, as well as a power law function of
a topological term,

Pi; j ∝ ðki; jÞγðdi; jÞ−η; [3]

where ki; j is the number of nearest neighbors in common be-
tween nodes i and j; and all other notation is identical to Eq. 2.
We will refer to this as an “economical clustering” model that
includes a negative bias against high connection cost and a pos-
itive bias in favor of consolidating connectivity between nodes
having nearest neighbors in common.
Optimizing the parameters of this economical clustering

model to match the topological profile of brain networks, we
found good correspondence (P > 0.05) between the simulated
and fMRI networks on all of the key topological metrics of
global efficiency, clustering, and modularity. Overall, the sim-
ulated networks were significantly more brain-like than either
of the models previously considered (Fig. 1 and Table S1). We
found these results to hold for brain networks thresholded over
a range of connection densities, from 4% to 16% of all possible
edges between regional nodes (SI Text 5 and Table S2). An in-
tuitive understanding of the role of each parameter in this model

can be gained by plotting a phase diagram (Fig. 2) highlighting
the regions in parameter space that lead to small-world and
heavy-tailed (skew S > 1) networks. We also plot schematics of
the networks obtained by varying each parameter separately,
from zero to their experimentally estimated values (η = 2.63,
γ = 3.17). These two sections through parameter space confirm
that variations in η mainly affect the distance distribution,
whereas tuning γmainly influences the degree distribution (Figs.
S2 and S3).
However, because the model parameter estimation (by SA; SI

Text 2 and Fig. S4) has minimized the mismatch between an
observed dataset and simulated values of network metrics (SI
Text 3 and Figs. S5–S7), one might argue that it is not so sur-
prising that the fitted model is able to reproduce these same
properties quite accurately. To address this potential issue of
circularity, we did two things.
First, we explored the model’s capacity to simulate brain net-

work properties that had not been directly used as a basis for
parameter estimation. For example, as shown in Fig. 1, we found
that the distance distribution in the experimental fMRI networks
was reasonably well matched by the economical clustering model
(in comparison with the other models considered). We also found
that annealing without any constraints on the degree distribu-
tion resulted in model parameters very similar to those estimated
by annealing over all four network topological properties, with
correspondingly good fits to all fMRI network metrics, including
the degree distribution (SI Text 6.1 and Fig. S8). Additionally, as
shown in Fig. 3, we found that the economical clustering model
(in contrast to Eq. 1 and Eq. 2) also captured the statistical
distribution of topological measures—such as the clustering and
efficiency—at the local level of individual nodes in the fMRI
networks, although the annealing process had been constrained

Fig. 2. Phase diagram of the economical clustering model. Most values of
eta (η) and gamma (γ) yield small-world networks (gray area), whereas only
high values of γ yield networks with heavy-tailed (skew >1) degree distri-
bution (hashed area). The model parameters estimated to minimize mis-
match between simulated and experimental fMRI datasets are shown here
for both healthy volunteers (HV) and participants with childhood onset
schizophrenia (COS). The orange (and purple) arrows show sections through
the phase space, varying only η (or γ) respectively, whereas the other pa-
rameter is held at its optimal value estimated in healthy volunteers. Sche-
matics of the networks obtained at various points along these sections are
also shown (along zoomed-in versions of the orange and purple arrows).

B

A

Fig. 3. Simulation of network parameters not involved in model parameter
estimation. The exponential decay model (expD), economical preferential
attachment model (ecoPA), and economical clustering model (ecoC) are
shown in green, orange, and red, respectively. Of these, only the economical
clustering model generates networks that realistically approximate the ex-
perimental (fMRI; blue) distributions of nodal topological metrics, such as
clustering (A) and efficiency (B), that were not included in the process of
model parameter estimation. The P values from a Kolmogorov-Smirnov test
comparing the cumulative distributions for each parameter between the
modeled and experimental networks are: PexpD ¼ 10−103, PecoPA ¼ 10−20 , and
PecoC ¼ 0:04 for nodal clustering; and PexpD ¼ 10−45, PecoPA ¼ 6·10−4, and
PecoC ¼ 0:035 for nodal efficiency.
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only by the global average of these measures over all nodes in
the networks.
Second, we used the generative model parameters estimated

from the primary fMRI dataset (n = 20 healthy volunteers) to
predict the network properties of a second independent fMRI
dataset (n = 12 healthy volunteers). Thus, we tested the good-
ness of fit of the model on a set of experimental data that had
not been used for model estimation. The economical clustering
model provided a good account (compared with Eq. 1 and Eq. 2)
of the statistical distributions of efficiency, clustering, modular-
ity, degree, and connection distance in this independent test
dataset (SI Text 6.2 and Fig. S9).

Modeling Network Changes in Schizophrenia. We measured fMRI
network properties experimentally in 19 people with COS and
estimated economical clustering model parameters from these
clinical data. Consistent with prior studies of functional connec-
tivity and functional network organization in schizophrenia, we
found that topological properties of clustering and modularity
were somewhat reduced in COS patients (23–26). The abnormal
profile of brain network topology in the patient group could be
reasonably well matched by the economical clustering model (SI
Text 7 and Fig. S10) but with rather different model parameters
(η= 2.3, γ= 3.33) compared with those estimated in the group of
healthy volunteers (η = 2.63, γ = 3.17). This shift in optimal
parameter settings shows that the abnormal organization of brain
functional networks in schizophrenia can be modeled as the
outcome of an abnormally biased tradeoff between the generative
factors of distance penalization and topological clustering.

Discussion
We have explored a number of generative models to parsimo-
niously simulate the complex topological and anatomical prop-
erties of human brain functional networks. We have shown that
the simplest models considered, which penalize the probability
of a functional connection between brain network regions as a
function of the anatomical distance between them, cannot sat-
isfactorily account for the complex topological properties of real
brain networks. This result argues against the position that brain
organization can be explained entirely by the principle of cost
minimization (Table S4). However, we found that the addition of
a topological term to the model, favoring additional formation of
connections between nodes that already share nearest neighbors
in common, could markedly improve the simulation of realistic
brain network properties. This economical clustering model pro-
vided a good account of several network properties that were not
included in the process of model parameter estimation, and when
estimated in one normal sample, provided a good fit to the net-
work properties of a second, independent normal sample.

Prior models for formation of brain anatomical networks have
emphasized the importance of controlling or penalizing con-
nection distance (17, 18). This is consistent with a large body of
work, dating back to the seminal studies of Ramón y Cajal in the
19th century, indicating that the material and metabolic costs of
the brain are large in proportion to its mass and that cost control
is an important principle of brain organization (14). Because the
metabolic cost of a connection between brain regions increases
with increasing anatomical distance, cost minimization would be
expected to drive the formation of connections between anatom-
ically neighboring nodes. There are aspects of adult brain orga-
nization that are consistent with this expectation. For example, the
probability distribution of connection distances in human brain
networks is skewed toward shorter distances (27). The modules of
brain networks also typically comprise brain regions that are an-
atomical as well as topological neighbors (28); so intramodular
connections, which predominate in highly modular brain net-
works, are generally short distance.
However, it is also clear that brain networks have a high global

efficiency (or short characteristic path length) that is largely at-
tributable to the existence of long distance connections between
anatomically localized modules (27). The efficiency of brain net-
works is a measure of their capacity for integrated processing,
and several studies have shown that greater efficiency of network
topology is associated with higher intelligence quotient (29, 30),
greater accuracy of working memory task performance (31), or
successful performance of more difficult versions of a working
memory task (32). Thus, the topological attribute of high effi-
ciency seems empirically to be important for cognitive functions of
human brain networks, as also anticipated hypothetically by global
workspace theory (33, 34). This is clearly difficult to reconcile with
the unchallenged primacy of a cost conservation principle. In-
deed, it has been shown by computational “rewiring” of the ana-
tomical networks of C. elegans and the macaque monkey cortex
that total connection distance of both these networks is not strictly
minimized in nature; and when it is strictly minimized in silico
there is a complementary increase in path length (or decrease in
global efficiency) of the minimally rewired networks (35).
The idea that emerges from these and other prior studies is

that brain network formation cannot plausibly be modeled by cost
minimization alone but must rather depend on some “tradeoff,”
between distance penalization and one or more other factors,
which allows the emergence of realistically complex network to-
pology (10, 36, 37). The results presented here provide some
specific examples of how such a tradeoff might be rigorously de-
fined and the considerable improvements in accuracy of brain
network modeling that ensue as a result.
We investigated several possible models of competition or

tradeoff between a distance penalization term and a second term
weighting formation of particular topological features. The first
model (Eq. 2) has been previously used to simulate the organi-
zation of the Internet (19). This economical preferential attach-
ment model increases the probability of a connection between
nodes in proportion to their degrees. Thus, high-degree nodes or
hubs are more likely to form additional connections, even if sep-
arated by considerable distances. Although addition of a prefer-
ential attachment term improved the capacity of the model to
capture a range of brain network properties (compared with the
simpler models of distance penalization), we found empirically
that alternative two-parameter models simulated experimental
data even more accurately. In total, we evaluated 12 possible
generative models (Table S1), varying both the cost penalization
and topological terms, and found that the most accurate model
overall (Eq. 3) traded-off connection distance against a topologi-
cal term favoring the formation of connections between nodes
that already shared nearest neighbors. Besides these empirical
results indicating superior goodness of fit for one model in com-
parison with others, how else can we justify a preference for this
economical clustering model?

A B C

Fig. 4. The economical clustering model is adaptive to fMRI network ab-
normalities in children with childhood onset schizophrenia (COS). COS
(hashed bars) is associated with shifts in clustering, efficiency, and modu-
larity (A–C) of fMRI networks, compared with the same metrics in fMRI
networks of healthy volunteers (HV; solid bars). The bar charts on the right-
hand side of each panel show the corresponding metrics simulated by the
economical clustering model for both groups. See also SI Text 7 and Table S3.
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First, we note that both terms of the model have some degree
of face validity as biological mechanisms for brain network for-
mation. Distance penalization, as has previously been noted (17),
could be mediated mechanistically by the distance-related fall-off
in concentration gradients of growth factors directing axonal
projections toward target neurons. Enhanced probability of con-
nection between neurons that already share nearest neighbors
was recently observed in the rat somatosensory cortex (38). This is
also compatible with Hebb’s law, in the sense that neuronal
groups that share common inputs from the same topologically
neighboring group are more likely to be simultaneously activated
and therefore to consolidate direct connections. We note that
such biologically mechanistic interpretations of model parameters
are no more than heuristics, and require more rigorous testing
experimentally; nevertheless it is conceptually easier to imagine
how local clustering might be favored (by Hebbian mechanisms)
than to imagine how a preferential attachment rule might operate
biologically. Indeed, unlike in engineered systems, it is unclear
how any component of a brain network would have information
on the degrees of all of the other nodes in the system.
Second, we note that the economical clustering model, as well

as providing the most accurate simulation of global and nodal
network parameters in fMRI data acquired from healthy volun-
teers, was also adaptive to the rather different network properties
of data from people with COS. Previous studies have quite
consistently demonstrated a topological profile of “subtle ran-
domization” in schizophrenia (39), which was confirmed in these
data by somewhat reduced clustering and modularity and in-
creased global efficiency. This topological shift toward a more
random configuration was simulated by a generative model with
an abnormally reduced distance penalization parameter, allowing
a greater probability of long distance connections. This result
echoes some prior neuroimaging results, suggesting that brain
networks in schizophrenia may have a greater than normal pro-
portion of long-distance connections (27, 40) and encourages fu-
ture efforts to use the modeled parameters of network formation
to summarize and understand the patterns of abnormal network
topology seen in people with a neurodevelopmental disorder such
as schizophrenia (41, 42), as well as the processes of topological
and spatial reconfiguration of human brain networks that may
occur in the course of normal maturation to adulthood (43, 44).
This study also raises a number of methodological and con-

ceptual questions (further discussion is provided in SI Text 2–4
and 8). The brain networks were constructed from fMRI time
series, which have good anatomical resolution but insufficiently
refined time resolution to allow estimation of high frequency
dynamics or conduction delays, although these are likely to be
important parameters of brain network performance. Moreover,
the functional connectivity between a pair of nodes (e.g., as
measured by the correlation between time series) cannot be as-
sumed certainly to indicate that there is direct anatomical con-
nectivity between them (45). Thus, there are empirical limits on
what we can infer from these data about the mechanistic or do-
main-specific details of human brain network function and
structure. In this context, we have adopted a modeling strategy
that has been widely explored in the context of other complex
networks, but not before so thoroughly developed in a neurosci-
entific application. We formulated some relatively simple gener-
ative models and tested their capacity to emulate the topological
properties observed in brain networks. The existence of a good fit
for some of these models, although statistically robust, does not
prove that the brain networks were naturally selected to optimize
the model parameters. The function(s) (if any) optimized by
natural selection of brain networks are not yet known. So mod-
eling brain networks cannot certainly begin from an optimality
function, as one might begin to analyze or design an artificial
network for which the desired function was known (46). However,
a stochastic approach to brain network modeling is both tractable
and arguably reasonable, given the stochastic contribution to se-
lection of brain networks in real life. Our results show that brain

network statistics can be generated quite accurately by simple
(but not the simplest) probabilistic models.

Conclusion
Human brain functional networks have a complex topology,
embedded in anatomical space, which can be modeled as the
outcome of a tradeoff between two factors: a constraint on con-
nection distance and a tendency for clustered connections. This is
consistent with the general principle that cost minimization alone
is insufficient to explain brain network organization and suggests
that diverse brain network phenomena, in health and disease,
may be explicable in terms of tradeoffs between a small number
of biologically plausible generative factors.

Materials and Methods
Sample, Image Acquisition, and Analysis. The fMRI data were acquired from
two groups of healthy volunteers: a primary group (evaluable data on n = 20;
mean age 19.7 y; 11 male) and a secondary group (n = 12; mean age 17.5 y; 6
male). The primary group of 20 healthy volunteers matched 19 participants
meeting the DSM-IV criteria for COS (mean age 18.7; 9 male), recruited as
part of an National Institutes of Health (NIH) study of COS and normal brain
development. This study was ethically approved by the local institutional
review board, and consent was acquired from all participants as well as their
legal guardians. Excessive head motion during fMRI was an exclusion crite-
rion. There were no significant differences between the groups in terms of
age, sex, or maximum displacement due to head motion (details in SI Text).
Participants were scanned using a General Electric Signa MRI scanner oper-
ating at 1.5 T, at the NIH Clinical Center in Bethesda, MD. One anatomical
T1-weighted fast spoiled gradient echo MRI volume was acquired: echo time
(TE) 5 ms; relaxation time (TR) 24 ms; flip angle 45°; matrix 256 × 256 × 124;
field of view (FOV) 24 cm. Two sequential 3-min echo-planar imaging (EPI)
scans were acquired while the participants were lying quietly in the scanner
with eyes closed: TR 2.3 s; TE 40 ms; voxel 3.75 × 3.75 × 5 mm; matrix size
64 × 64; FOV 240 × 240 mm; 27 interleaved slices.

The images were preprocessed on the high-performance NIH Biowulf
Linux cluster (http://biowulf.nih.gov), using AFNI (47) and FSL (48, 49) soft-
ware. The first four EPI images were discarded to account for T1 equilibra-
tion effects. The data were then despiked, motion-corrected, skull-stripped,
and registered to each participant’s structural scan. Structural scans were
registered to the standard stereotactic space of the Montreal Neurological
Institute (MNI), using the MNI adult brain template (50, 51). Cerebrospinal
fluid (CSF) and white matter were segmented with a probability threshold
of 0.8. The time series for each voxel was regressed against the average CSF
and white matter signals as well as the six parameters from motion correc-
tion, with all further analysis based on the residuals. Gray matter areas were
defined using FSL’s cortical Harvard-Oxford probabilistic atlas thresholded
at 25%, excluding voxels that did not provide fMRI coverage in every par-
ticipant. Voxels were then downsampled to ≈300 approximately uniform
regions (52), maximizing compactness, and under the constraints that no
brain regions spanned hemispheres or cortical lobes or extended over more
than twice the size of the smallest region. We focused on regions in the right
hemisphere to facilitate the approximation of the wiring length by the
Euclidean distance between brain regions (44). This resulted in 140 regions
whose average time series were used to construct brain functional net-
works. The maximal overlap discrete wavelet transform with a Daubechies 4
wavelet was used to band-pass filter these time series to the frequency in-
terval: 0.05–0.111 Hz (scale 2). These preprocessed data can be downloaded
for the primary group of healthy volunteers via http://intramural.nimh.nih.
gov/chp/articles/matlab.html. The link also provides access to the graphs
constructed for both the primary healthy volunteer and COS groups.

Graph Construction. Binary graphs were constructed by thresholding the
wavelet correlation matrix estimated for each participant. To ensure that no
nodeswere disconnected from the rest of the network, we used theminimum
spanning tree as a backbone, then added further edges in order of decreasing
correlation strength to produce binary graphs over a range of connection
densities (26), from 4% to 16% of the maximum possible number of con-
nections between N nodes. Networks simulated by generative models were
likewise fully connected and controlled for connection density. All topo-
logical measures were normalized by dividing by the equivalent measures
estimated from random graphs with the same number of nodes and edges.

Network Measures. The graphs thus constructed were topologically analyzed
using someof themostwidely usedgraph theoretical networkmetrics (efficiency,
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clustering modularity, and degree); we note that these metrics are also directly
related or very similar to some other well-known graph metrics (such as local
efficiency, path length, or the small-world ratio of clustering to path length).

The degree, ki, of a node i represents the number of edges connecting it
to the rest of the network. The degrees of all of the nodes of a graph G form
the degree distribution. The clustering coefficient Ci is defined as the ratio
of the number of triangular connections between the ith node’s nearest
neighbors to the maximal possible number of such triangular motifs. The
overall clustering coefficient CðGÞ is defined as the average clustering co-
efficient of all nodes. The path length Li;j between a pair of nodes i and j
is defined as the minimum number of edges that need to be traversed to
get from i to j. More commonly (20), one measures the average inverse
path length, or global efficiency, 0<EðGÞ< 1. Many complex networks have
a modular community structure, whereby they contain subsets of highly
interconnected nodes called modules. The modularity, QðGÞ, of a graph
quantifies the quality of a suggested partition of the network into modules
by measuring the fraction of the network’s edges that fall inside modules
compared with the expected value of this fraction if edges were distributed
at random (21). The maximum value, MðGÞ, of the modularity found for any
partition of a given graph into modules yields a measure of the degree of
modularity of the network, compared with random networks.

Model Parameter Estimation. The optimal parameters η and γ used for each
model were estimated by SA on an energy function defined as

E ¼ 1
PC :PE :PM :Pk

where PC is the P value associated with the t test for a difference in the mean
clustering coefficients of a set of 20 simulated model networks vs. a set of 20
experimental fMRI datasets (more details are provided in SI Text 2–4). Sim-
ilarly, PE and PM are P values of t tests for the difference between efficiency
and modularity in modeled vs. experimental data, whereas Pk is the P value
of the Kolmogorov-Smirnoff test between the degree distributions esti-
mated from the simulated and experimental networks. SA aims to find the
minimum of the energy function in parameter space, and thus finds the η
and γ parameters that generate model networks that most closely approx-
imate the experimental data in terms of clustering, efficiency, modularity,
and degree distribution.
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