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ABSTRACT

A Sheaf Neural Network (SNN) is a type of Graph Neural Network (GNN) that
operates on a sheaf, an object that equips a graph with vector spaces over its nodes
and edges and linear maps between these spaces. SNNs have been shown to have
useful theoretical properties that help tackle issues arising from heterophily and
over-smoothing. One complication intrinsic to these models is finding a good sheaf
for the task to be solved. Previous works proposed two diametrically opposed
approaches: manually constructing the sheaf based on domain knowledge and
learning the sheaf end-to-end using gradient-based methods. However, domain
knowledge is often insufficient, while learning a sheaf could lead to overfitting
and significant computational overhead. In this work, we propose a novel way of
computing sheaves drawing inspiration from Riemannian geometry: we leverage
the manifold assumption to compute manifold-and-graph-aware orthogonal maps,
which optimally align the tangent spaces of neighbouring data points. We show that
this approach achieves promising results with less computational overhead when
compared to previous SNN models. Overall, this work provides an interesting
connection between algebraic topology and differential geometry, and we hope that
it will spark future research in this direction.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008) have shown encouraging results in a wide
range of applications, ranging from drug design (Stokes et al., 2020) to guiding discoveries in pure
mathematics (Davies et al., 2021). One advantage over traditional neural networks is that they can
leverage the extra structure in graph data, such as edge connections.

GNNs, however, do not come without issues. Traditional GNN models, such as Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2016) have been shown to work poorly on heterophilic data.
In fact, GCNs use homophily as an inductive bias by design, that is, they assume that connected
nodes will likely belong to the same class and have similar feature vectors, which is not true in many
real-world applications (Zhu et al., 2020a). Moreover, GNNs also suffer from over-smoothing (Oono
& Suzuki, 2019), which prevents these models from improving, and may actually even worsen their
performance when stacking several layers. These two problems are, from a geometric point of view,
intimately connected (Chen et al., 2020a; Bodnar et al., 2022).

Bodnar et al. (2022) showed that when the underlying “geometry” of the graph is too simple, the
issues discussed above arise. More precisely, they analysed the geometry of the graph through cellular
sheaf theory (Curry, 2014; Hansen, 2020; Hansen & Ghrist, 2019), a subfield of algebraic topology
(Hatcher, 2000). A cellular sheaf associates a vector space to each node and edge of a graph, and
linear maps between these spaces. A GNN which operates over a cellular sheaf is known as a Sheaf
Neural Network (SNN) (Hansen & Gebhart, 2020; Bodnar et al., 2022).
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Figure 1: The orthonormal bases of TxiM and TxjM are determined by local PCA using nodes
in the 1-hop neighbourhood of xi and xj respectively. The orthogonal mapping Oij is a map from
Txi

M to Txj
M which optimally aligns their bases.

SNNs work by computing a sheaf Laplacian, which recovers the well-known graph Laplacian when
the underlying sheaf is trivial, that is, when vector spaces are 1-dimensional and we apply identity
maps between them. Hansen & Ghrist (2019) have first shown the utility of SNNs in a toy experimental
setting, where they used a manually-constructed sheaf Laplacian based on full knowledge of the
data generation process. Bodnar et al. (2022) proposed to learn this sheaf Laplacian from data using
stochastic gradient descent, making these types of models applicable to any graph dataset. However,
this can also lead to computational complexity problems, overfitting and optimisation issues.

This work proposes a novel technique that aims to precompute a sheaf Laplacian from data in a
deterministic manner, removing the need to learn it with gradient-based approaches. We do this
through the lens of differential geometry, by assuming that the data is sampled from a low-dimensional
manifold and optimally aligning the neighbouring tangent spaces via orthogonal transformations ( see
Figure 1). This idea was first introduced as groundwork for vector diffusion maps by Singer & Wu
(2012). However, it only assumed a point-cloud structure. Instead, one of our contributions involves
the computation of these optimal alignments over a graph structure. We find that our proposed
technique performs well, while reducing the computational overhead involved in learning the sheaf.

In Section 2, we present a brief overview of cellular sheaf theory and neural sheaf diffusion (Bodnar
et al., 2022). Next, in Section 3, we give details of our new procedure used to pre-compute the
sheaf Laplacian before the model-training phase, which we refer to as Neural Sheaf Diffusion with
Connection Laplacians (Conn-NSD). We then, in Section 4, evaluate this technique on various datasets
with varying homophily levels. We believe that this work is a promising attempt at connecting ideas
from algebraic topology and differential geometry with machine learning, and hope that it will spark
further research at their intersection.

2 BACKGROUND

We briefly overview the necessary background, starting with GNNs and cellular sheaf theory and
concluding with neural sheaf diffusion. The curious reader may refer to Curry (2014); Hansen (2020);
Hansen & Ghrist (2019) for a more in-depth insight into cellular sheaf theory, and to Bodnar et al.
(2022) for the full theoretical results of neural sheaf diffusion.

2.1 GRAPH NEURAL NETWORKS

GNNs are a family of neural network architectures that generalise neural networks to arbitrarily
structured graphs. A graph G = (V,E) is a tuple consisting of a set of nodes V and a set of edges E.
We can represent each node in the graph with a d-dimensional feature vector xv and group all the
n = |V | feature vectors into a n× d matrix X. We represent the set of edges E with an adjacency
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matrix A. A GNN layer then takes these two matrices as input to produce a new set of (latent) feature
vectors for each node:

H(l) = f
(

H(l−1),A
)
. (1)

In the case of a multi-layer GNN, the first layer l = 1, takes as input H(0) = X, whereas subsequent
layers, l, take as input H(l−1), the latent features produced by the GNN layer immediately before it.
There are numerous architectures which take this form, with one of the most popular being the Graph
Convolutional Network (GCN) (Kipf & Welling, 2016) which implements Equation (1) the following
way:

H(l) = σ

(
D̂

− 1
2 ÂD̂

− 1
2 H(l−1)W(l)

)
, (2)

where σ is a non-linear activation function (e.g. ReLU), Â = A + I, D̂ is the diagonal node degree
matrix of Â and W(l) is a weight matrix. This update propagation is local (due to the adjacency
matrix), meaning that each latent feature vector is updated as a function of its local neighbourhood,
weighted by a weight matrix and then symmetrically normalised. This kind of model has proven to
be extremely powerful in a myriad of tasks. The weight matrix W(l) at each layer is learnt from the
data through back-propagation, by minimising some loss function (e.g. cross-entropy loss).

2.2 CELLULAR SHEAF THEORY

Definition 2.1. A cellular sheaf (G,F) on an undirected graph G = (V,E) consists of:

• A vector space F(v) for each v ∈ V ,

• A vector space F(e) for each e ∈ E,

• A linear map Fv⊴e : F(v) → F(e) for each incident node-edge pair v ⊴ e.

The vector spaces of the node and edges are called stalks, while the linear maps are called restriction
maps. It is then natural to group the various spaces. The space which is formed by the node stalks is
called the space of 0-cochains, while the space formed by edge stalks is called the space of 1-cochains.

Definition 2.2. Given a sheaf (G,F), we define the space of 0-cochains C0(G,F) as the direct sum
over the vertex stalks C0(G,F) :=

⊕
v∈V F(v). Similarly, the space of 1-cochains C1(G,F) as

the direct sum over the edge stalks C1(G,F) :=
⊕

e∈E F(e).

Defining the spaces C0(G,F) and C1(G,F) allows us to construct a linear co-boundary map
δ : C0(G,F) → C1(G,F). From an opinion dynamics perspective (Hansen & Ghrist, 2021), the
node stalks may be thought of as the private space of opinions and the edge stalks as the space in
which these opinions are shared in a public discourse space. The co-boundary map δ then measures
the disagreement between all the nodes.

Definition 2.3. Given some arbitrary orientation for each edge e = u → v ∈ E, we define the
co-boundary map δ : C0(G,F) → C1(G,F) as δ(x)e = Fv⊴exv − Fu⊴exu. Here x ∈ C0(G,F)
is a 0-cochain and xv ∈ F(v) is the vector of x at the node stalk F(v).

The co-boundary map δ allows us to construct the sheaf Laplacian operator over a sheaf.

Definition 2.4. The sheaf Laplacian of a sheaf is a map LF : C0(G,F) → C0(G,F) defined as
LF = δ⊤δ.

The sheaf Laplacian is a symmetric positive semi-definite (by construction) block matrix. The diago-
nal blocks are LFv,v

=
∑

v⊴e F⊤
v⊴eFv⊴e, while the off-diagonal blocks are LFv,u

= −F⊤
v⊴eFu⊴e.

Definition 2.5. The normalised sheaf Laplacian ∆F is defined as ∆F = D− 1
2LFD

− 1
2 where D is

the block-diagonal of LF .

Although stalk dimensions are arbitrary, we work with node and edge stalks which are all d-
dimensional for simplicity. This means that each restriction map is d × d, and therefore so is
each block in the sheaf Laplacian. With n we denote the number of nodes in the underlying graph G,
which results in our sheaf Laplacian having dimensions nd× nd.
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If we construct a trivial sheaf where each stalk is isomorphic to R and the restriction maps are
identity maps, then we recover the well-known n × n graph Laplacian from the sheaf Laplacian.
This effectively means that the sheaf Laplacian generalises the graph Laplacian by considering a
non-trivial sheaf on G.
Definition 2.6. The orthogonal (Lie) group of dimension d, denoted O(d), is the group of d × d
orthogonal matrices together with matrix multiplication.

If we constrain the restriction maps in the sheaf to belong to the orthogonal group (i.e., Fv⊴e ∈ O(d)),
the sheaf becomes a discrete O(d)-bundle and can be thought of as a discretised version of a tangent
bundle on a manifold. The sheaf Laplacian of the O(d)-bundle is equivalent to a connection Laplacian
used by Singer & Wu (2012). The orthogonal restriction maps describe how vectors are rotated when
transported between stalks, in a way analogous to the transportation of tangent vectors on a manifold.

Orthogonal restriction maps are advantageous because orthogonal matrices have fewer free parameters,
making them more efficient to work with. The Lie group O(d) has a d(d−1)/2-dimensional manifold
structure (compared to the d2-dimensional general linear group describing all invertible matrices). In
d = 2, for instance, 2× 2 rotation matrices have only one free parameter (the rotation angle).

2.3 NEURAL SHEAF DIFFUSION

We now discuss the existing sheaf-based machine learning models and their theoretical properties.
Consider a graph G = (V,E) where each node v ∈ V has a d-dimensional feature vector xv ∈ F(v).
We construct an nd-dimensional vector x ∈ C0(G,F) by column-stacking the individual vectors xv .
Allowing for f feature channels, we produce the feature matrix X ∈ R(nd)×f . The columns of X are
vectors in C0(G,F), one for each of the f channels.

Sheaf diffusion is a process on (G,F) governed by the following differential equation:

X(0) = X, Ẋ(t) = −∆FX(t), (3)

which is discretised via the explicit Euler scheme with unit step-size:

X(t+ 1) = X(t)−∆FX(t) = (Ind −∆F )X(t)

The model used by Bodnar et al. (2022) for experimental validation was of the form

Ẋ = −σ
(
∆F(t) (In ⊗ W1)X(t)W2

)
(4)

where W1 and W2 are weight matrices, the restriction maps defining ∆F(t) are computed by a learn-
able parametric matrix-valued function Fv⊴e:=(v,u) = Φ(xv, xu), on which additional constraints
(e.g., diagonal or orthogonal structure) can be imposed. Equation (4) was discretised as

Xt+1 = Xt − σ
(
∆F(t)

(
In ⊗ Wt

1

)
XtWt

2

)
(5)

It is important to note that the sheaf F(t) and the weights Wt
1,Wt

2 in equation (5) are time-dependent,
meaning that the underlying “geometry” evolves over time.

3 CONNECTION SHEAF LAPLACIANS

The sheaf Laplacian ∆F(t) arises from the sheaf F(t) built upon the graph G, which in turn is
determined by constructing the individual restriction maps Fv⊴e. Instead of learning a parametric
function Fv⊴e:=(v,u) = Φ(xv, xu) as done by Bodnar et al. (2022), we compute the restriction maps
in a non-parametric manner at pre-processing time. In doing so, we avoid learning the maps by
backpropagation. In particular the restriction maps we compute are orthogonal. We work with this
class because it was shown to be more efficient when using the same stalk width as compared to other
models in Bodnar et al. (2022), and due to the geometric analogy to parallel transport on manifolds.

3.1 LOCAL PCA & ALIGNMENT FOR POINT CLOUDS

We adapt a procedure to learn orthogonal transformations on point clouds, presented by Singer & Wu
(2012). Their construction relies on the so-called “manifold assumption”, positing that even though
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data lives in a high-dimensional space Rp, the correlation between dimensions suggests that in reality,
the data points lie on a d-dimensional Riemannian manifold Md embedded in Rp (with significantly
lower dimension, d ≪ p).

Assume the manifold Md is sampled at points {x1, . . . ,xn} ⊂ Rp. At every point xi, Md has a
tangent space TxiM (which is analogous to our F(v)) that intuitively contains all the vectors at xi

that are tangent to the manifold. A mechanism allowing to transport vectors between two TxiM
and Txj

M at nearby points is a connection (or parallel transport, which would correspond to our
transport maps F⊤

v⊴eFu⊴e between F(u) and F(v)).

Computing a connection on the discretised manifold is a two step procedure. First, orthonormal bases
of the tangent spaces for each data point are constructed via local PCA. Next, the tangent spaces are
optimally aligned via orthogonal transformations, which can be thought of as mappings from one
tangent space to a neighbouring one. Singer & Wu (2012) computed a

√
ϵPCA-neighbourhood ball

of points for each point xi denoted Nxi,ϵPCA
. This forms a set of neighbouring points xi1 , . . . ,xiNi

.
Then the p × Ni matrix X̂i = [xi1 − xi, . . . ,xiNi

− xi] is obtained, which centres all of the
neighbours at xi. Next, an Ni ×Ni weighting matrix Di is constructed, giving more importance to
neighbours closer to xi. This allows us to compute the p ×Ni matrix Bi = X̂iDi. Then Singular
Value Decomposition (SVD) is used on Bi such that Bi = UiΣiV⊤

i . Assuming that the singular
values are in decreasing order, the first d left singular vectors are kept (the first d vectors of Ui),
forming the matrix Oi. Note that the columns of Oi are orthonormal by construction and they form a
d-dimensional subspace of Rp. This basis constitutes our approximation to the basis of the tangent
space Txi

M.

To compute the orthogonal matrix Oij , which represents our orthogonal transformation from Txi
M

to Txj
M, it is sufficient to first of all compute the SVD of O⊤

i Oj = UΣV⊤ and then Oij = UV⊤.
Oij is the orthogonal transformation which optimally aligns the tangent spaces Txi

M and Txj
M

based on their bases Oi and Oj . Whenever xi and xj are “nearby”, Singer & Wu (2012) show that
Oij is an approximation to the parallel transport operator.

3.2 LOCAL PCA & ALIGNMENT FOR GRAPHS

The technique has many valuable theoretical properties, but was originally designed for point clouds.
In our case, we also wish to leverage the valuable edge information at our disposal. To do this, instead
of computing the neighbourhood Nxi,ϵPCA

, we take the 1-hop neighbourhood N 1
xi

of xi. A problem
is encountered when computing the weighting matrix Di, which gives different weightings dependent
on the distance to the centroid of the neighbourhood. We make the assumption that Di is an identity
matrix, giving the same weighting to each node in the neighbourhood, as they are all at a 1-hop
distance from the reference feature vector. This means that in our approach Bi = X̂iDi = X̂i.

Following this modification, the technique matches the procedure proposed by Singer & Wu (2012).
We compute the SVD of Bi to extract Oi from the left singular vectors. We finally compute the
orthogonal transport maps Oij from the SVD of O⊤

i Oj . This gives a modified version of the
alignment procedure, that is now graph-aware. To the best of our knowledge, this a novel technique
to operate over graphs. A diagram of the newly proposed approach is displayed in Figure 1.

Estimating d is non-trivial, that is, the dimension of the tangent space (in our case, the stalks). In
fact, we are assuming that every neighbourhood is larger than d or else Bi would have less than d
singular vectors, and our construction would be ill-defined. This is clearly not always the case for all
d. While Singer & Wu (2012) proposed to estimate d directly from the data, we leave d as a tunable
hyper-parameter.

To solve the problem for nodes which have less than d neighbours, we take the closest neighbours in
terms of the Euclidean distance which are not in the 1-hop neighbourhood. In other words, when
there are less than d neighbours, we pick the remaining neighbours following the original procedure
by Singer & Wu (2012). We note that one could try to consider an n-hop neighbourhood instead,
in a similar fashion to ϵPCA in the original technique. Still, this comes with a larger computational
overhead and complications related to the weightings. Furthermore, if a graph has a disconnected
node, this would still be an issue. In practice, d is kept small such that most nodes have at least d
edge-neighbours.
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Algorithm 1 Local PCA & Alignment for Graphs
Input: feature matrix X, EdgeIndex, stalk dimension d
// Graph Local PCA
for i = 0 to len(X) do

// 1-hop neighbourhood and closest vectors
// (Euclidean distance) if needed, centred at xi

X̂i = LocalNeighbourhood(X, EdgeIndex, i)
Ui,Σi,V⊤

i = SVD(X̂i)
// Choose first d left singular vectors
Oi = Ui[:, : d]

end for
// Alignment
for i, j in EdgeIndex do

U,Σ,V⊤ = SVD(O⊤
i Oj)

Oij = UV⊤

end for

Algorithm 1 shows the pseudo-code for our technique. In principle, the LocalNeighbourhood function
selects the neighbours based on the 1-hop neighbourhood. If the number of these neighbours is less
than the stalk dimension, we pick the closest neighbours based on the Euclidean distance, which are
not in the 1-hop neighbourhood. Assuming unit cost for SVD, the run-time increases linearly with the
number of data-points. Also, given that the approach here described is performed at pre-processing
time, we are able to compute the sheaf Laplacian in a deterministic way in constant time during
training. This removes the overhead required whilst backpropagating through the sheaf Laplacian to
learn the parametric function Φ. It also helps counter issues related to overfitting, especially when
the dimension of the stalks increases as we are removing the additional parameters which come with
Φ, reducing model complexity.

4 EVALUATION

We evaluate our model on several datasets, and compare its performance to a variety of models
recorded in the literature, as well as to some especially designed baselines. For consistency, we use
the same datasets as the ones discussed by Bodnar et al. (2022). These are real-world datasets which
aim at evaluating heterophilic learning (Rozemberczki et al., 2021; Pei et al., 2020). They are ordered
based on their homophily coefficient 0 ≤ h ≤ 1, which is higher for more homophilic datasets.
Effectively, h is the fraction of edges which connect nodes of the same class label. The results are
collected over 10 fixed splits, where 48%, 32%, and 20% of nodes per class are used for training,
validation, and testing, respectively. The reported results are chosen from the highest validation score.

Table 1 contains accuracy results for a wide range of models, along with ours, Conn-NSD, for node
classification tasks. An important baseline is the Multi-Layer Perceptron (MLP), whose result we
report in the last row of Table 1. The MLP has access only to the node features and it provides an
idea of how much useful information GNNs can extract from the graph structure. The GNN models
in Table 1 can be classified in 3 main categories:

1. Classical: GCN (Kipf & Welling, 2016), GAT (Velickovic et al., 2017), GraphSAGE
(Hamilton et al., 2017),

2. Models for heterophilic settings: GGCN (Yan et al., 2021), Geom-GCN (Pei et al., 2020),
H2GCN (Zhu et al., 2020b), GPRGNN (Chien et al., 2020), FAGCN (Bo et al., 2021),
MixHop (Abu-El-Haija et al., 2019),

3. Models which address over-smoothing: GCNII (Chen et al., 2020b), PairNorm (Zhao &
Akoglu, 2019),

Additionally, we also include the results presented by Bodnar et al. (2022) using sheaf diffusion
models, and the two random baselines: RandEdge-NSD and RandNode-NSD. RandEdge-NSD
generates the sheaf by sampling a Haar-random matrix (Meckes, 2019) for each edge. RandNode-
NSD instead generates the sheaf by sampling a Haar-random matrix for each node Oi and then by
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Table 1: Accuracy ± variance for various node classification datasets and models. The datasets are
sorted by increasing order of homophily. Our technique is denoted Conn-NSD, while the other Sheaf
Diffusion models are Diag-NSD, O(d)-NSD and Gen-NSD. The top three models are coloured by
First, Second and Third, respectively. The first section includes sheaf-based models, while the
second includes other GNN models.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora
Homophily level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

Conn-NSD (ours) 86.16±2.24 88.73±4.47 37.91±1.28 45.19±1.57 65.21±2.04 85.95±7.72 75.61±1.93 89.28±0.38 83.74±2.19

RandEdge-NSD 84.05±5.33 85.69±4.02 37.40±1.18 33.89±1.56 47.72±1.60 84.59±7.65 72.49±1.91 87.74±0.50 74.00±1.99

RandNode-NSD 82.97±7.55 86.47±4.51 37.54±1.32 34.00±1.43 50.68±2.48 83.78±7.81 73.89±1.94 89.13±0.59 80.90±1.51

Diag-NSD 85.67±6.95 88.63±2.75 37.79±1.01 54.78±1.81 68.68±1.73 86.49±7.35 77.14±1.85 89.42±0.43 87.14±1.06

O(d)-NSD 85.95±5.51 89.41±4.74 37.81±1.15 56.34±1.32 68.04±1.58 84.86±4.71 76.70±1.57 89.49±0.40 86.90±1.13

Gen-NSD 82.97±5.13 89.21±3.84 37.80±1.22 53.17±1.31 67.93±1.58 85.68±6.51 76.32±1.65 89.33±0.35 87.30±1.15

GGCN 84.86±4.55 86.86±3.29 37.54±1.56 55.17±1.58 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05

H2GCN 84.86±7.23 87.65±4.98 35.70±1.00 36.48±1.86 60.11±2.15 82.70±5.28 77.11±1.57 89.49±0.38 87.87±1.20

GPRGNN 78.38±4.36 82.94±4.21 34.63±1.22 31.61±1.24 46.58±1.71 80.27±8.11 77.13±1.67 87.54±0.38 87.95±1.18

FAGCN 82.43±6.89 82.94±7.95 34.87±1.25 42.59±0.79 55.22±3.19 79.19±9.79 N/A N/A N/A
MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 76.26±1.33 85.31±0.61 87.61±0.85

GCNII 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25

Geom-GCN 66.76±2.72 64.51±3.66 31.59±1.15 38.15±0.92 60.00±2.81 60.54±3.67 78.02±1.15 89.95±0.47 85.35±1.57

PairNorm 60.27±4.34 48.43±6.14 27.40±1.24 50.44±2.04 62.74±2.82 58.92±3.15 73.59±1.47 87.53±0.44 85.79±1.01

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04

GCN 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.98±1.27

GAT 52.16±6.63 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48

MLP 80.81±4.75 85.29±3.31 36.53±0.70 28.77±1.56 46.21±2.99 81.89±6.40 74.02±1.90 75.69±2.00 87.16±0.37

computing the transport maps Oij from Oi and Oj . These last two baselines help us determine how
our sheaf structure performs against a randomly sampled one.

As we can see from the results, sheaf diffusion models tend to perform best for the heterophilic
datasets such as Texas, Wisconsin, and Film. On the other hand, their relative performance drops as
homophily increases. This is expected since, for example, classical models such as GCN and GAT
exploit homophily by construction, whereas sheaf diffusion models are more general, adaptable, and
versatile, but at the same time lose the inductive bias provided by classical models for homophilic
data.

Conn-NSD, alongside the other original discrete sheaf diffusion methods, consistently beats the
random orthogonal sheaf baselines, which shows that our model incorporates meaningful geometric
structure. The proposed Conn-NSD model achieves excellent results on the Texas and Film datasets,
outperforming Diag-NSD, O(d)-NSD, and Gen-NSD, using fewer learnable parameters. Furthermore,
Conn-NSD also obtains competitive results for Wisconsin, Cornell and Pubmed and remains close-
behind on Citeseer and Cora.

It is only in the case of the Squirrel dataset, and to a lesser extent Chameleon, that Conn-NSD is
not able to perform as well as the models discussed by Bodnar et al. (2022). The Squirrel dataset
contains a large amount of nodes and a substantially greater number of edges than all the other
datasets. Importantly, the underlying MLP used for classification scores poorly. It may be that the
extra flexibility provided by learning the sheaf is specially beneficial in cases in which the underlying
MLP achieves low accuracy. Nevertheless, Conn-NSD still convincingly outperforms the random
baselines, especially on these last two datasets.

Overall, Conn-NSD performs comparably well to learning the sheaf via gradient-based approaches in
most cases. It also seems most well-suited on graphs with a very low amount of nodes. This may be
explained by the fact that Conn-NSD aims to mitigate overfitting, acting as a form of regularisation
which allows for faster training and fewer parameters.

Runtime performance Finally, we measure the speedup achieved by moving the computation of
the sheaf Laplacian at pre-processing time. Table 2 displays the mean wall-clock time for an epoch
measured in seconds, obtained with a NVIDIA TITAN X GPU and an Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz. Conn-NSD achieves significantly faster inference times when compared to its
direct counter-part O(d)-NSD from Bodnar et al. (2022). The larger datasets see the most benefit,
with Squirrel showing a 45.8% speed up.
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Table 2: Mean seconds per epoch for each of the datasets. The proposed model achieves faster
inference times because it does not need to learn and build a Laplacian at each layer.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278

Conn-NSD (ours) 0.010 0.013 0.017 0.310 0.169 0.013 0.011 0.147 0.015
O(d)-NSD 0.017 0.018 0.022 0.572 0.296 0.019 0.017 0.263 0.022

5 CONCLUSION

We proposed and evaluated a novel technique to compute the sheaf Laplacian of a graph deterministi-
cally, obtaining promising results. This was done by leveraging existing differential geometry work
that constructs orthogonal maps that optimally align tangent spaces between points, relying on the
manifold assumption. We crucially adapted this intuition to be graph-aware, leveraging the valuable
edge connection information in the graph structure.

We showed that this technique achieves competitive empirical results and it is able to beat or match
the performance of the original models by Bodnar et al. (2022) on most datasets, as well as to
consistently outperform the random sheaf baselines. This suggests that in some cases it may not be
necessary to learn the sheaf through a parametric function, but instead the sheaf can be computed as a
pre-processing step. This work may be regarded as a regularisation technique for SNNs, which also
reduces the training time as it removes the need to backpropagate through the sheaf.

We believe we have uncovered an exciting research direction which aims to find a way to compute
sheaves non-parametrically with an objective that is independent of the downstream task. Furthermore,
we are excited by the prospect of further research tying intuition stemming from the fields of algebraic
topology and differential geometry to machine learning. We believe that this work forms a promising
first step in this direction.
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