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ABSTRACT
Salient features of the remarkable band structure seen in the high-frequency interpulse of the
Crab pulsar are summarized. It is argued that its source must lie in a current sheet, probably
coincident with the open-closed magnetosphere separatrix, and that the mechanism is a form
of one-pass free-electron laser. An outward moving electron component in the current sheet
interacts with the longitudinal electric field of an inward directed ion–proton Langmuir mode.
The band structure is then a natural consequence of the differing charge-to-mass ratios of the
ions, which are a return current component of those accelerated, as in almost all pulsars, from
the polar cap to the light cylinder.
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1 IN T RO D U C T I O N

The Crab pulsar is exceptional in that the profile of its principal ra-
dio emission is almost identical with that of the incoherent emission
from optical to γ -ray wavelengths. Many authors have concluded
that its radio-emission source cannot lie above the polar-cap but
must be close to the light-cylinder radius RLC. We refer in particular
to Kunzl et al. (1998), Melrose & Gedalin (1999), and to Jessner,
Lesch & Kunzl (2001). But the complete emission pattern is com-
plex as demonstrated in the recent papers of Eilek & Hankins (2016)
and Hankins, Eilek & Jones (2016).

The above comments refer to the major components, the main
pulse (MP) and low-frequency interpulse (LFIP), of the spectrum at
frequencies of the order of 1 GHz. There is a relatively weak low-
frequency component (LFC) preceding the MP by about 40 deg in
longitude, also a precursor.

The circular polarization of these components has been measured
at high resolution most recently by Slowikowska et al. (2015), who
found it to be weak or non-existent at 1.4 GHz except in the LFC
where it is both clear and a slowly varying function of longitude.
As we have argued in Jones (2016), the circular polarization, as
opposed to the circular polarization observed in nanopulses, can be
explained if the degree of birefringence associated with an electron–
positron plasma is not present because the source is an ion–proton
plasma. Thus we are in agreement with Hankins et al. (2016) in
regarding the LFC as polar-cap emission. Such a case requires that
the Crab pulsar has spin � and polar-cap magnetic flux density B
such that � · B < 0, as may be the case for most of the observed
radio pulsars (see Jones 2016; for details).

The sign of � · B is important because it determines the degrees
of freedom and nature of the open magnetosphere plasma. The
positive sign (negative Goldreich–Julian charge density) allows the

� E-mail: p.jones1@physics.ox.ac.uk

emission of electrons only. The magnetosphere above the polar cap
is of electrons, governed by Maxwell’s equations with boundary
conditions: natural frequencies are limited to the electron cyclotron
and plasma frequencies, although pair creation may be possible.
These limitations are unlikely to be consistent with the wide range of
phenomena, mode-changes and nulls, observed in radio pulsars and
it is unsurprizing that a physical understanding of them has not been
achieved with this sign assumption. The opposite sign leads to the
formation of an ion–proton plasma whose properties are functions of
the nature of the condensed-matter surface of the star. Investigations
of this have shown that, although of greater complexity, it does
provide the basis for an understanding of the observed phenomena
but unfortunately involves parameters, particularly polar-cap atomic
number and whole-surface temperature, which are not well known
(Jones 2016).

The radio-frequency energy per unit charge accelerated from the
polar cap assuming Goldreich–Julian flux densities (Goldreich &
Julian 1969) is an informative parameter (see Jones 2014a, 2017).
For the Crab it is approximately a total of 3 MeV including the
MP, LFIP, and LFC emissions, which is extremely weak compared
with the average of 1.9 GeV obtained by Jones (2014a) from the
luminosity measurements of Malofeev et al. (1994) for sample of
well-observed middle-aged pulsars.

But the Crab spectrum has further components above 5 GHz.
Here the LFIP disappears to be replaced by a high-frequency inter-
pulse (HFIP) displaced to earlier longitudes by about 6 deg. There
are also two further high-frequency components (HFC1,2) which
have so far not been much investigated. The HFIP has quite extraor-
dinary properties (see the review by Eilek & Hankins) which have
so far not received adequate explanation and are the subject of this
paper. Section 2 lists the significant features of the HFIP and gives
the reasons for assigning it to emission from a current sheet. The
physical processes in the sheet that are possible sources of the emis-
sion are described in Section 3, and its intensity and polarization in
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Sections 4 and 5, respectively. Our conclusions are summarized in
Section 6.

2 RADIO EMISSION

Eilek & Hankins (2016) have outlined the various classes of emis-
sion mechanisms that may be relevant to pulsars. The MP and
LFIP spectra are relatively unremarkable except for the existence
of nanopulses and are broadly compatible with strong plasma tur-
bulence (SPT) in an electron–positron plasma. Development of tur-
bulence from growth of a mode with angular frequency γ 1/2ωe ≈
8 × 108 rad s−1 in the observer frame at RLC is not obviously incon-
sistent with the low-frequency spectra. Here ωe is the plasma fre-
quency at Goldeich–Julian density and the plasma–stream Lorentz
factor is γ ≈ 102. Langmuir-mode growth rates are of the order of
0.2ωeγ

−3/2: adequate growth rates at the light cylinder require γ ≤
102, but this is reached naturally as a consequence of synchrotron
emission by the pairs. (A useful account of synchro-curvature radia-
tion has been given by Vigano et al. 2015.) The relatively low radio-
frequency energy per unit charge is consistent with an electron–
positron source (Jones 2014a).

The Crab spectrum above 5 GHz is entirely different. The two
components HFC1,2 have frequency-dependent longitudes but oth-
erwise little is known of them. The HFIP which is the subject of
this paper has, remarkably, a band structure fully described by Eilek
& Hankins (2016) and Hankins et al. (2016) within a 4 GHz band-
width. Salient features of individual pulses which might provide
some information about the emission mechanism are listed below.

(1) Individual pulses, about 1–10 μs in length, have a fluctuation
in dispersion measure δ(DM) ≈ 0.02 pc cm−3 above the standard
Crab pulsar value, whose origin can lie only within the magneto-
sphere.

(2) Band structure has been observed in the interval ν =
5−28GHz but with 4 GHz maximum bandwidth. Emission line-
widths are ≈0.4 GHz and broadly constant, but the spacing between
lines is a good linear function of ν, �ν = 0.06ν.

(3) There is no consistent frequency memory in multiple pulses.

(4) Individual emission lines have finer structure within them,
10–20 ns in time and ∼0.1 GHz in frequency. (See also Jessner et al.
2010 who observed within a much smaller bandwidth.) The mean
frequency of a line appears to increase with observing longitude. At
8 GHz the rate is about 0.15 GHz μs−1.

The fluctuations in dispersion measure are those that would be
produced by an additional column density equivalent to 6 × 1016

cm−2 interstellar electrons, but with geometry such that the ra-
diation of different pulses passes through variable lengths of the
column. This is of the order of a Crab pulsar closed magnetospheric
Goldreich–Julian electron density integrated from a radius of 107

cm to the light cylinder. Thus a plausible structure that could corre-
spond is one of emission inside a high-density current sheet within
the magnetosphere. This is not predicted to be a feature of the
corotating magnetosphere, but modern methods of computational
plasma physics suggest its presence at the separatrix, the surface
separating open and closed sectors of the magnetosphere (see for
e.g., Bai & Spitkovsky 2010). Counter-streaming is found in mod-
elling such sheets and, in principle, could allow very high current
densities at nominally Goldreich–Julian charge densities. The inte-

rior of a sheet is likely to be a strong-field region of ω � ωB with
an electron cyclotron frequency ωB ≈ 5 × 1013 rad s−1 at RLC.

The spacing between emission lines is of the same order as the
proton cyclotron frequency but there are a number of reasons why
this is unlikely to be relevant to an understanding of the band struc-
ture. There is no obvious reason why the linear dependence of
�ν on ν should be observed. Also transition rates for cyclotron-
frequency harmonics are negligible owing to the typical cyclotron
radius being small compared with the wavelength of the radiation
and the wavevector k being almost precisely antiparallel with the
local magnetic flux density B (see Bornatici 1982).

The most interesting detail in (4) is the fine structure in the line
intensity as a function of ν. This was previously unknown in pulsar
radio spectra and indicates the presence of a resonant system in the
emission process.

This latter property does suggest that a maser-action source
should be considered, having features in common with the free-
electron laser and with the theory of electron propagation through
a parallel oscillating field described by Melrose (1978). Assigning
the Crab pulsar to the � · B < 0 class dictates the flows of charge
within the sheet. The outflow from the polar cap is of ions and
protons and must be balanced by a return flow of the same particles
through the light cylinder and inside the sheet or by an outflow of
electrons from points outside the null surface defined by � · B = 0.
The presence of the return flow component is indicated in the mod-
elling by plasma computational techniques. The separatrix current
sheet is then close to that part of the open magnetosphere contain-
ing the outer gap in which, in the case of the Crab, pair creation
by the Breit–Wheeler mechanism (photon–photon collisions; Breit
& Wheeler 1934) does occur and is the source of the incoherent
emissions (Cheng, Ruderman & Zhang 2000; Abdo et al. 2013).
Therefore, it is plausible that the HFIP should be observed with a
small longitude displacement from the LFIP which has the same
profile as the incoherent emissions whose source is associated with
the outer gap. There is no case for assuming that pairs are created
within the current sheet near the � · B = 0 surface or above the
polar cap: the parallel electric field is substantially screened. The
flow of current itself does not require large Lorentz factors.

Our proposal is that the longitudinal electric field of an ion–proton
Langmuir mode directed inward within the current sheet interacts
with a moderately relativistic outward electron stream. It is in effect
an analogue of a one-pass free-electron laser whose properties are
described in the following Section.

3 TH E L A N G M U I R - M O D E LO N G I T U D I NA L
ELECTRIC FIELD

Particle number densities within the sheet are likely to be related

ne ≈ np +
∑

i

Zini, (1)

in which i denotes an ion of specific charge and mass number, so
that the overall charge density is not too far from the Goldreich–
Julian value. But their scale is uncertain because the cross-sectional
area of the sheet is unknown and it is possible that the current
may fluctuate with time. However, the establishment of such a
counterflow system must take a time interval an order of magnitude
larger than the transit time RLC/c. But uncertainty remains because
the pulse length is so short compared with the longitude window
that the conditions necessary for HFIP emission can be present only
for limited intervals of time.
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We assume a one-dimensional system whilst recognizing that
this implies a constraint on the minimum depth of the sheet. The
component of the dielectric tensor for a mode propagating inward
with k parallel with the local magnetic flux density B and z-axis is,

Dzz = 1 − ω2
p

γ 3
p (ω − kvp)2

−
∑

i

ω2
i

γ 3
i (ω − kvi)2

+mω2
e

k

∫ ∞

0
dq

∂f

∂q

1

ω − kv
(2)

(see Beskin & Philippov 2012) in which ωp, i, γ p, iand vp, i < 0
are the observer-frame plasma frequencies, Lorentz factors, and
velocities parallel with B of the protons and distinct ions of mass
number Ai and charge Zi. All velocities are in units of c. The function
f is the electron momentum distribution normalized to unity; m is
the mass and ve = v > 0 and γ are the electron velocity and Lorentz
factor. The final term in equation (2) has no pole because k < 0, and
it is of the order of ω2

e/(4ω2γ 3) which is small compared with unity
for the parameters used for the evaluation in Section 4. We shall
limit f to a δ-function and our analysis of equation (2) then follows
that of Jones (2014b). With the introduction of a dimensionless
variable s in place of ω, the Langmuir angular frequency ω = ωL is,

ωL − kvp = (1 + s)ω∗
p, (3)

where ω∗
p = ωpγ

−3/2
p . The dispersion relation for the mode(s) be-

comes

Dzz = 1 − 1

(1 + s)2
−

∑
i

Ci

(μi + s)2
− Ce

(μe + s)2
= 0, (4)

where

Ci = niZ
2
i

Ainp

γ 3
p

γ 3
i

, Ce = neγ
3
p

npγ 3

mp

m
(5)

and,

μi,e = 1 + 2γ 2
p (vp − vi,e)

k

k0
, (6)

in which a reference wavenumber k0 = 2γ 2
p ω∗

p has been defined.
Equation (4) is a polynomial of order 2NI + 4 for a total of NI distinct
ions and its analysis proceeds through finding the number of real
roots from the magnitudes of the constants given by equations (5)
and (6). There are four real roots in the indicative sketch of Dzz

shown in Fig. 1. The remaining roots are complex conjugate pairs
each representing a distinct unstable mode.

Values of μi depend on the ion velocities. We shall assume that
these are non-relativistic because ions are accelerated through the
same potential difference as electrons and we shall find that modest
values of the electron Lorentz factor γ are necessary. The ratio

vi

vp
=

(
Zi

Ai

)1/2

, (7)

provided the protons and ions have passed through the same poten-
tial difference. The mode angular frequencies are

ωLi = kvp + (1 + Resi)ω
∗
p (8)

and the amplitude growth rates are ω∗
pImsi. For a polynomial of the

form given by equation (4), it is straightforward to show that the
sum of the real parts of the complex roots is,

∑
i

Resi = −1 − μe −
(

s1 + s2 + s3 + s4

2

)
−

∑
i

μi, (9)

Figure 1. This shows an indicative sketch, not to scale, of the dielectric
tensor component Dzz(s). Asymptotically, Dzz → 1 in the limits s → ±∞.
The broken curve shows Dzz with no electron stream, Ce = 0, and the full
curve the effect of finite Ce. In the case shown, equation (4) has four real
roots (one being off the diagram to the left) and the electron stream has a
Lorentz factor too high to modify the complex roots of the Langmuir modes
qualitatively. An increased Ce would reduce the number of real roots to
two, the additional pair of complex conjugate roots representing an unstable
mode of electrons relative to baryons, probably not relevant to the present
problem. Only one μi is shown (NI = 1) because the values of μi are more
closely spaced than can be shown with clarity in the figure.

where s1−4 are the real roots, s3 and s4 being those consequent on
Ce 
= 0. It is evident that s3 + s4 ≈ −2μe so that the presence
or absence of the Ce term in equation (4) has little effect on the
sum of the real parts of the complex roots provided it is not large
enough to produce a further pair of complex roots. Equation (4) is
a sum of second-order poles on the real-s axis. In the limiting case
with parameters Ci such that the Imsi are infinitesimally small, the
separation of an adjacent pair of roots can be approximated by,

Resi+1 − Resi ≈ −1

2
(μi+1 − μi−1). (10)

As the Ci increase from these values, the complex conjugate ze-
ros in the dielectric tensor move further into the complex-s plane
but remain separated by the second-order poles and consistent with
equation (9). Thus equation (10) remains as an approximation al-
though possibly a poor one. On this basis, the frequency differences
between modes are

ωLi+1 − ωLi ≈ (Resi+1 − Resi)ω
∗
p = k

2
(vi−1 − vi+1), (11)

and fractionally,

ωLi+1 − ωLi

〈ωL〉 ≈ vp

2vL

((
Zi−1

Ai−1

)1/2

−
(

Zi+1

Ai+1

)1/2
)

, (12)

where 〈ωL〉 is the average of the ωLi. The composition of the ion
and proton stream from the polar cap and hence in the return cur-
rent is unknown. A reasonable choice of mass number must allow
for considerable reduction from a notional A = 56 in the neutron-
star interior owing to giant dipole-state decay in the electromag-
netic showers. Ion charges must allow for a small number of more
strongly bound electrons not undergoing photoelectric absorption.
Typical values such as Ai − 1 = Ai + 1 = 20, Zi + 1 = 4, Zi − 1 = 6,
give a fractional value 0.06 for equation (12) with a reasonable
ratio vp/vL = 1.2, though with the reservation that many other
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sets of ion charges and masses are possible. A final reservation
about equations (8)–(12) concerns the assumed uniform value of
the wavenumber. Modes exist with finite growth rates for a finite
interval of k (see Jones 2014b for some examples). The system is
far from isotropic and k is not a constant of motion so that there is
no reason to suppose that its value does not converge adiabatically
to that value ki for which the mode growth rate ImωLi = ω∗

pImsi is a
maximum. Thus equation (12) should be regarded as no more than a
first approximation. The μi are quite closely spaced and of the order
of unity in the non-relativistic case considered here in which k is of
the same of magnitude as k0. A difference μi + 1 − μi is typically
of the order of 0.05, whilst the Ci are about 0.1−0.2, which is large
compared with the threshold for complex roots, of the order of Ci

≈ (μi + 1 − μi)2/8.
Mode growth rates are finite but slowly varying functions of

composition for substantial intervals of ni/np. It must be that a
superposition of modes exists at formation but either a dominant or
several modes may develop, though it is important that periodicity
should not be lost through the development of SPT. But the presence
of the electron stream has to be considered. Its effect on the modes is
primarily a function of γ and requires that the integral in equation (2)
be small compared with unity. This can be confirmed by reference
to Fig. 1, from which it is clear that with decreasing γ , the presence
of the electron term can reduce the number of real roots to two,
the additional pair of complex roots producing a mode representing
motion of electrons relative to ions and protons.

In the observer frame, electrons interact with the longitudinal
field in consecutive cycles, each consisting of retardation for a time
λLi/2(v − vL)c, where λLi is the mode wavelength, followed by an
equal interval of acceleration. The frequency of these cycles in the
electron rest-frame is

ω
′
Li = −γ ki(v − vL), (13)

where vL < 0 is the mode velocity defined by ωLi = kivL. Radiation
emitted in the forward direction by the electron then has observer-
frame wavelength λi,

λLi = γ 2(v − vL)(1 + v)λi. (14)

The set of angular frequencies ωLi defined by equations (8)–(12)
with average 〈ωL〉 gives the structure of what is observed. Thus the
observed electric field is a linear function of the Langmuir-mode
fields Ezi. Either a superposition of modes in one region of the
source or single dominant modes in adjacent source volumes can
produce a set of emission lines. Each wavelength λi is obtained
by scaling from the Langmuir-mode wavelength λLi. Thus the pro-
portionality observed by Eilek & Hankins is satisfied even though
as a result of changes in γ there may be no consistent frequency
memory between multiple pulses. Emission according to the model
of this paper from a given part of the source volume, consists of
a set of frequencies ν i representing the modes in the return beam.
Emission lines in a given pulse may lie within a bandwidth little
greater than the observing bandwidth used by Eilek & Hankins.
These authors have suggested that simultaneous observations over
5–28GHz would reveal a complete set of about 30 lines, but the
present model does not support that. If the band structure in λL

given by equation (12) is to be observable, the electron stream must
be monoenergetic, as in our choice of a δ-function distribution in
equation (2). We refer to this again in later Sections.

An electron emitting radiation at t = 0 in the observer frame
completes a cycle at t = λLi/c(v − vL) = λ̃Li/cv in which time the
radiation has travelled a distance ct exceeding λ̃L by λ̃L/2γ 2. This is
equal to λi, so that the forward emission by an electron in a sequence

of cycles is coherent. [The small difference of refractive index from
unity, given by equation (22), which is approximately 2 × 10−5 for
the parameters used in Section 4, has been neglected here.]

The longitudinal field in any of the Langmuir modes satisfies,

− impγ
3
p (ωLi − kivp)cδvpi = eEzi (15)

which can be re-expressed using equation (3) as

cδvpi = e

mpγ 3
p ω∗

p

i

1 + si

Ezi . (16)

From this, and assuming ne ≈ np, the ratio of fluctuation densities
is,∣∣∣∣ δne

δnp

∣∣∣∣ ≈ mp|vp|
mγ 3

� 1, (17)

which again places a lower limit on γ .
The ponderomotive force has not been considered in the electron

interaction with the longitudinal field. It is dependent on �(E2
z ) and

is the mean force on an electron over one cycle of the alternating
field. It is small compared with the linear interaction and has been
neglected together with radiation reaction.

4 INTENSI TY OF EMI SSI ON

The electric field at a distant point r = rn̂ produced by an electron
at any point within a cycle is,

E = − e

rc

[
n̂ × ((n̂ − v) × ∂v/∂t)

(1 − n̂ · v)3

]
, (18)

see Jackson (1962), in which the square-bracketed quantity is to be
evaluated at a retarded time. We can consider a cross-sectional area
of πλ2

L for the interaction of the electron stream with the Langmuir
longitudinal field. (Hereafter, λL refers to 〈λLi〉 Then for wavelength
λi, the fields produced by the electron at all corresponding points in
a sequence of N cycles are coherent: the field at r is NE provided
N is not too large (N = 101−2). Reasons for this limitation are that
the development of the Langmuir mode does not permit coherence
over large distances owing to the adiabatic variation of λL with
particle number density, also the rectilinear form we have assumed
is disturbed by flux-line curvature.

The radiated energy within an element of solid angle dS at a small
angle θ with v is then,

dW̃

dS
= 8πe2(δγ )2

λ̃L

γ 4θ2

(1 + γ 2θ2)5
, δγ = eEzλ̃L

2πmc2
. (19)

for one electron in a half cycle.
The smallest area within which Langmuir-mode growth is pos-

sible is πλ2
L. Thus taking into account the coherences described

above, the energy transfer dW for the complete system per cycle
into solid angle dS is,

dW

dS
= 2N2

(
πneλ

2
L

λ̃L

2

)2
dW̃

dS
. (20)

The angular function in equation (19) has a maximum at θ = 1/2γ .
Evaluating for this and for a tentative set of parameters (ne = 2 × 108

cm−3, np = 108 cm−3, vL = −0.3, λL = 4.3 × 103 cm, λ̃L =
3.3 × 103 cm, N = 102) we have, for a complete cycle of t0 =
λ̃L/cv = 1.1 × 10−7 s,

dW

dS
= 2.8 × 1023(δγ )2 (21)

erg sterad−1. With these parameters, ωe = 8 × 108 and ωp =
1.3 × 107 rad s−1. In this case, γ = 17 for λ = 6 cm (5 GHz)
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3778 P. B. Jones

and δγ = 0.3Ez with Ez in esu. A typical observed emission line
(Eilek & Hankins) has width 0.4 GHz and intensity 20 Jy for �t
= 10−5 s, equivalent to 3 × 1025dS erg for emission at source into
solid angle dS. Thus the observed intensities are easily described
in terms of our model although it must be noted that the processes
of re-absorption have been neglected here. This is a further reason
why the magnitude of N has been restricted.

Estimates of the energy produced per electron in the stream show
at once that there is a problem. The energy given by equation (21)
is produced by the passage of πλ2

Lnecv�t = 3.5 × 1021 electrons
through an interval Nλ̃L of Langmuir mode. The energy per electron
is clearly unreasonably large by many orders of magnitude.

Assuming for reference purposes that the total electron current
in the sheet balances the Goldreich–Julian current from the polar
cap, the cross-sectional area As and electron density are related by
Asne = 1.6 × 1023 cm−1, so that As = 1.4 × 107πλ2

L. Thus the
problem is solved if the Langmuir mode is not confined to πλ2

L

but completely fills the sheet, though with the coherence we have
assumed extending only over individual elements of area of the
order of πλ2

L. The energy per electron is then of the order of 1 MeV.
However a particular Langmuir mode is distributed over the sheet

cross-section, the magnetospheric dynamics require a return current
flow and it must be true that, within limits, the potential differ-
ence necessary to maintain this will always develop. The radiation-
reaction loss of energy is then compensated, which process effec-
tively supports the emission. The particular details depend on the
precise nature of the instabilities that exist at any instant.

Within the complete cross-sectional area, several different Lang-
muir modes can be excited, independently or in linear combination,
and a corresponding band of observer-frame wavelength 〈λ〉 with
the spacing �ν i∝〈ν〉. The values of ν i and 〈ν〉 depend on the spe-
cific values of γ and the Langmuir-mode parameters vp and vi at the
instant concerned and this explains the absence of any consistent
observed frequency memory.

The functioning of this mechanism does place a number of con-
straints on the system. But pulses are sparse within the longitude
window and one must conclude that, for most of the time, these
conditions are not satisfied. The most obvious of these is that the
mode interacting with the electron stream should not develop into
a turbulent state in which periodicity is lost, thereby removing the
band structure. At the same time, the values of Ezi and δne/ne must
not be so large as to limit the mode growth-rate excessively.

An upward drift in the value of vL during the interval �t could
account for the observed increase in ν of approximately 0.15 GHz
μs−1. Emission over an interval as long as 10−5 s must involve at
least a quasi-equilibrium between the Langmuir field Ezi and δne/ne.
This might facilitate the monoenergetic value of γ in the region of
emission which is necessary for the observation of band structure.

5 POLARIZATION D ISPERSION AND
G E O M E T RY

The major unknown factor is the geometrical form of the current
sheet. Its existence is indicated by the fluctuations in dispersion
measure δ(DM) ≈ 0.02 pc cm−3 from pulse to pulse observed by
Eilek & Hankins (2016). The rapidity of fluctuation excludes any
origin external to the light cylinder or even propagation through
some region of a standard corotational magnetosphere. We have
been unable to envisage any geometrical form other than emission
at some depth within a high-density current sheet, the magnitude
of the fluctuation being determined by the path-length of radiation
prior to exiting the sheet. We shall assume that the form of the sheet

is that of the separatrix, the surface separating open from closed
sectors of the magnetosphere, but we know nothing of its depth or
width and hence of the electron density. Modelling has indicated the
possible existence of counter-streaming and given our assumption
of � · B < 0 for the Crab pulsar, this would consist of an inward
return flux of ions and protons and the outward stream of electrons
described in Section 3.

The immediate problem is that of the magnitude of δ(DM). The
region within the light cylinder is one of high magnetic flux density,
defined by ω and ωp � ωB. The plasma is birefringent, with O
and E modes. Whilst the E-mode refractive index is only negligibly
different from unity, the O-mode refractive index in the high-field
limit is,

1 + δnO = 1 − 2ω2
e

γ 3ω2

〈
γ 4θ2

(1 + γ 2θ2)2

〉
, (22)

for outward moving radiation and electron stream, where θ is the
(small) angle between the wavevector and the local B and γ is
the electron Lorentz factor. Equation (22) is obtained from the
dielectric tensor given by Beskin & Philippov (2012) and from
Maxwell’s equations for the O mode. In comparison with the in-
terstellar medium refractive index 1 − ω2

e/2ω2, it is clear that the
magnetic field much reduces deviations from unity so that a fluc-
tuating column density of the order of 6 × 1016 γ cm−2 would be
required inside but close to the light cylinder to produce the ob-
served pulse-to-pulse changes in dispersion measure. This would
indicate an electron density possibly one or two orders of magni-
tude greater than the value of 2 × 108 cm−3 we have assumed, for
which the cross-sectional area of the sheet is at most As = 8 × 1014

cm2. Assuming that locally, the sheet has a radius of curvature ρ

and depth d, the maximum rectilinear distance that radiation cre-
ated inside the sheet can travel within it is approximately (2ρd)1/2

= 6 × 1016 γ /ne. The column density, of the order of 1018 cm−2,
then gives (2ρd)1/2 = 5 × 109 cm which is geometrically difficult to
accommodate. But because nothing is known with confidence about
the structure of the sheet, this problem is not necessarily serious.
Also the electron density in the sheet is not necessarily uniform.

The polarization is defined by equation (18). Although we know
little about the geometrical form of the current sheet we can assume,
as above, that the flux lines within it are curved and that the unit
vector n̂ of the line of sight lies in the plane of those flux lines
in the part of the emission region we observe. With neglect of
aberration, it follows that the emission observed is derived almost
entirely from the O mode. Although the time of flight difference
between O and E modes at 5 GHz corresponding with the dispersion
measure fluctuation is no more than of the order of typical pulse
lengths, almost complete polarization with constant position angle
is anticipated, as is observed (Jessner et al. 2010). The fact that
the sheet flux lines are almost certainly splayed out near the light
cylinder also means that we see radiation from only a sub-set of
flux lines. Consequently, the requirement that γ has a specific value
may be less onerous than we have indicated because we see only a
section of a γ -distribution that is a function of position within the
sheet.

6 C O N C L U S I O N S

A model has been proposed giving an understanding of the extraor-
dinary band structure in the HFIP emission of the Crab pulsar. It
is based on a particular view of the magnetosphere, that its spin
is � · B < 0 so that the polar-cap corotational charge density is
positive. As argued by Jones (2016), there is evidence that this is
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the condition of most radio-loud pulsars older than the Crab, the
most direct being the nature of the circular polarization observed at
high resolution in these objects. It is also the case that basic nuclear
physics reactions must lead to proton production at a polar cap as a
consequence of any reverse flux of relativistic electrons. A number
of less well-founded assumptions about the nature of the current
sheet are also made and in consequence, there would be some diffi-
dence in using the model as a predictive theory as one could not be
certain that these conditions would be satisfied to the extent that the
phenomena predicted would definitely be observed. But they have
been observed and the intention is that the model should give some
insight into their origin.

We are not aware of any direct evidence for the existence of
current sheets within the magnetosphere, but the need to maintain
an approximately constant net charge on the star does exist. Mod-
elling, for e.g., the work of Bai & Spitkovsky cited earlier does
indicate the presence of a sheet with counterflow of positive and
negative charges. This work assumes, essentially, the free creation
of electrons and positrons and is based on a view of the magneto-
spheric composition that we do not accept. None the less it does
treat the net charge problem implicitly and we accept that its indi-
cation of the presence of current sheets and counterflow is of value.
Counterflow is necessary in a current sheet if the charge density
is to be restricted to approximately Goldreich–Julian values. The
observed fluctuation δ(DM) in the Crab HFIP can be viewed as
the first possible evidence, as direct as can be expected, of their
existence.

The distribution of ion charges and mass numbers produced by the
decay of the giant dipole states formed in electromagnetic showers at
the polar cap and by subsequent photoionization is not well known.
Thus observations on single pulses with bandwidth much increased
from the existing 4 GHz would be of the greatest interest. Eilek &
Hankins have suggested that, given adequate observing bandwidth,
a complete set of emission lines extending from 5 to 28 GHz might
be seen in a single pulse, but our model predicts that this should not
be so. The band structure in any single pulse would be centred on
〈ν〉 and the ν i simply represent the distribution of Zi/Ai that exists

in the return flow and the values of γ and the velocities vp and vi at
that instant.
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